1
|
Kelly JA, Woodside MT, Dinman JD. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology 2021; 554:75-82. [PMID: 33387787 PMCID: PMC7833279 DOI: 10.1016/j.virol.2020.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Human population growth, climate change, and globalization are accelerating the emergence of novel pathogenic viruses. In the past two decades alone, three such members of the coronavirus family have posed serious threats, spurring intense efforts to understand their biology as a way to identify targetable vulnerabilities. Coronaviruses use a programmed -1 ribosomal frameshift (-1 PRF) mechanism to direct synthesis of their replicase proteins. This is a critical switch in their replication program that can be therapeutically targeted. Here, we discuss how nearly half a century of research into -1 PRF have provided insight into the virological importance of -1 PRF, the molecular mechanisms that drive it, and approaches that can be used to manipulate it towards therapeutic outcomes with particular emphasis on SARS-CoV-2.
Collapse
|
research-article |
4 |
55 |
2
|
Celik A, He F, Jacobson A. NMD monitors translational fidelity 24/7. Curr Genet 2017; 63:1007-1010. [PMID: 28536849 PMCID: PMC5668330 DOI: 10.1007/s00294-017-0709-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is generally thought to be a eukaryotic mRNA surveillance pathway tasked with the elimination of transcripts harboring an in-frame premature termination codon (PTC). As presently conceived, NMD acting in this manner minimizes the likelihood that potentially toxic polypeptide fragments would accumulate in the cytoplasm. This notion is to be contrasted to the results of systematic RNA-Seq and microarray analyses of NMD substrates in multiple model systems, two different experimental approaches which have shown that many mRNAs identified as NMD substrates fail to contain a PTC. Our recent results provide insight into, as well as a possible solution for, this conundrum. By high-resolution profiling of mRNAs that accumulate in yeast when the principal NMD regulatory genes (UPF1, UPF2, and UPF3) are deleted, we identified approximately 900 NMD substrates, the majority of which are normal-looking mRNAs that lack PTCs. Analyses of ribosomal profiling data revealed that the latter mRNAs tended to manifest elevated rates of out-of-frame translation, a phenomenon that would lead to premature translation termination in alternative reading frames. These results, and related observations of heterogeneity in mRNA isoforms, suggest that NMD should be reconsidered as a probabilistic mRNA quality control pathway that is continually active throughout an mRNA’s life cycle.
Collapse
|
Review |
8 |
36 |
3
|
Newburn LR, Nicholson BL, Yosefi M, Cimino PA, White KA. Translational readthrough in Tobacco necrosis virus-D. Virology 2014; 450-451:258-65. [PMID: 24503089 DOI: 10.1016/j.virol.2013.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/23/2013] [Accepted: 12/08/2013] [Indexed: 12/16/2022]
Abstract
The plus-strand RNA genome of Tobacco necrosis virus-D (TNV-D) expresses its polymerase via translational readthrough. The RNA signals involved in this readthrough process were characterized in vitro using a wheat germ extract translation system and in vivo via protoplast infections. The results indicate that (i) TNV-D requires a long-range RNA-RNA interaction between an extended stem-loop (SL) structure proximal to the readthrough site and a sequence in the 3'-untranslated region of its genome; (ii) stability of the extended SL structure is important for its function; (iii) TNV-D readthrough elements are compatible with UAG and UGA, but not UAA; (iv) a readthrough defect can be rescued by a heterologous readthrough element in vitro, but not in vivo; and (v) readthrough elements can also mediate translational frameshifting. These results provide new information on determinants of readthrough in TNV-D and further support the concept of a common general mechanism for readthrough in Tombusviridae.
Collapse
|
|
11 |
20 |
4
|
Dunkle JA, Dunham CM. Mechanisms of mRNA frame maintenance and its subversion during translation of the genetic code. Biochimie 2015; 114:90-6. [PMID: 25708857 PMCID: PMC4458409 DOI: 10.1016/j.biochi.2015.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/11/2015] [Indexed: 01/26/2023]
Abstract
Important viral and cellular gene products are regulated by stop codon readthrough and mRNA frameshifting, processes whereby the ribosome detours from the reading frame defined by three nucleotide codons after initiation of translation. In the last few years, rapid progress has been made in mechanistically characterizing both processes and also revealing that trans-acting factors play important regulatory roles in frameshifting. Here, we review recent biophysical studies that bring new molecular insights to stop codon readthrough and frameshifting. Lastly, we consider whether there may be common mechanistic themes in -1 and +1 frameshifting based on recent X-ray crystal structures of +1 frameshift-prone tRNAs bound to the ribosome.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
17 |
5
|
Abstract
Viruses maintain compact genomes that must be packaged within capsids typically less than 200 nanometers in diameter. Therefore, instead of coding for a full set of genes needed for replication, viruses have evolved remarkable strategies for co-opting the host cellular machinery. Additionally, viruses often increase the coding capacity of their own genomes by employing overlapping open reading frames (ORFs). Some overlapping viral ORFs involve recoding events that are programmed by the viral RNA. During these programmed recoding events, the ribosome is directed to translate in an alternative reading frame. Here we describe how the Dicistroviridae family of viruses utilize an internal ribosome entry site (IRES) in order to recruit ribosomes to initiate translation at a non-AUG codon. The IRES accomplishes this in part by mimicking the structure of a tRNA. Recently, we showed that the Israeli Acute Paralysis Virus (IAPV) member of the Dicistroviridae family utilizes its IRES to initiate translation in 2 different reading frames. Thus, IAPV has evolved an apparently novel recoding mechanism that reveals important insights into translation. Finally, we compare the IAPV structure to other systems that utilize tRNA mimicry in translation.
Collapse
|
Review |
9 |
15 |
6
|
Khalid AM, Hamza HM, Mirjalili S, Hosny KM. BCOVIDOA: A Novel Binary Coronavirus Disease Optimization Algorithm for Feature Selection. Knowl Based Syst 2022; 248:108789. [PMID: 35464666 PMCID: PMC9014647 DOI: 10.1016/j.knosys.2022.108789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/20/2022]
Abstract
The increased use of digital tools such as smart phones, Internet of Things devices, cameras, and microphones, has led to the produuction of big data. Large data dimensionality, redundancy, and irrelevance are inherent challenging problems when it comes to big data. Feature selection is a necessary process to select the optimal subset of features when addressing such problems. In this paper, the authors propose a novel Binary Coronavirus Disease Optimization Algorithm (BCOVIDOA) for feature selection, where the Coronavirus Disease Optimization Algorithm (COVIDOA) is a new optimization technique that mimics the replication mechanism used by Coronavirus when hijacking human cells. The performance of the proposed algorithm is evaluated using twenty-six standard benchmark datasets from UCI Repository. The results are compared with nine recent wrapper feature selection algorithms. The experimental results demonstrate that the proposed BCOVIDOA significantly outperforms the existing algorithms in terms of accuracy, best cost, the average cost (AVG), standard deviation (STD), and size of selected features. Additionally, the Wilcoxon rank-sum test is calculated to prove the statistical significance of the results.
Collapse
|
|
3 |
10 |
7
|
Wang S, Sun S. Translation dysregulation in neurodegenerative diseases: a focus on ALS. Mol Neurodegener 2023; 18:58. [PMID: 37626421 PMCID: PMC10464328 DOI: 10.1186/s13024-023-00642-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
RNA translation is tightly controlled in eukaryotic cells to regulate gene expression and maintain proteome homeostasis. RNA binding proteins, translation factors, and cell signaling pathways all modulate the translation process. Defective translation is involved in multiple neurological diseases including amyotrophic lateral sclerosis (ALS). ALS is a progressive neurodegenerative disorder and poses a major public health challenge worldwide. Over the past few years, tremendous advances have been made in the understanding of the genetics and pathogenesis of ALS. Dysfunction of RNA metabolisms, including RNA translation, has been closely associated with ALS. Here, we first introduce the general mechanisms of translational regulation under physiological and stress conditions and review well-known examples of translation defects in neurodegenerative diseases. We then focus on ALS-linked genes and discuss the recent progress on how translation is affected by various mutant genes and the repeat expansion-mediated non-canonical translation in ALS.
Collapse
|
Review |
2 |
5 |
8
|
Dynamic combinatorial chemistry as a rapid method for discovering sequence-selective RNA-binding compounds. Methods Enzymol 2019; 623:67-84. [PMID: 31239058 DOI: 10.1016/bs.mie.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever-growing number of RNA species that are recognized as having a role in human disease is driving a demand for novel molecular probes and therapeutics. Producing sequence-selective RNA-binding molecules remains a substantial challenge, however. One approach that has been successful in producing molecules with high affinity and specificity for disease-relevant RNAs is the use of dynamic combinatorial chemistry, a fragment-based method in which fragments combine reversibly in the presence of the target. We describe methods for the design, synthesis, and screening of dynamic combinatorial libraries targeting RNA.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
4 |
9
|
Adamla F, Rollins J, Newsom M, Snow S, Schosserer M, Heissenberger C, Horrocks J, Rogers AN, Ignatova Z. A Novel Caenorhabditis Elegans Proteinopathy Model Shows Changes in mRNA Translational Frameshifting During Aging. Cell Physiol Biochem 2019; 52:970-983. [PMID: 30977983 DOI: 10.33594/000000067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS Regulation of mRNA translation is central to protein homeostasis and is optimized for speed and accuracy. Spontaneous recoding events occur virtually at any codon but at very low frequency and are commonly assumed to increase as the cell ages. METHODS Here, we leveraged the polyglutamine(polyQ)-frameshifting model of huntingtin exon 1 with CAG repeat length in the pathological range (Htt51Q), which undergoes enhanced non-programmed translational -1 frameshifting. RESULTS In body muscle cells of Caenorhabditis elegans, -1 frameshifting occured at the onset of expression of the zero-frame product, correlated with mRNA level of the non-frameshifted expression and formed aggregates correlated with reduced motility in C. elegans. Spontaneous frameshifting was modulated by IFG-1, the homologue of the nutrient-responsive eukaryotic initiation factor 4G (eIF4G), under normal growth conditions and NSUN-5, a conserved ribosomal RNA methyltransferase, under osmotic stress. CONCLUSION Our results suggest that frameshifting and aggregation occur at even early stages of development and, because of their intrinsic stability, may persist and accelerate the onset of age-related proteinopathies.
Collapse
|
Journal Article |
6 |
3 |
10
|
Khalid AM, Hamza HM, Mirjalili S, Hosny KM. MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems. Neural Comput Appl 2023; 35:1-29. [PMID: 37362577 PMCID: PMC10153059 DOI: 10.1007/s00521-023-08587-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/05/2023] [Indexed: 06/28/2023]
Abstract
A novel multi-objective Coronavirus disease optimization algorithm (MOCOVIDOA) is presented to solve global optimization problems with up to three objective functions. This algorithm used an archive to store non-dominated POSs during the optimization process. Then, a roulette wheel selection mechanism selects the effective archived solutions by simulating the frameshifting technique Coronavirus particles use for replication. We evaluated the efficiency by solving twenty-seven multi-objective (21 benchmarks & 6 real-world engineering design) problems, where the results are compared against five common multi-objective metaheuristics. The comparison uses six evaluation metrics, including IGD, GD, MS, SP, HV, and delta p (Δ P ). The obtained results and the Wilcoxon rank-sum test show the superiority of this novel algorithm over the existing algorithms and reveal its applicability in solving multi-objective problems.
Collapse
|
research-article |
2 |
1 |
11
|
Lyon KR, Morisaki T, Stasevich TJ. Imaging and Quantifying Ribosomal Frameshifting Dynamics with Single-RNA Precision in Live Cells. Methods Mol Biol 2025; 2875:99-110. [PMID: 39535643 PMCID: PMC11633442 DOI: 10.1007/978-1-0716-4248-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recent advances in fluorescence microscopy have now made it possible to measure the translation dynamics of individual RNA in living cells and in multiple colors. Here we describe a protocol that exploits these recent advances to simultaneously image the translation of two open reading frames encoded on a single reporter RNA yet frameshifted with respect to each other. This enables precise measurements of frameshifting dynamics and efficiency from specific frameshift stimulatory sequences, all with single-RNA precision.
Collapse
|
research-article |
1 |
|
12
|
Kim SH, Kong Y, Bae YA. Recurrent emergence of structural variants of LTR retrotransposon CsRn1 evolving novel expression strategy and their selective expansion in a carcinogenic liver fluke, Clonorchis sinensis. Mol Biochem Parasitol 2017; 214:14-26. [PMID: 28322871 DOI: 10.1016/j.molbiopara.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
Autonomous retrotransposons, in which replication and transcription are coupled, encode the essential gag and pol genes as a fusion or separate overlapping form(s) that are expressed in single transcripts regulated by a common upstream promoter. The element-specific expression strategies have driven development of relevant translational recoding mechanisms including ribosomal frameshifting to satisfy the protein stoichiometry critical for the assembly of infectious virus-like particles. Retrotransposons with different recoding strategies exhibit a mosaic distribution pattern across the diverse families of reverse transcribing elements, even though their respective distributions are substantially skewed towards certain family groups. However, only a few investigations to date have focused on the emergence of retrotransposons evolving novel expression strategy and causal genetic drivers of the structural variants. In this study, the bulk of genomic and transcribed sequences of a Ty3/gypsy-like CsRn1 retrotransposon in Clonorchis sinensis were analyzed for the comprehensive examination of its expression strategy. Our results demonstrated that structural variants with single open reading frame (ORF) have recurrently emerged from precedential CsRn1 copies encoding overlapping gag-pol ORFs by a single-nucleotide insertion in an upstream region of gag stop codon. In the parasite genome, some of the newly evolved variants appeared to undergo proliferative burst as active master lineages together with their ancestral copies. The genetic event was similarly observed in Opisthorchis viverrini, the closest neighbor of C. sinensis, whereas the resulting structural variants might have failed to overcome purifying selection and comprised minor remnant copies in the Opisthorchis genome.
Collapse
|
|
8 |
|
13
|
Mao Y, Qian SB. Making sense of mRNA translational "noise". Semin Cell Dev Biol 2024; 154:114-122. [PMID: 36925447 PMCID: PMC10500040 DOI: 10.1016/j.semcdb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
The importance of translation fidelity has been apparent since the discovery of genetic code. It is commonly believed that translation deviating from the main coding region is to be avoided at all times inside cells. However, ribosome profiling and mass spectrometry have revealed pervasive noncanonical translation. Both the scope and origin of translational "noise" are just beginning to be appreciated. Although largely overlooked, those translational "noises" are associated with a wide range of cellular functions, such as producing unannotated protein products. Furthermore, the dynamic nature of translational "noise" is responsive to stress conditions, highlighting the beneficial effect of translational "noise" in stress adaptation. Mechanistic investigation of translational "noise" will provide better insight into the mechanisms of translational regulation. Ultimately, they are not "noise" at all but represent a signature of cellular activities under pathophysiological conditions. Deciphering translational "noise" holds the therapeutic and diagnostic potential in a wide spectrum of human diseases.
Collapse
|
Review |
1 |
|
14
|
Smith TJ, Giles RN, Koutmou KS. Anticodon stem-loop tRNA modifications influence codon decoding and frame maintenance during translation. Semin Cell Dev Biol 2024; 154:105-113. [PMID: 37385829 PMCID: PMC11849751 DOI: 10.1016/j.semcdb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
RNAs are central to protein synthesis, with ribosomal RNA, transfer RNAs and messenger RNAs comprising the core components of the translation machinery. In addition to the four canonical bases (uracil, cytosine, adenine, and guanine) these RNAs contain an array of enzymatically incorporated chemical modifications. Transfer RNAs (tRNAs) are responsible for ferrying amino acids to the ribosome, and are among the most abundant and highly modified RNAs in the cell across all domains of life. On average, tRNA molecules contain 13 post-transcriptionally modified nucleosides that stabilize their structure and enhance function. There is an extensive chemical diversity of tRNA modifications, with over 90 distinct varieties of modifications reported within tRNA sequences. Some modifications are crucial for tRNAs to adopt their L-shaped tertiary structure, while others promote tRNA interactions with components of the protein synthesis machinery. In particular, modifications in the anticodon stem-loop (ASL), located near the site of tRNA:mRNA interaction, can play key roles in ensuring protein homeostasis and accurate translation. There is an abundance of evidence indicating the importance of ASL modifications for cellular health, and in vitro biochemical and biophysical studies suggest that individual ASL modifications can differentially influence discrete steps in the translation pathway. This review examines the molecular level consequences of tRNA ASL modifications in mRNA codon recognition and reading frame maintenance to ensure the rapid and accurate translation of proteins.
Collapse
|
Review |
1 |
|
15
|
Chen Y, Gavriliuc M, Zeng Y, Xu S, Wang Y. Allosteric Effects of EF-G Domain I Mutations Inducing Ribosome Frameshifting Revealed by Multiplexed Force Spectroscopy. Chembiochem 2024; 25:e202400130. [PMID: 38923096 PMCID: PMC11446648 DOI: 10.1002/cbic.202400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Ribosome translocation catalyzed by elongation factor G (EF-G) is a critical step in protein synthesis where the ribosome typically moves along the mRNA by three nucleotides at each step. To investigate the mechanism of EF-G catalysis, it is essential to precisely resolve the ribosome motion at both ends of the mRNA, which, to our best knowledge, is only achieved with the magnetic-based force spectroscopy developed by our groups. Here, we introduce a novel multiplexed force spectroscopy technique that, for the first time, offers single-nucleotide resolution for multiple samples. This technique combines multiple acoustic force generators with the smallest atomic magnetometer designed for biological research. Utilizing this technique, we demonstrate that mutating EF-G at the GTP binding pocket results in the ribosome moving only two nucleotides on both ends of the mRNA, thereby compromising ribosome translocation. This finding suggests a direct link between GTP hydrolysis and ribosome translocation. Our results not only provide mechanistic insights into the role of GTP binding pocket but also illuminate how allosteric mutations can manipulate translocation. We anticipate broader applications of our technique in the ribosome field, leveraging its high efficiency and single-nucleotide resolution.
Collapse
|
|
1 |
|