1
|
Joint angle based motor point tracking stimulation for surface FES: A Study on biceps brachii. Med Eng Phys 2021; 88:9-18. [PMID: 33485518 DOI: 10.1016/j.medengphy.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022]
Abstract
Functional electrical stimulation (FES) has been an effective treatment option in clinical rehabilitation such as motor function recovery after stroke. The main limitation of FES is the lack of stimulation efficiency in motor unit recruitment compared with voluntary contractions, which may cause the early onset of muscle fatigue. The stimulation efficiency of FES can be improved by optimizing electrode positions to target the motor point (MP). However, the location of MP relative to the skin may shift with the change of muscle geometry during dynamic exercise. Hence, the purpose of this study is to maintain the stimulation efficiency of FES in dynamic exercise by switching the stimulation position to follow the shift of MP. We first measured the shift of the MP of the biceps brachii with respect to the elbow joint angle, and then conducted an experiment to compare four stimulation methods: 2-channel simultaneous stimulation (SS), 2-channel time based shifting stimulation (TSS), 2-channel joint angle based shifting stimulation (JASS), and 3-channel JASS. TSS and JASS were designed as two different MP tracking strategies. The experimental results show that the 3-channel JASS caused the smallest decrease in the maximal elbow angle and the angular velocity. The results also suggest that MP tracking stimulation based on joint angle is effective for the sustainable induction of muscle contraction. Both tracking selectivity and tracking density were shown to be important to improve the stimulation efficiency of FES.
Collapse
|
2
|
Milosevic M, Marquez-Chin C, Masani K, Hirata M, Nomura T, Popovic MR, Nakazawa K. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomed Eng Online 2020; 19:81. [PMID: 33148270 PMCID: PMC7641791 DOI: 10.1186/s12938-020-00824-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Delivering short trains of electric pulses to the muscles and nerves can elicit action potentials resulting in muscle contractions. When the stimulations are sequenced to generate functional movements, such as grasping or walking, the application is referred to as functional electrical stimulation (FES). Implications of the motor and sensory recruitment of muscles using FES go beyond simple contraction of muscles. Evidence suggests that FES can induce short- and long-term neurophysiological changes in the central nervous system by varying the stimulation parameters and delivery methods. By taking advantage of this, FES has been used to restore voluntary movement in individuals with neurological injuries with a technique called FES therapy (FEST). However, long-lasting cortical re-organization (neuroplasticity) depends on the ability to synchronize the descending (voluntary) commands and the successful execution of the intended task using a FES. Brain-computer interface (BCI) technologies offer a way to synchronize cortical commands and movements generated by FES, which can be advantageous for inducing neuroplasticity. Therefore, the aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.
Collapse
|
3
|
Chou CH, Wang T, Sun X, Niu CM, Hao M, Xie Q, Lan N. Automated functional electrical stimulation training system for upper-limb function recovery in poststroke patients. Med Eng Phys 2020; 84:174-183. [PMID: 32977916 DOI: 10.1016/j.medengphy.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of automated FES is to synchronize electrically induced movements to assist residual movements of patients. METHODS In the design of the FES system, an accelerometry module detected movement initiation and movement performed by post-stroke patients. The desired movement was displayed in visual game module. Synergy-based FES patterns were formulated using a normal pattern of muscle synergies from a healthy subject. Experiment 1 evaluated how different levels of trigger threshold or timing affected the variability of compound movements for forward reaching (FR) and lateral reaching (LR). Experiment 2 explored the effect of FES duration on compound movements. RESULTS Synchronizing FES-assisted movements with residual voluntary movements produced more consistent compound movements. Matching the duration of synergy-based FES to that of patients could assist slower movements of patients with reduced RMS errors. CONCLUSIONS Evidence indicated that synchronization and matching duration with residual voluntary movements of patients could improve the consistency of FES assisted movements. Automated FES training can reduce the burden of therapists to monitor the training process, which may encourage patients to complete the training.
Collapse
|
4
|
Shideler BL, Bulea TC, Chen J, Stanley CJ, Gravunder AJ, Damiano DL. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension. J Neuroeng Rehabil 2020; 17:121. [PMID: 32883297 PMCID: PMC7469320 DOI: 10.1186/s12984-020-00738-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/29/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Neuromuscular Electrical Stimulation (NMES) has been utilized for many years in cerebral palsy (CP) with limited success despite its inherent potential for improving muscle size and/or strength, inhibiting or reducing spasticity, and enhancing motor performance during functional activities such as gait. While surface NMES has been shown to successfully improve foot drop in CP and stroke, correction of more complex gait abnormalities in CP such as flexed knee (crouch) gait remains challenging due to the level of stimulation needed for the quadriceps muscles that must be balanced with patient tolerability and the ability to deliver NMES assistance at precise times within a gait cycle. METHODS This paper outlines the design and evaluation of a custom, noninvasive NMES system that can trigger and adjust electrical stimulation in real-time. Further, this study demonstrates feasibility of one possible application for this digitally-controlled NMES system as a component of a pediatric robotic exoskeleton to provide on-demand stimulation to leg muscles within specific phases of the gait cycle for those with CP and other neurological disorders who still have lower limb sensation and volitional control. A graphical user interface was developed to digitally set stimulation parameters (amplitude, pulse width, and frequency), timing, and intensity during walking. Benchtop testing characterized system delay and power output. System performance was investigated during a single session that consisted of four overground walking conditions in a 15-year-old male with bilateral spastic CP, GMFCS Level III: (1) his current Ankle-Foot Orthosis (AFO); (2) unassisted Exoskeleton; (3) NMES of the vastus lateralis; and (4) NMES of the vastus lateralis and rectus femoris. We hypothesized in this participant with crouch gait that NMES triggered with low latency to knee extensor muscles during stance would have a modest but positive effect on knee extension during stance. RESULTS The system delivers four channels of NMES with average delays of 16.5 ± 13.5 ms. Walking results show NMES to the vastus lateralis and rectus femoris during stance immediately improved mean peak knee extension during mid-stance (p = 0.003*) and total knee excursion (p = 0.009*) in the more affected leg. The electrical design, microcontroller software and graphical user interface developed here are included as open source material to facilitate additional research into digitally-controlled surface stimulation ( github.com/NIHFAB/NMES ). CONCLUSIONS The custom, digitally-controlled NMES system can reliably trigger electrical stimulation with low latency. Precisely timed delivery of electrical stimulation to the quadriceps is a promising treatment for crouch. Our ultimate goal is to synchronize NMES with robotic knee extension assistance to create a hybrid NMES-exoskeleton device for gait rehabilitation in children with flexed knee gait from CP as well as from other pediatric disorders. TRIAL REGISTRATION clinicaltrials.gov, ID: NCT01961557 . Registered 11 October 2013; Last Updated 27 January 2020.
Collapse
|
5
|
Backus D, Moldavskiy M, Sweatman WM. Effects of Functional Electrical Stimulation Cycling on Fatigue and Quality of Life in People with Multiple Sclerosis Who Are Nonambulatory. Int J MS Care 2020; 22:193-200. [PMID: 32863788 PMCID: PMC7446631 DOI: 10.7224/1537-2073.2019-101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Functional electrical stimulation (FES) cycling provides an exercise opportunity for people with multiple sclerosis (MS) who are nonambulatory. This study evaluated the efficacy of FES cycling for reducing fatigue and improving quality of life in people with MS who are nonambulatory and compared outcomes with those in a control group that did not take part in FES cycling. METHODS Adults with MS with self-reported Expanded Disability Status Scale scores of 7.0 to 8.5 were randomized into a training group (n = 12) or a control group (n = 9). The training group performed FES cycling for 30 minutes, two to three times a week for 12 weeks. The primary outcome was safety, measured as the number and type of adverse events and any increase in symptoms. Other outcomes collected before and after the intervention were scores on the modified Ashworth Scale, manual muscle test, 5-item Modified Fatigue Impact Scale (MFIS-5), Fatigue Scale for Motor and Cognitive Functions (FSMC), Medical Outcomes Study Pain Effects Scale, Patient Health Questionnaire-9 (PHQ-9), Multiple Sclerosis Quality of Life-54 (MSQOL-54), and Exercise Self-Efficacy Scale. RESULTS Twelve participants completed the study and were analyzed. Six participants completed training with no adverse events. The MFIS-5 (Cohen's d = 0.60), FSMC (Cohen's d = 0.37), and PHQ-9 (Cohen's d = 0.67) scores and the physical health composite of the MSQOL-54 (Cohen's d = 1.48) improved for the training group compared with the control group (n = 6). CONCLUSIONS Functional electrical stimulation cycling is safe for people with MS who are nonambulatory and may reduce fatigue and improve measurements of quality of life.
Collapse
|
6
|
Supporting front crawl swimming in paraplegics using electrical stimulation: a feasibility study. J Neuroeng Rehabil 2020; 17:51. [PMID: 32299483 PMCID: PMC7164248 DOI: 10.1186/s12984-020-00682-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 04/01/2020] [Indexed: 11/22/2022] Open
Abstract
Background Participation in physical and therapeutic activities is usually severely restricted after a spinal cord injury (SCI). Reasons for this are the associated loss of voluntary motor function, inefficient temperature regulation of the affected extremities, and early muscle fatigue. Hydrotherapy or swim training offer an inherent weight relief, reduce spasticity and improve coordination, muscle strength and fitness. Methods We present a new hybrid exercise modality that combines functional electrical stimulation (FES) of the knee extensors and transcutaneous spinal cord stimulation (tSCS) with paraplegic front crawl swimming. tSCS is used to stimulate the afferent fibers of the L2–S2 posterior roots for spasticity reduction. By activating the tSCS, the trunk musculature is recruited at a motor level. This shall improve trunk stability and straighten the upper body. Within this feasibility study, two complete SCI subjects (both ASIA scale A, lesion level Th5/6), who have been proficient front crawl swimmers, conducted a 10-week swim training with stimulation support. In an additional assessment swim session nine months after the training, the knee extension, hip extension, and trunk roll angles where measured using waterproof inertial measurement units (IMUs) and compared for different swimming conditions (no stimulation, tSCS, FES, FES plus tSCS). Results For both subjects, a training effect over the 10-week swim training was observed in terms of measured lap times (16 m pool) for all swimming conditions. Swimming supported by FES reduced lap times by 15.4% and 8.7% on average for Subject A and Subject B, respectively. Adding tSCS support yielded even greater mean decreases of 19.3% and 20.9% for Subjects A and B, respectively. Additionally, both subjects individually reported that swimming with tSCS for 30–45 minutes eliminated spasticity in the lower extremities for up to 4 hours beyond the duration of the session. Comparing the median as well as the interquartile range of all different settings, the IMU-based motion analysis revealed that FES as well as FES+tSCS improve knee extension in both subjects, while hip extension was only increased in one subject. Trunk roll angles were similar for all swimming conditions. tSCS had no influence on the knee and hip joint angles. Both subjects reported that stimulation-assisted swimming is comfortable, enjoyable, and they would like to use such a device for recreational training and rehabilitation in the future. Conclusions Stimulation-assisted swimming seems to be a promising new form of hybrid exercise for SCI people. It is safe to use with reusable silicone electrodes and can be performed independently by experienced paraplegic swimmers except for transfer to water. The study results indicate that swimming speed can be increased by the proposed methods and spasticity can be reduced by prolonged swim sessions with tSCS and FES. The combination of stimulation with hydrotherapy might be a promising therapy for neurologic rehabilitation in incomplete SCI, stroke or multiples sclerosis patients. Therefore, further studies shall incorporate other neurologic disorders and investigate the potential benefits of FES and tSCS therapy in the water for gait and balance.
Collapse
|
7
|
Benoussaad M, Rotella F, Chaibi I. Flatness of musculoskeletal systems under functional electrical stimulation. Med Biol Eng Comput 2020; 58:1113-1126. [PMID: 32185611 DOI: 10.1007/s11517-020-02139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/06/2020] [Indexed: 10/24/2022]
Abstract
Control of musculoskeletal yy system through functional electrical stimulation (FES) still remains a complex and a challenging process. Indeed, the used musculoskeletal models are often complex and highly nonlinear, which makes their control and inversion (getting appropriate inputs from a desired outputs) very difficult. On the other hand, the system flatness has been proved to be an efficient method for nonlinear system control, since in this technique, the nonlinear system can be controlled more easily through its flat outputs. Therefore, it is very promising to apply this control technique on the musculoskeletal system, to overcome its problems, which has never been explored so far. The aim of this work is to explore the flatness technique and its feasibility on the knee joint musculoskeletal system in dynamic condition, controlled by electrically stimulated quadriceps muscle. A mathematical proof developed in the current work highlights that the two-input musculoskeletal system is flat, where two flat outputs are the muscle stiffness and the knee joint angle. It also shows that the single-input musculoskeletal system is not flat. These results are crucial for flatness-based control of musculoskeletal systems, since this model in literature deals with a single input. Simulation results in open-loop control of two-input system highlight the consistency of the mathematical proof, and the applicability of this technique on the musculoskeletal system, where its simulated outputs fit perfectly with the desired ones if the model is considered perfect. When, one parameter of the system is not well estimated (10% of error), simulations show limits of open-loop control, with a joint angle rms deviation of 4%; hence, the closed-loop control should be considered. Graphical Abstract Flatness Study and control of Musculoskeletal systems.
Collapse
|
8
|
Heald E, Kilgore K, Hart R, Moss C, Peckham PH. Myoelectric signal from below the level of spinal cord injury as a command source for an implanted upper extremity neuroprosthesis - a case report. J Neuroeng Rehabil 2019; 16:100. [PMID: 31375143 PMCID: PMC6679451 DOI: 10.1186/s12984-019-0571-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 07/29/2019] [Indexed: 12/04/2022] Open
Abstract
Implanted motor neuroprostheses offer significant restoration of function for individuals with spinal cord injury. Providing adequate user control for these devices is a challenge but is crucial for successful performance. Electromyographic (EMG) signals can serve as effective control sources, but the number of above-injury muscles suitable to provide EMG-based control signals is very limited. Previous work has shown the presence of below-injury volitional myoelectric signals even in subjects diagnosed with motor complete spinal cord injury. In this case report, we present a demonstration of a hand grasp neuroprosthesis being controlled by a user with a C6 level, motor complete injury through EMG signals from their toe flexor. These signals were successfully translated into a functional grasp output, which performed similarly to the participant’s usual shoulder position control in a grasp-release functional test. This proof-of-concept demonstrates the potential for below-injury myoelectric activity to serve as a novel form of neuroprosthesis control.
Collapse
|
9
|
Ben Hmed A, Bakir T, Garnier YM, Sakly A, Lepers R, Binczak S. An approach to a muscle force model with force-pulse amplitude relationship of human quadriceps muscles. Comput Biol Med 2018; 101:218-228. [PMID: 30199798 DOI: 10.1016/j.compbiomed.2018.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recent advanced applications of the functional electrical stimulation (FES) mostly used closed-loop control strategies based on mathematical models to improve the performance of the FES systems. In most of them, the pulse amplitude was used as an input control. However, in controlling the muscle force, the most popular force model developed by Ding et al. does not take into account the pulse amplitude effect. The purpose of this study was to include the pulse amplitude in the existing Ding et al. model based on the recruitment curve function. METHODS Quadriceps femoris muscles of eight healthy subjects were tested. Forces responses to stimulation trains with different pulse amplitudes (30-100 mA) and frequencies (20-80 Hz) were recorded and analyzed. Then, specific model parameter values were identified by fitting the measured forces for one train (50 Hz, 100 mA). The obtained model parameters were then used to identify the recruitment curve parameter values by fitting the force responses for different pulse amplitudes at the same frequency train. Finally, the extended model was used to predict force responses for a range of stimulation pulse amplitudes and frequencies. RESULTS The experimental results indicated that our adapted model accurately predicts the force-pulse amplitude relationship with an excellent agreement between measured and predicted forces (R2=0.998, RMSE = 6.6 N). CONCLUSIONS This model could be used to predict the pulse amplitude effect and to design control strategies for controlling the muscle force in order to obtain precise movements during FES sessions using intensity modulation.
Collapse
|
10
|
Li Z, Guiraud D, Andreu D, Gelis A, Fattal C, Hayashibe M. Real-Time Closed-Loop Functional Electrical Stimulation Control of Muscle Activation with Evoked Electromyography Feedback for Spinal Cord Injured Patients. Int J Neural Syst 2017; 28:1750063. [PMID: 29378445 DOI: 10.1142/s0129065717500630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Functional electrical stimulation (FES) is a neuroprosthetic technique to help restore motor function of spinal cord-injured (SCI) patients. Through delivery of electrical pulses to muscles of motor-impaired subjects, FES is able to artificially induce their muscle contractions. Evoked electromyography (eEMG) is used to record such FES-induced electrical muscle activity and presents a form of [Formula: see text]-wave. In order to monitor electrical muscle activity under stimulation and ensure safe stimulation configurations, closed-loop FES control with eEMG feedback is needed to be developed for SCI patients who lose their voluntary muscle contraction ability. This work proposes a closed-loop FES system for real-time control of muscle activation on the triceps surae and tibialis muscle groups through online modulating pulse width (PW) of electrical stimulus. Subject-specific time-variant muscle responses under FES are explicitly reflected by muscle excitation model, which is described by Hammerstein system with its input and output being, respectively, PW and eEMG. Model predictive control is adopted to compute the PW based on muscle excitation model which can online update its parameters. Four muscle activation patterns are provided as desired control references to validate the proposed closed-loop FES control paradigm. Real-time experimental results on three able-bodied subjects and five SCI patients in clinical environment show promising performances of tracking the aforementioned reference muscle activation patterns based on the proposed closed-loop FES control scheme.
Collapse
|
11
|
Laczko J, Mravcsik M, Katona P. Control of Cycling Limb Movements: Aspects for Rehabilitation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 957:273-289. [PMID: 28035571 DOI: 10.1007/978-3-319-47313-0_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Walking, swimming, cycling, and running are cyclic movements that are often performed in training programs or rehabilitation protocols by athletes or people with neuromotor disorders. The muscular and kinematic activities that are acquired during cyclic movements reveal control principles, especially for the optimization and stabilization of motor performance, for a given criterion in rehabilitation processes. The influence of external loads and resistive forces on limb movements should be considered in rehabilitation protocols and when assessing physical activity levels or defining activity patterns for the artificial control of limb movements. This chapter focuses on special cyclic limb movements: lower and upper limb cycling. Two aspects of this research and applications are discussed. First, variances of movement patterns are examined at different levels of the motor system (endpoint, joint configuration, muscle) during unimanual right and left arm cycling and bimanual cycling movements. Second, it is shown that the muscle activity patterns that are acquired during lower and upper limb cycling in able-bodied people may be used to define and improve stimulation patterns for functional electrical stimulation-driven cycling movements in spinal cord-injured individuals. This report also discusses the advantages of the application and control of these types of movements for the rehabilitation of people with paralyzed limbs.
Collapse
|
12
|
Real-time estimation of FES-induced joint torque with evoked EMG : Application to spinal cord injured patients. J Neuroeng Rehabil 2016; 13:60. [PMID: 27334441 PMCID: PMC4918196 DOI: 10.1186/s12984-016-0169-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 06/14/2016] [Indexed: 11/10/2022] Open
Abstract
Background Functional electrical stimulation (FES) is a neuroprosthetic technique for restoring lost motor function of spinal cord injured (SCI) patients and motor-impaired subjects by delivering short electrical pulses to their paralyzed muscles or motor nerves. FES induces action potentials respectively on muscles or nerves so that muscle activity can be characterized by the synchronous recruitment of motor units with its compound electromyography (EMG) signal is called M-wave. The recorded evoked EMG (eEMG) can be employed to predict the resultant joint torque, and modeling of FES-induced joint torque based on eEMG is an essential step to provide necessary prediction of the expected muscle response before achieving accurate joint torque control by FES. Methods Previous works on FES-induced torque tracking issues were mainly based on offline analysis. However, toward personalized clinical rehabilitation applications, real-time FES systems are essentially required considering the subject-specific muscle responses against electrical stimulation. This paper proposes a wireless portable stimulator used for estimating/predicting joint torque based on real time processing of eEMG. Kalman filter and recurrent neural network (RNN) are embedded into the real-time FES system for identification and estimation. Results Prediction results on 3 able-bodied subjects and 3 SCI patients demonstrate promising performances. As estimators, both Kalman filter and RNN approaches show clinically feasible results on estimation/prediction of joint torque with eEMG signals only, moreover RNN requires less computational requirement. Conclusion The proposed real-time FES system establishes a platform for estimating and assessing the mechanical output, the electromyographic recordings and associated models. It will contribute to open a new modality for personalized portable neuroprosthetic control toward consolidated personal healthcare for motor-impaired patients.
Collapse
|
13
|
Li Z, Guiraud D, Andreu D, Fattal C, Gelis A, Hayashibe M. A Hybrid Functional Electrical Stimulation for Real-Time Estimation of Joint Torque and Closed-Loop Control of Muscle Activation. Eur J Transl Myol 2016; 26:6064. [PMID: 27990235 PMCID: PMC5128968 DOI: 10.4081/ejtm.2016.6064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As a neuroprosthetic technique, functional electrical stimulation (FES) can restore lost motor performance of impaired patients. Through delivering electrical pulses to target muscles, the joint movement can be eventually elicited. This work presents a real-time FES system which is able to deal with two neuroprosthetic missions: one is estimating FES-induced joint torque with evoked electromyograph (eEMG), and the other is artificially controlling muscle activation with such eEMG feedback. The clinical experiment results on spinal cord injured (SCI) patients and healthy subjects show promising performance of the proposed FES system.
Collapse
|
14
|
Gandolla M, Molteni F, Ward NS, Guanziroli E, Ferrigno G, Pedrocchi A. Validation of a Quantitative Single-Subject Based Evaluation for Rehabilitation-Induced Improvement Assessment. Ann Biomed Eng 2015; 43:2686-98. [PMID: 25893509 DOI: 10.1007/s10439-015-1317-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/03/2015] [Indexed: 11/26/2022]
Abstract
The foreseen outcome of a rehabilitation treatment is a stable improvement on the functional outcomes, which can be longitudinally assessed through multiple measures to help clinicians in functional evaluation. In this study, we propose an automatic comprehensive method of combining multiple measures in order to assess a functional improvement. As test-bed, a functional electrical stimulation based treatment for foot drop correction performed with chronic post-stroke participants is presented. Patients were assessed on five relevant outcome measures before, after intervention, and at a follow-up time-point. A novel algorithm based on variables minimum detectable change is proposed and implemented in a custom-made software, combining the outcome measures to obtain a unique parameter: capacity score. The difference between capacity scores at different timing is three holded to obtain improvement evaluation. Ten clinicians evaluated patients on the Improvement Clinical Global Impression scale. Eleven patients underwent the treatment, and five resulted to achieve a stable functional improvement, as assessed by the proposed algorithm. A statistically significant agreement between intra-clinicians and algorithm-clinicians evaluations was demonstrated. The proposed method evaluates functional improvement on a single-subject yes/no base by merging different measures (e.g., kinematic, muscular) and it is validated against clinical evaluation.
Collapse
|