1
|
Pozzi L, Hodgson JA, Burrell AS, Sterner KN, Raaum RL, Disotell TR. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 2014; 75:165-83. [PMID: 24583291 PMCID: PMC4059600 DOI: 10.1016/j.ympev.2014.02.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
153 |
2
|
Thornhill AH, Ho SYW, Külheim C, Crisp MD. Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Mol Phylogenet Evol 2015. [PMID: 26211451 DOI: 10.1016/j.ympev.2015.07.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The angiosperm family Myrtaceae has extant and fossil taxa from all southern continents and is assumed to be of Gondwanan origin. Many modern groups contain sister taxa that have disjunct transoceanic distributions, which can be interpreted as a result of either vicariance or long-distance dispersal and establishment (LDDE). Further, some Myrtaceae groups occur on Pacific islands with enigmatic geological histories. We tested hypotheses of vicariance and LDDE by estimating divergence times using a relaxed molecular clock calibrated with 12 fossils. In total, 88 genera and 202 species were sampled, representing both subfamilies and all tribes of Myrtaceae. We reconstructed the family as Gondwanan in origin. Of the 22 geographically disjunct sister groups in our study, up to six are potentially explained as the product of vicariance, three resulting from overland dispersal via new land connections, and 13 due to LDDE events. Nine of the 13 hypothesized LDDE events occurred in fleshy-fruited taxa. Our results indicate that most of the transoceanic distribution patterns in Myrtaceae have occurred since the Miocene due to LDDE, whereas inferred vicariance events all occurred before the Late Eocene. There are many instances of sister relationships between species-poor and species-rich groups in Myrtaceae, and at least three occurrences of geographically isolated taxa on long branches of the phylogeny (Arillastrum, Myrtus, and Tepualia), whose modern-day distributions are difficult to explain without additional fossil or geological evidence.
Collapse
|
Journal Article |
10 |
70 |
3
|
A time-calibrated, multi-locus phylogeny of piranhas and pacus (Characiformes: Serrasalmidae) and a comparison of species tree methods. Mol Phylogenet Evol 2014; 81:242-57. [PMID: 25261120 DOI: 10.1016/j.ympev.2014.06.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022]
Abstract
The phylogeny of piranhas, pacus, and relatives (family Serrasalmidae) was inferred on the basis of DNA sequences from eleven gene fragments that include the mitochondrial control region plus 10 nuclear genes (two exons and eight introns). The new data were obtained for a representative sampling of 53 specimens, collected from all major South American rivers, accounting for over 40% of the valid species and all genera excluding Utiaritichthys. Two fossil calibration points and relaxed-clock Bayesian analyses were used to estimate the timing of diversification. The new multilocus dataset also is used to compare several species-tree approaches against the results obtained using the concatenated alignment analyzed under maximum likelihood and Bayesian inference. Individual gene trees showed substantial topological discordance, but analyses based on concatenation and Bayesian and maximum likelihood-based species trees approaches converged onto a single phylogeny. The resulting phylogenetic hypothesis is robust and supports a division of the family into three major clades, consistent with previous results based on mitochondrial DNA alone. The earliest branching event separated a "pacu" clade (Colossoma, Mylossoma and Piaractus) from the rest of the family in the Late Cretaceous (over 68 Ma). The other two clades, that contain most of the diversity, are formed by the "true piranhas" (Metynnis, Pygopristis, Pygocentrus, Pristobrycon, Catoprion, and Serrasalmus) and the Myleus-like pacus (the Myleus clade). The "true" piranha clade originated during the Eocene (∼53 Ma) but the most recent diversification of flesh-eating piranhas within the genera Serrasalmus and Pygocentrus did not start until the Miocene (∼17 Ma). A comparison of species tree approaches indicates that most methods tested are consistent with results obtained by concatenation, suggesting that the gene-tree incongruence observed is mild and will not produce misleading results under simple concatenation analysis. Non-monophyly of several genera (Pristobrycon, Tometes, Myloplus, Mylesinus) and putative species (Serrasalmus rhombeus) was obtained, suggesting that further study of this family is necessary.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
53 |
4
|
Shaffer HB, McCartney-Melstad E, Near TJ, Mount GG, Spinks PQ. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines). Mol Phylogenet Evol 2017; 115:7-15. [PMID: 28711671 DOI: 10.1016/j.ympev.2017.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/30/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
Accurate time-calibrated phylogenies are the centerpiece of many macroevolutionary studies, and the relationship between the size and scale of molecular data sets and the density and accuracy of fossil calibrations is a key element of time tree studies. Here, we develop a target capture array specifically for living turtles, compare its efficiency to an ultraconserved element (UCE) dataset, and present a time-calibrated molecular phylogeny based on 539 nuclear loci sequenced from 26 species representing the breadth of living turtle diversity plus outgroups. Our gene array, based on three fully sequenced turtle genomes, is 2.4 times more variable across turtles than a recently published UCE data set for an identical subset of 13 species, confirming that taxon-specific arrays return more informative data per sequencing effort than UCEs. We used our genomic data to estimate the ages of living turtle clades including a mid-late Triassic origin for crown turtles and a mid-Carboniferous split of turtles from their sister group, Archosauria. By specifically excluding several of the earliest potential crown turtle fossils and limiting the age of fossil calibration points to the unambiguous crown lineage Caribemys oxfordiensis from the Late Jurassic (Oxfordian, 163.5-157.3Ma) we corroborate a relatively ancient age for living turtles. We also provide novel age estimates for five of the ten testudine families containing more than a single species, as well as several intrafamilial clades. Most of the diversity of crown turtles appears to date to the Paleogene, well after the Cretaceous-Paleogene mass extinction 66mya.
Collapse
|
Journal Article |
8 |
45 |
5
|
Zheng Y, Wiens JJ. Do missing data influence the accuracy of divergence-time estimation with BEAST? Mol Phylogenet Evol 2015; 85:41-9. [PMID: 25681677 DOI: 10.1016/j.ympev.2015.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/26/2015] [Accepted: 02/01/2015] [Indexed: 10/24/2022]
Abstract
Time-calibrated phylogenies have become essential to evolutionary biology. A recurrent and unresolved question for dating analyses is whether genes with missing data cells should be included or excluded. This issue is particularly unclear for the most widely used dating method, the uncorrelated lognormal approach implemented in BEAST. Here, we test the robustness of this method to missing data. We compare divergence-time estimates from a nearly complete dataset (20 nuclear genes for 32 species of squamate reptiles) to those from subsampled matrices, including those with 5 or 2 complete loci only and those with 5 or 8 incomplete loci added. In general, missing data had little impact on estimated dates (mean error of ∼5Myr per node or less, given an overall age of ∼220Myr in squamates), even when 80% of sampled genes had 75% missing data. Mean errors were somewhat higher when all genes were 75% incomplete (∼17Myr). However, errors increased dramatically when only 2 of 9 fossil calibration points were included (∼40Myr), regardless of missing data. Overall, missing data (and even numbers of genes sampled) may have only minor impacts on the accuracy of divergence dating with BEAST, relative to the dramatic effects of fossil calibrations.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
45 |
6
|
Saladin B, Leslie AB, Wüest RO, Litsios G, Conti E, Salamin N, Zimmermann NE. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification. BMC Evol Biol 2017; 17:95. [PMID: 28376717 PMCID: PMC5381128 DOI: 10.1186/s12862-017-0941-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 03/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The taxonomy of pines (genus Pinus) is widely accepted and a robust gene tree based on entire plastome sequences exists. However, there is a large discrepancy in estimated divergence times of major pine clades among existing studies, mainly due to differences in fossil placement and dating methods used. We currently lack a dated molecular phylogeny that makes use of the rich pine fossil record, and this study is the first to estimate the divergence dates of pines based on a large number of fossils (21) evenly distributed across all major clades, in combination with applying both node and tip dating methods. RESULTS We present a range of molecular phylogenetic trees of Pinus generated within a Bayesian framework. We find the origin of crown Pinus is likely up to 30 Myr older (Early Cretaceous) than inferred in most previous studies (Late Cretaceous) and propose generally older divergence times for major clades within Pinus than previously thought. Our age estimates vary significantly between the different dating approaches, but the results generally agree on older divergence times. We present a revised list of 21 fossils that are suitable to use in dating or comparative analyses of pines. CONCLUSIONS Reliable estimates of divergence times in pines are essential if we are to link diversification processes and functional adaptation of this genus to geological events or to changing climates. In addition to older divergence times in Pinus, our results also indicate that node age estimates in pines depend on dating approaches and the specific fossil sets used, reflecting inherent differences in various dating approaches. The sets of dated phylogenetic trees of pines presented here provide a way to account for uncertainties in age estimations when applying comparative phylogenetic methods.
Collapse
|
research-article |
8 |
45 |
7
|
Comparison of different strategies for using fossil calibrations to generate the time prior in Bayesian molecular clock dating. Mol Phylogenet Evol 2017; 114:386-400. [PMID: 28709986 PMCID: PMC5546266 DOI: 10.1016/j.ympev.2017.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 07/09/2017] [Indexed: 11/30/2022]
Abstract
Fossil calibrations are the utmost source of information in molecular clock dating. The quality of calibrations has a major impact on divergence time estimates. In general, truncation has a great impact on calibrations. The different strategies for generating the effective prior also had considerable impact. It is important to inspect the joint time prior used by the dating program before any Bayesian dating analysis. Fossil calibrations are the utmost source of information for resolving the distances between molecular sequences into estimates of absolute times and absolute rates in molecular clock dating analysis. The quality of calibrations is thus expected to have a major impact on divergence time estimates even if a huge amount of molecular data is available. In Bayesian molecular clock dating, fossil calibration information is incorporated in the analysis through the prior on divergence times (the time prior). Here, we evaluate three strategies for converting fossil calibrations (in the form of minimum- and maximum-age bounds) into the prior on times, which differ according to whether they borrow information from the maximum age of ancestral nodes and minimum age of descendent nodes to form constraints for any given node on the phylogeny. We study a simple example that is analytically tractable, and analyze two real datasets (one of 10 primate species and another of 48 seed plant species) using three Bayesian dating programs: MCMCTree, MrBayes and BEAST2. We examine how different calibration strategies, the birth-death process, and automatic truncation (to enforce the constraint that ancestral nodes are older than descendent nodes) interact to determine the time prior. In general, truncation has a great impact on calibrations so that the effective priors on the calibration node ages after the truncation can be very different from the user-specified calibration densities. The different strategies for generating the effective prior also had considerable impact, leading to very different marginal effective priors. Arbitrary parameters used to implement minimum-bound calibrations were found to have a strong impact upon the prior and posterior of the divergence times. Our results highlight the importance of inspecting the joint time prior used by the dating program before any Bayesian dating analysis.
Collapse
|
Journal Article |
8 |
32 |
8
|
Pabijan M, Wandycz A, Hofman S, Węcek K, Piwczyński M, Szymura JM. Complete mitochondrial genomes resolve phylogenetic relationships within Bombina (Anura: Bombinatoridae). Mol Phylogenet Evol 2013; 69:63-74. [PMID: 23707701 DOI: 10.1016/j.ympev.2013.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 02/14/2013] [Accepted: 05/08/2013] [Indexed: 11/25/2022]
Abstract
A highly resolved and time-calibrated phylogeny based on nucleotide variation in 18 complete mitochondrial genomes is presented for all extant species and major lineages of fire-bellied toads of the genus Bombina (Bombinatoridae). Two sets of divergence time estimates are inferred by applying alternative fossil constraints as minima. Divergence time estimates from both analyses differed for the two oldest nodes. The earliest phylogenetic split occurred between small- and large-bodied Bombina (subgenera Bombina and Grobina, respectively) either in the Middle Oligocene or the Early Miocene. East Asian B. orientalis and European B. bombina+B. variegata diverged in the early or Middle Miocene. Divergence times inferred using the alternative fossil calibration strategies converged for the younger nodes, with broadly overlapping HPD intervals. The split between Bombina bombina and B. variegata occurred in the Late Miocene of Europe and somewhat preceded another deep mtDNA division between the Balkan B. v. scabra and B. v. variegata inhabiting the Carpathian Mts. Concurrently, the genetically distinct B. maxima diverged from other Grobina in southeast Asia in the Late Miocene or Pliocene. Our mtDNA phylogeny and a new species-tree analysis of published data (nuclear and mtDNA) suggest that B. fortinuptialis, B. lichuanensis and B. microdeladigitora may be conspecific geographic forms that separated due to Pleistocene climatic fluctuations in southeastern Asia. In the western Palearctic, the Late Pliocene to Pleistocene climatic vagaries most probably induced vicariant events in the evolutionary history of B. variegata that led to the formation of the two Balkan B. v. scabra lineages and the allopatric B. v. pachypus in the Apennine Peninsula. Divergence among B. bombina mtDNA lineages is low, with an Anatolian Turkey lineage as the sister group to the European mtDNA clades. In sum, Miocene diversification in the genus Bombina established six allopatrically distributed major mtDNA lineages that diversified during the Pliocene and Pleistocene and have survived until the present. The narrow habitat requirements of fire-bellied toads and extensive environmental changes throughout the Palearctic in the Neogene may have contributed to a putatively high extinction rate in these anurans resulting in the current east/west disjunction of their ranges.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
27 |
9
|
Phillips MJ, Fruciano C. The soft explosive model of placental mammal evolution. BMC Evol Biol 2018; 18:104. [PMID: 29969980 PMCID: PMC6029115 DOI: 10.1186/s12862-018-1218-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/19/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Recent molecular dating estimates for placental mammals echo fossil inferences for an explosive interordinal diversification, but typically place this event some 10-20 million years earlier than the Paleocene fossils, among apparently more "primitive" mammal faunas. RESULTS However, current models of molecular evolution do not adequately account for parallel rate changes, and result in dramatic divergence underestimates for large, long-lived mammals such as whales and hominids. Calibrating among these taxa shifts the rate model errors deeper in the tree, inflating interordinal divergence estimates. We employ simulations based on empirical rate variation, which show that this "error-shift inflation" can explain previous molecular dating overestimates relative to fossil inferences. Molecular dating accuracy is substantially improved in the simulations by focusing on calibrations for taxa that retain plesiomorphic life-history characteristics. Applying this strategy to the empirical data favours the soft explosive model of placental evolution, in line with traditional palaeontological interpretations - a few Cretaceous placental lineages give rise to a rapid interordinal diversification following the 66 Ma Cretaceous-Paleogene boundary mass extinction. CONCLUSIONS Our soft explosive model for the diversification of placental mammals brings into agreement previously incongruous molecular, fossil, and ancestral life history estimates, and closely aligns with a growing consensus for a similar model for bird evolution. We show that recent criticism of the soft explosive model relies on ignoring both experimental controls and statistical confidence, as well as misrepresentation, and inconsistent interpretations of morphological phylogeny. More generally, we suggest that the evolutionary properties of adaptive radiations may leave current molecular dating methods susceptible to overestimating the timing of major diversification events.
Collapse
|
research-article |
7 |
25 |
10
|
Reconstructing evolution at the community level: A case study on Mediterranean amphibians. Mol Phylogenet Evol 2019; 134:211-225. [PMID: 30797941 DOI: 10.1016/j.ympev.2019.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 11/22/2022]
Abstract
Reconstructing reliable timescales for species evolution is an important and indispensable goal of modern biogeography. However, many factors influence the estimation of divergence times, and uncertainty in the inferred time trees remains a major issue that is often insufficiently acknowledged. We here focus on a fundamental problem of time tree analysis: the combination of slow-evolving (nuclear DNA) and fast-evolving (mitochondrial DNA) markers in a single time tree. Both markers differ in their suitability to infer divergences at different time scales (the 'genome-timescale-dilemma'). However, strategies to infer shallow and deep divergences in a single time tree have rarely been compared empirically. Using Mediterranean amphibians as model system that is exceptional in its geographic and taxonomic completeness of available genetic information, we analyze 202 lineages of western Palearctic amphibians across the entire Mediterranean region. We compiled data of four nuclear and five mitochondrial genes and used twelve fossil calibration points widely acknowledged for amphibian evolution. We reconstruct time trees for an extensive lineage-level data set and compare the performances of the different trees: the first tree is based on primary fossil calibration and mitochondrial DNA, while the second tree is based on a combination of primary fossil and on secondary calibrations taken from a nuclear tree using mitochondrial DNA (two-step protocol). Focusing on a set of nodes that are most likely explained by vicariance, we statistically compare the reconstructed alternative time trees by applying a biogeographical plausibility test. Our two-step protocol outperformed the alternative approach in terms of spatial and temporal plausibility. It allows us to infer scenarios for Mediterranean amphibian evolution in eight geographic provinces. We identified several tectonic and climatic events explaining the majority of Mediterranean amphibian divergences, with Plio-Pleistocene climatic fluctuations being the dominant driver for intrageneric evolution. However, often more than one event could be invoked for a specific split. We give recommendations for the use of secondary calibrations in future molecular clock analyses at the community level.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
22 |
11
|
Van Der Wal C, Ahyong ST, Ho SYW, Lo N. The evolutionary history of Stomatopoda (Crustacea: Malacostraca) inferred from molecular data. PeerJ 2017; 5:e3844. [PMID: 28948111 PMCID: PMC5610894 DOI: 10.7717/peerj.3844] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/02/2017] [Indexed: 11/20/2022] Open
Abstract
The crustacean order Stomatopoda comprises seven superfamilies of mantis shrimps, found in coastal waters of the tropics and subtropics. These marine carnivores bear notable raptorial appendages for smashing or spearing prey. We investigated the evolutionary relationships among stomatopods using phylogenetic analyses of three mitochondrial and two nuclear markers. Our analyses recovered the superfamily Gonodactyloidea as polyphyletic, with Hemisquilla as the sister group to all other extant stomatopods. A relaxed molecular clock, calibrated by seven fossil-based age constraints, was used to date the origin and major diversification events of stomatopods. Our estimates suggest that crown-group stomatopods (Unipeltata) diverged from their closest crustacean relatives about 340 Ma (95% CRI [401–313 Ma]). We found that the specialized smashing appendage arose after the spearing appendage ∼126 Ma (95% CRI [174–87 Ma]). Ancestral state reconstructions revealed that the most recent common ancestor of extant stomatopods had eyes with six midband rows of hexagonal ommatidia. Hexagonal ommatidia are interpreted as plesiomorphic in stomatopods, and this is consistent with the malacostracan ground-plan. Our study provides insight into the evolutionary timescale and systematics of Stomatopoda, although further work is required to resolve with confidence the phylogenetic relationships among its superfamilies.
Collapse
|
Journal Article |
8 |
21 |
12
|
Korn M, Rabet N, Ghate HV, Marrone F, Hundsdoerfer AK. Molecular phylogeny of the Notostraca. Mol Phylogenet Evol 2013; 69:1159-71. [PMID: 23973879 DOI: 10.1016/j.ympev.2013.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 07/11/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
Abstract
We used a combined analysis of one nuclear (28S rDNA) and three mitochondrial markers (COI, 12S rDNA, 16S rDNA) to infer the molecular phylogeny of the Notostraca, represented by samples from the six continents that are inhabited by this group of branchiopod crustaceans. Our results confirm the monophyly of both extant notostracan genera Triops and Lepidurus with good support in model based and maximum parsimony analyses. We used branchiopod fossils as a calibration to infer divergence times among notostracan lineages and accounted for rate heterogeneity among lineages by applying relaxed-clock models. Our divergence date estimates indicate an initial diversification into the genera Triops and Lepidurus in the Mesozoic, most likely at a minimum age of 152.3-233.5 Ma, i.e., in the Triassic or Jurassic. Implications for the interpretation of fossils and the evolution of notostracan morphology are discussed. We further use the divergence date estimates to formulate a biogeographic hypothesis that explains distributions of extant lineages predominantly by overland dispersal routes. We identified an additional hitherto unrecognised highly diverged lineage within Lepidurus apus lubbocki and three additional previously unknown major lineages within Triops. Within T. granarius we found deep differentiation, with representatives distributed among three major phylogenetic lineages. One of these major lineages comprises T. cancriformis, the T. mauritanicus species group and two hitherto unrecognised T. granarius lineages. Samples that were morphologically identified as T. granarius diverged from the most basal nodes within this major lineage, and divergence dates suggested an approximate age of 23.7-49.6 Ma for T. cancriformis, indicating the need for a taxonomic revision of Triassic and Permian fossils that are currently attributed to the extant T. cancriformis. We thus elevate T. cancriformis minor to full species status as Triops minorTrusheim, 1938 and include in this species the additional Upper Triassic samples that were attributed to T. cancriformis. We further elevate T. cancriformis permiensis to full species status as Triops permiensisGand et al., 1997.
Collapse
|
Journal Article |
12 |
21 |
13
|
Brusquetti F, Netto F, Baldo D, Haddad CFB. What happened in the South American Gran Chaco? Diversification of the endemic frog genus Lepidobatrachus Budgett, 1899 (Anura: Ceratophryidae). Mol Phylogenet Evol 2018; 123:123-136. [PMID: 29476908 DOI: 10.1016/j.ympev.2018.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/11/2018] [Accepted: 02/11/2018] [Indexed: 10/18/2022]
Abstract
The Chaco is one the most neglected and least studied regions of the world. This highly-seasonal semiarid biome is an extensive continuous plain without any geographic barrier, and in spite of its high species diversity, the events and processes responsible have never been assessed. Miocene marine introgressions and Pleistocene glaciations have been mentioned as putative drivers of diversification for some groups of vertebrates in adjacent biomes of southern South America. Here we used multilocus data (one mitochondrial and six nuclear loci) from the three species of the endemic frog genus Lepidobatrachus (Lepidobatrachus asper, Lepidobatrachus laevis, and Lepidobatrachus llanensis) to determine if any of the historical events suggested as drivers of vertebrate diversification in southern South America are related to the diversification of the genus and if the Chaco is indeed a biome without barriers. Using fossil calibration in a coalescent framework we estimated that the genus diversified in the second half of the Miocene, coinciding with marine introgressions. Genetic patterns and historical demography suggest an important role of old archs and cratons as refuges during floods. In one species of the genus, L. llanensis, genetic structure reveals some breaks along the landscape, the main one of which corresponds to an area of the central Chaco that may act as a climatic barrier. Additionally, we found differential effects of the main Chacoan rivers on species of Lepidobatrachus that could be related to the time of persistence of populations in the areas influenced by these rivers.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
7 |
14
|
Lima FD, Strugnell JM, Leite TS, Lima SM. A biogeographic framework of octopod species diversification: the role of the Isthmus of Panama. PeerJ 2020; 8:e8691. [PMID: 32257633 PMCID: PMC7104719 DOI: 10.7717/peerj.8691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/05/2020] [Indexed: 11/20/2022] Open
Abstract
The uplift of the Isthmus of Panama (IP) created a land bridge between Central and South America and caused the separation of the Western Atlantic and Eastern Pacific oceans, resulting in profound changes in the environmental and oceanographic conditions. To evaluate how these changes have influenced speciation processes in octopods, fragments of two mitochondrial (Cytochrome oxidase subunit I, COI and 16S rDNA) and two nuclear (Rhodopsin and Elongation Factor-1α, EF-1α) genes were amplified from samples from the Atlantic and Pacific oceans. One biogeographical and four fossil calibration priors were used within a relaxed Bayesian phylogenetic analysis framework to estimate divergence times among cladogenic events. Reconstruction of the ancestral states in phylogenies was used to infer historical biogeography of the lineages and species dispersal routes. The results revealed three well-supported clades of transisthmian octopus sister species pair/complex (TSSP/TSSC) and two additional clades showing a low probability of species diversification, having been influenced by the IP. Divergence times estimated in the present study revealed that octopod TSSP/TSSC from the Atlantic and Pacific diverged between the Middle Miocene and Early Pliocene (mean range = 5-18 Ma). Given that oceanographic changes caused by the uplift of the IP were so strong as to affect the global climate, we suggest that octopod TSSP/TSSC diverged because of these physical and environmental barriers, even before the complete uplift of the IP 3 Ma, proposed by the Late Pliocene model. The results obtained in this phylogenetic reconstruction also indicate that the octopus species pairs in each ocean share a recent common ancestor from the Pacific Ocean.
Collapse
|
research-article |
5 |
7 |
15
|
Chen D, Hosner PA, Dittmann DL, O'Neill JP, Birks SM, Braun EL, Kimball RT. Divergence time estimation of Galliformes based on the best gene shopping scheme of ultraconserved elements. BMC Ecol Evol 2021; 21:209. [PMID: 34809586 PMCID: PMC8609756 DOI: 10.1186/s12862-021-01935-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Divergence time estimation is fundamental to understanding many aspects of the evolution of organisms, such as character evolution, diversification, and biogeography. With the development of sequence technology, improved analytical methods, and knowledge of fossils for calibration, it is possible to obtain robust molecular dating results. However, while phylogenomic datasets show great promise in phylogenetic estimation, the best ways to leverage the large amounts of data for divergence time estimation has not been well explored. A potential solution is to focus on a subset of data for divergence time estimation, which can significantly reduce the computational burdens and avoid problems with data heterogeneity that may bias results. RESULTS In this study, we obtained thousands of ultraconserved elements (UCEs) from 130 extant galliform taxa, including representatives of all genera, to determine the divergence times throughout galliform history. We tested the effects of different "gene shopping" schemes on divergence time estimation using a carefully, and previously validated, set of fossils. Our results found commonly used clock-like schemes may not be suitable for UCE dating (or other data types) where some loci have little information. We suggest use of partitioning (e.g., PartitionFinder) and selection of tree-like partitions may be good strategies to select a subset of data for divergence time estimation from UCEs. Our galliform time tree is largely consistent with other molecular clock studies of mitochondrial and nuclear loci. With our increased taxon sampling, a well-resolved topology, carefully vetted fossil calibrations, and suitable molecular dating methods, we obtained a high quality galliform time tree. CONCLUSIONS We provide a robust galliform backbone time tree that can be combined with more fossil records to further facilitate our understanding of the evolution of Galliformes and can be used as a resource for comparative and biogeographic studies in this group.
Collapse
|
research-article |
4 |
7 |
16
|
Leslie MS, Peredo CM, Pyenson ND. Norrisanima miocaena, a new generic name and redescription of a stem balaenopteroid mysticete (Mammalia, Cetacea) from the Miocene of California. PeerJ 2019; 7:e7629. [PMID: 31608165 PMCID: PMC6788442 DOI: 10.7717/peerj.7629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Rorqual whales are among the most species rich group of baleen whales (or mysticetes) alive today, yet the monophyly of the traditional grouping (i.e., Balaenopteridae) remains unclear. Additionally, many fossil mysticetes putatively assigned to either Balaenopteridae or Balaenopteroidea may actually belong to stem lineages, although many of these fossil taxa suffer from inadequate descriptions of fragmentary skeletal material. Here we provide a redescription of the holotype of Megaptera miocaena, a fossil balaenopteroid from the Monterey Formation of California, which consists of a partial cranium, a fragment of the rostrum, a single vertebra, and both tympanoperiotics. Kellogg (1922) assigned the type specimen to the genus MegapteraGray (1846), on the basis of its broad similarities to distinctive traits in the cranium of extant humpback whales (Megaptera novaeangliae (Borowski, 1781)). Subsequent phylogenetic analyses have found these two species as sister taxa in morphological datasets alone; the most recent systematic analyses using both molecular and morphological data sets place Megaptera miocaena as a stem balaenopteroid unrelated to humpback whales. Here, we redescribe the type specimen of Megaptera miocaena in the context of other fossil balaenopteroids discovered nearly a century since Kellogg’s original description and provide a morphological basis for discriminating it from Megaptera novaeangliae. We also provide a new generic name and recombine the taxon as Norrisanima miocaena, gen. nov., to reflect its phylogenetic position outside of crown Balaenopteroidea, unrelated to extant Megaptera. Lastly, we refine the stratigraphic age of Norrisanima miocaena, based on associated microfossils to a Tortonian age (7.6–7.3 Ma), which carries implications for understanding the origin of key features associated with feeding and body size evolution in this group of whales.
Collapse
|
|
6 |
5 |
17
|
Barba-Montoya J, Tao Q, Kumar S. Molecular and morphological clocks for estimating evolutionary divergence times. BMC Ecol Evol 2021; 21:83. [PMID: 33980146 PMCID: PMC8117668 DOI: 10.1186/s12862-021-01798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Matrices of morphological characters are frequently used for dating species divergence times in systematics. In some studies, morphological and molecular character data from living taxa are combined, whereas others use morphological characters from extinct taxa as well. We investigated whether morphological data produce time estimates that are concordant with molecular data. If true, it will justify the use of morphological characters alongside molecular data in divergence time inference. RESULTS We systematically analyzed three empirical datasets from different species groups to test the concordance of species divergence dates inferred using molecular and discrete morphological data from extant taxa as test cases. We found a high correlation between their divergence time estimates, despite a poor linear relationship between branch lengths for morphological and molecular data mapped onto the same phylogeny. This was because node-to-tip distances showed a much higher correlation than branch lengths due to an averaging effect over multiple branches. We found that nodes with a large number of taxa often benefit from such averaging. However, considerable discordance between time estimates from molecules and morphology may still occur as some intermediate nodes may show large time differences between these two types of data. CONCLUSIONS Our findings suggest that node- and tip-calibration approaches may be better suited for nodes with many taxa. Nevertheless, we highlight the importance of evaluating the concordance of intrinsic time structure in morphological and molecular data before any dating analysis using combined datasets.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
3 |
18
|
Sanders MT, Merle D, Laurin M, Bonillo C, Puillandre N. Raising names from the dead: A time-calibrated phylogeny of frog shells (Bursidae, Tonnoidea, Gastropoda) using mitogenomic data. Mol Phylogenet Evol 2020; 156:107040. [PMID: 33310060 DOI: 10.1016/j.ympev.2020.107040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/23/2022]
Abstract
With 59 Recent species, Bursidae, known as «frog shells», are a small but widely distributed group of tropical and subtropical gastropods that are most diverse in the Indo-West Pacific. The present study is aimed at reconstructing phylogenetic relationships of bursid gastropods based on extensive and representative taxon sampling. Five genetic markers (cytochrome c oxidase subunit I (cox1), 16 s and 12 s rRNA mitochondrial genes, 28 s rRNA and Histone H3 nuclear gene) were sequenced for over 30 species in every known genus but Crossata. Furthermore, we sequenced the complete mt-genome of 9 species (10 specimens) (Aspa marginata, Marsupina bufo, Korrigania quirihorai, Korrigania fijiensis, Tutufa rubeta, Bursa lamarckii, Lampasopsis rhodostoma (twice), Bufonaria perelegans and Bursa aff. tuberosissima). Our analysis recovered Bursidae as a monophyletic group, whereas the genus Bursa was found to be polyphyletic. The genera Talisman and Dulcerana are resurrected and the genera Alanbeuella gen. nov. and Korrigania gen. nov. are described. Dating analysis using 21 extinct taxa for node and simplified tip calibrations was performed, showing a diversification of the group in two phases. Diversification may be linked to tectonic events leading to biodiversity relocation from the western Tethys toward the Indo-Pacific.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
1 |
19
|
A fossil-calibrated time-tree of all Australian freshwater fishes. Mol Phylogenet Evol 2021; 161:107180. [PMID: 33887481 DOI: 10.1016/j.ympev.2021.107180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022]
Abstract
Australian freshwater fishes are a relatively species-poor assemblage, mostly comprising groups derived from older repeated freshwater invasions by marine ancestors, plus a small number of Gondwanan lineages. These taxa are both highly endemic and highly threatened, but a comprehensive phylogeny for Australian freshwater fishes is lacking. This has hampered efforts to study their phylogenetic diversity, distribution of extinction risk, speciation rates, and rates of trait evolution. Here, we present a comprehensive dated phylogeny of 412 Australian fishes. We include all formally recognized freshwater species plus a number of genetically distinct subpopulations, species awaiting formal description, and predominantly brackish-water species that sometimes enter fresh water. The phylogeny was inferred using maximum-likelihood analysis of a multilocus data set comprising six mitochondrial and three nuclear genes from 326 taxa. We inferred the evolutionary timescale using penalized likelihood, then used a statistical approach to add 86 taxa for which no molecular data were available. The time-tree inferred in our study will provide a useful resource for macroecological studies of Australian freshwater fishes by enabling corrections for phylogenetic non-independence in evolutionary and ecological comparative analyses.
Collapse
|
Journal Article |
4 |
1 |
20
|
Lindsey CR, Knoll AH, Herron MD, Rosenzweig F. Fossil-calibrated molecular clock data enable reconstruction of steps leading to differentiated multicellularity and anisogamy in the Volvocine algae. BMC Biol 2024; 22:79. [PMID: 38600528 PMCID: PMC11007952 DOI: 10.1186/s12915-024-01878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Throughout its nearly four-billion-year history, life has undergone evolutionary transitions in which simpler subunits have become integrated to form a more complex whole. Many of these transitions opened the door to innovations that resulted in increased biodiversity and/or organismal efficiency. The evolution of multicellularity from unicellular forms represents one such transition, one that paved the way for cellular differentiation, including differentiation of male and female gametes. A useful model for studying the evolution of multicellularity and cellular differentiation is the volvocine algae, a clade of freshwater green algae whose members range from unicellular to colonial, from undifferentiated to completely differentiated, and whose gamete types can be isogamous, anisogamous, or oogamous. To better understand how multicellularity, differentiation, and gametes evolved in this group, we used comparative genomics and fossil data to establish a geologically calibrated roadmap of when these innovations occurred. RESULTS Our ancestral-state reconstructions, show that multicellularity arose independently twice in the volvocine algae. Our chronograms indicate multicellularity evolved during the Carboniferous-Triassic periods in Goniaceae + Volvocaceae, and possibly as early as the Cretaceous in Tetrabaenaceae. Using divergence time estimates we inferred when, and in what order, specific developmental changes occurred that led to differentiated multicellularity and oogamy. We find that in the volvocine algae the temporal sequence of developmental changes leading to differentiated multicellularity is much as proposed by David Kirk, and that multicellularity is correlated with the acquisition of anisogamy and oogamy. Lastly, morphological, molecular, and divergence time data suggest the possibility of cryptic species in Tetrabaenaceae. CONCLUSIONS Large molecular datasets and robust phylogenetic methods are bringing the evolutionary history of the volvocine algae more sharply into focus. Mounting evidence suggests that extant species in this group are the result of two independent origins of multicellularity and multiple independent origins of cell differentiation. Also, the origin of the Tetrabaenaceae-Goniaceae-Volvocaceae clade may be much older than previously thought. Finally, the possibility of cryptic species in the Tetrabaenaceae provides an exciting opportunity to study the recent divergence of lineages adapted to live in very different thermal environments.
Collapse
|
research-article |
1 |
|
21
|
Clark JW, Donoghue PCJ. Constraining Whole-Genome Duplication Events in Geological Time. Methods Mol Biol 2023; 2545:139-154. [PMID: 36720811 DOI: 10.1007/978-1-0716-2561-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The timing of whole-genome duplication (WGD) events is crucial to understanding their role in evolution and underpins many hypotheses linking WGD to increased diversity and complexity. As such, means of estimating the timing of the WGD events relative to their macroevolutionary outcomes are of considerable importance. Molecular clock methods facilitate direct estimation of the absolute timing of WGD events, integrating information on the rate of sequence evolution between species while accommodating the uncertainty inherent to the fossil record. We present an explanation of the best practice for constructing fossil calibrations and estimating the age of WGD events via molecular clock methods in the program MCMCtree, with an example dataset based on a well-characterized WGD event within the flowering dogwoods (Cornus). The approach presented herein allows for the estimation of the age of WGD events and subsequent speciation events, allowing the relationship between WGD and the macroevolutionary outcomes to be explored. In our example, we show that in the case of flowering dogwoods, the WGD event long predates the end-Cretaceous mass extinction and that the two events may be independent.
Collapse
|
|
2 |
|