1
|
Li W, Chen M, Wang E, Hu L, Hawkesford MJ, Zhong L, Chen Z, Xu Z, Li L, Zhou Y, Guo C, Ma Y. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice. BMC Genomics 2016; 17:797. [PMID: 27733118 PMCID: PMC5062844 DOI: 10.1186/s12864-016-3113-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
Background Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Although the genome sequence of foxtail millet (Setaria italica) is available, the characteristics and functions of abiotic stress-related genes remain largely unknown for this species. Results A total of 37 putative ATG (autophagy-associated genes) genes in the foxtail millet genome were identified. Gene duplication analysis revealed that both segmental and tandem duplication events have played significant roles in the expansion of the ATG gene family in foxtail millet. Comparative synteny mapping between the genomes of foxtail millet and rice suggested that the ATG genes in both species have common ancestors, as their ATG genes were primarily located in similar syntenic regions. Gene expression analysis revealed the induced expression of 31 SiATG genes by one or more phytohormone treatments, 26 SiATG genes by drought, salt and cold, 24 SiATG genes by darkness and 25 SiATG genes by nitrogen starvation. Results of qRT-PCR showing that among 37 SiATG genes, the expression level of SiATG8a was the highest after nitrogen starvation treatment 24 h, suggesting its potential role in tolerance to nutrient starvation. Moreover, the heterologous expression of SiATG8a in rice improved nitrogen starvation tolerance. Compared to wild type rice, the transgenic rice performed better and had higher aboveground total nitrogen content when the plants were grown under nitrogen starvation conditions. Conclusions Our results deepen understanding about the characteristics and functions of ATG genes in foxtail millet and also identify promising new genetic resources that should be of use in future efforts to develop varieties of foxtail millet and other crop species that have resistance to nitrogen deficiency stress. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3113-4) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
69 |
2
|
Chen B, Yang Z, Pan J, Ren Y, Wu H, Wei C. Functional identification behind gravity-separated sludge in high concentration organic coking wastewater: Microbial aggregation, apoptosis-like decay and community. WATER RESEARCH 2019; 150:120-128. [PMID: 30508709 DOI: 10.1016/j.watres.2018.11.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Functional identification and elimination of activity-decayed sludge are helpful for improving the performance of biological treatment process. However, cell decay-associated changes in biological functions have not been explored for gravity-separated sludge. In this work, sludge flocs from the aerobic basin of a wastewater treatment plant treating high-concentration organic coking wastewater was fractionated according to settling velocity, i.e. sludge F (fast settling), sludge M (moderate settling) and sludge S (slow settling). Sludge volume index (SVI), mean floc size, dehydrogenase activity, specific oxygen uptake rate (SOUR), extracellular polymeric substances (EPS) content and aggregation interaction were investigated in the fractionated sludges. Apoptosis-like decayed cell distribution (ALDCD), a novel property of sludge, was proposed to describe sludge decay based on cell membrane variation. ALDCD of sludge F was 6.64% and 13.5% lower than sludge M and S, respectively. Microbial community and functional prediction revealed that sludge F exhibited the highest microbial potential for organic removal and sludge M had the highest potential for nitrogen metabolism while sludge S had the lowest potential for both. Our analysis suggests that the treatment efficiency might be enhanced by retaining compact sludge flocs while eliminating dispersive sludge flocs. This study also facilitates the identification and elimination of functional microbial groups from decayed sludge in wastewater treatment.
Collapse
|
|
6 |
19 |
3
|
Huangfu Y, Pan J, Li Z, Wang Q, Mastouri F, Li Y, Yang S, Liu M, Dai S, Liu W. Genome-wide identification of PTI1 family in Setaria italica and salinity-responsive functional analysis of SiPTI1-5. BMC PLANT BIOLOGY 2021; 21:319. [PMID: 34217205 PMCID: PMC8254068 DOI: 10.1186/s12870-021-03077-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND PTI1 (Pto-interacting 1) protein kinase belongs to the receptor-like cytoplasmic kinase (RLCK) group of receptor-like protein kinases (RLK), but lack extracellular and transmembrane domains. PTI1 was first identified in tomato (Solanum lycopersicum) and named SlPTI1, which has been reported to interact with bacterial effector Pto, a serine/threonine protein kinase involved in plant resistance to bacterial disease. Briefly, the host PTI1 specifically recognizes and interacts with the bacterial effector AvrPto, which triggers hypersensitive cell death to inhibit the pathogen growth in the local infection site. Previous studies have demonstrated that PTI1 is associated with oxidative stress and hypersensitivity. RESULTS We identified 12 putative PTI1 genes from the genome of foxtail millet (Setaria italica) in this study. Gene replication analysis indicated that both segmental replication events played an important role in the expansion of PTI1 gene family in foxtail millet. The PTI1 family members of model plants, i.e. S. italica, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), maize (Zea mays), S. lycopersicum, and soybean (Glycine max), were classified into six major categories according to the phylogenetic analysis, among which the PTI1 family members in foxtail millet showed higher degree of homology with those of rice and maize. The analysis of a complete set of SiPTI1 genes/proteins including classification, chromosomal location, orthologous relationships and duplication. The tissue expression characteristics revealed that SiPTI1 genes are mainly expressed in stems and leaves. Experimental qRT-PCR results demonstrated that 12 SiPTI1 genes were induced by multiple stresses. Subcellular localization visualized that all of foxtail millet SiPTI1s were localized to the plasma membrane. Additionally, heterologous expression of SiPTI1-5 in yeast and E. coli enhanced their tolerance to salt stress. CONCLUSIONS Our results contribute to a more comprehensive understanding of the roles of PTI1 protein kinases and will be useful in prioritizing particular PTI1 for future functional validation studies in foxtail millet.
Collapse
|
research-article |
4 |
11 |
4
|
Tan B, Yan L, Li H, Lian X, Cheng J, Wang W, Zheng X, Wang X, Li J, Ye X, Zhang L, Li Z, Feng J. Genome-wide identification of HSF family in peach and functional analysis of PpHSF5 involvement in root and aerial organ development. PeerJ 2021; 9:e10961. [PMID: 33763299 PMCID: PMC7958895 DOI: 10.7717/peerj.10961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/27/2021] [Indexed: 12/01/2022] Open
Abstract
Background Heat shock factors (HSFs) play important roles during normal plant growth and development and when plants respond to diverse stressors. Although most studies have focused on the involvement of HSFs in the response to abiotic stresses, especially in model plants, there is little research on their participation in plant growth and development or on the HSF (PpHSF) gene family in peach (Prunus persica). Methods DBD (PF00447), the HSF characteristic domain, was used to search the peach genome and identify PpHSFs. Phylogenetic, multiple alignment and motif analyses were conducted using MEGA 6.0, ClustalW and MEME, respectively. The function of PpHSF5 was confirmed by overexpression of PpHSF5 into Arabidopsis. Results Eighteen PpHSF genes were identified within the peach genome. The PpHSF genes were nonuniformly distributed on the peach chromosomes. Seventeen of the PpHSFs (94.4%) contained one or two introns, except PpHSF18, which contained three introns. The in silico-translated PpHSFs were classified into three classes (PpHSFA, PpHSFB and PpHSFC) based on multiple alignment, motif analysis and phylogenetic comparison with HSFs from Arabidopsis thaliana and Oryza sativa. Dispersed gene duplication (DSD at 67%) mainly contributed to HSF gene family expansion in peach. Promoter analysis showed that the most common cis-elements were the MYB (abiotic stress response), ABRE (ABA-responsive) and MYC (dehydration-responsive) elements. Transcript profiling of 18 PpHSFs showed that the expression trend of PpHSF5 was consistent with shoot length changes in the cultivar ‘Zhongyoutao 14’. Further analysis of the PpHSF5 was conducted in 5-year-old peach trees, Nicotiana benthamiana and Arabidopsis thaliana, respectively. Tissue-specific expression analysis showed that PpHSF5 was expressed predominantly in young vegetative organs (leaf and apex). Subcellular localization revealed that PpHSF5 was located in the nucleus in N. benthamiana cells. Two transgenic Arabidopsis lines were obtained that overexpressed PpHSF5. The root length and the number of lateral roots in the transgenic seedlings were significantly less than in WT seedlings and after cultivation for three weeks. The transgenic rosettes were smaller than those of the WT at 2–3 weeks. The two transgenic lines exhibited a dwarf phenotype three weeks after transplanting, although there was no significant difference in the number of internodes. Moreover, the PpHSF5-OE lines exhibited enhanced thermotolerance. These results indicated that PpHSF5 might be act as a suppresser of growth and development of root and aerial organs.
Collapse
|
Journal Article |
4 |
9 |
5
|
Feng ZJ, Xu ZS, Sun J, Li LC, Chen M, Yang GX, He GY, Ma YZ. Investigation of the ASR family in foxtail millet and the role of ASR1 in drought/oxidative stress tolerance. PLANT CELL REPORTS 2016; 35:115-28. [PMID: 26441057 DOI: 10.1007/s00299-015-1873-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Six foxtail millet ASR genes were regulated by various stress-related signals. Overexpression of ASR1 increased drought and oxidative tolerance by controlling ROS homeostasis and regulating oxidation-related genes in tobacco plants. Abscisic acid stress ripening (ASR) proteins with ABA/WDS domains constituted a class of plant-specific transcription factors, playing important roles in plant development, growth and abiotic stress responses. However, only a few ASRs genes have been characterized in crop plants and none was reported so far in foxtail millet (Setaria italic), an important drought-tolerant crop and model bioenergy grain crop. In the present study, we identified six foxtail millet ASR genes. Gene structure, protein alignments and phylogenetic relationships were analyzed. Transcript expression patterns of ASR genes revealed that ASRs might play important roles in stress-related signaling and abiotic stress responses in diverse tissues in foxtail millet. Subcellular localization assays showed that SiASR1 localized in the nucleus. Overexpression of SiASR1 in tobacco remarkably increased tolerance to drought and oxidative stresses, as determined through developmental and physiological analyses of germination rate, root growth, survival rate, relative water content, ion leakage, chlorophyll content and antioxidant enzyme activities. Furthermore, expression of SiASR1 modulated the transcript levels of oxidation-related genes, including NtSOD, NtAPX, NtCAT, NtRbohA and NtRbohB, under drought and oxidative stress conditions. These results provide a foundation for evolutionary and functional characterization of the ASR gene family in foxtail millet.
Collapse
|
|
9 |
9 |
6
|
Wang XR, Kurtti TJ, Oliver JD, Munderloh UG. The identification of tick autophagy-related genes in Ixodes scapularis responding to amino acid starvation. Ticks Tick Borne Dis 2020; 11:101402. [PMID: 32035896 DOI: 10.1016/j.ttbdis.2020.101402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/04/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022]
Abstract
Ticks are obligate hematophagous arthropods and must tolerate starvation during off-host periods. Macroautophagy (hereafter autophagy) is a well-conserved self-eating mechanism of cell survival and is essential for recycling cellular contents during periods of starvation, stress, and injury in organisms. Although the genome sequence of Ixodes scapularis (Say) is available, the characteristics and functions of autophagy-related gene families remain largely unknown. To advance our understanding of autophagy in I. scapularis, we used comprehensive genomic approaches to identify Atg genes. Homologues of 14 Atg genes were identified, and their protein motif compositions were predicted. Phylogenetic analysis indicated that ATGs in I. scapularis were evolutionarily closely related to their homologues in Haemaphysalis longicornis and Rhipicephalus microplus ticks. Expression patterns of Atg genes differed across tick developmental stages. Immunofluorescence results by monodansylcadaverine (MDC) staining indicated that autophagy was activated after amino acid starvation treatments in I. scapularis embryo-derived cell lines ISE6 and IDE8. Subsequently, the expression of key Atg genes involved in autophagy pathway in both cell lines were examined. In ISE6 cells, the expression levels of three Atg genes (Atg4B, Atg6 and Atg8A) increased significantly after amino acid starvation; similarly, four Atg genes (Atg4A, Atg4B, Atg6 and Atg8B) were upregulated in IDE8 cells in response to starvation. In parallel, the MDC and lysotracker staining results indicated that autophagy was triggered after amino acid starvation treatments in R. microplus embryo-derived cell line BME26. Our observations showed that Atg family genes are highly conserved in ticks and function in autophagy pathway induced by amino acid starvation. These results also provide valuable insight for further autophagy-related research as a new strategy for blocking the transmission of tick-borne pathogens.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
8 |
7
|
Wei H, Wang X, Zhang A, Du L, Zhou H. Identification of grass carp IL-10 receptor subunits: functional evidence for IL-10 signaling in teleost immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:259-268. [PMID: 24690565 DOI: 10.1016/j.dci.2014.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Although the functions of teleost IL-10 have been preliminarily determined, functional evidence for its receptor signaling is lacking. Particularly, the identity of fish IL-10 receptor 2 (IL-10R2) is ambiguous. Cytokine receptor family member b4 (CRFB4) and CRFB5 are likely the ortholog of mammalian IL-10R2. In this study, grass carp CRFB4 (gcCRFB4) and gcCRFB5 cDNAs were isolated and characterized. The relatively high expression levels of grass carp IL10 receptor 1 (gcIL-10R1), gcCRFB4 and gcCRFB5 in immune tissues and cells implied their importance in fish immunity. Accordingly, gcIL-10R1, gcCRFB4 and gcCRFB5 were overexpressed in a grass carp kidney cell line to identify the IL-10 receptor subunits upon grass carp IL-10 (gcIL-10) treatment. Results showed that gcIL-10R1 was essential for gcIL-10 stimulation on STAT3 activation and grass carp suppressor of cytokine signaling 3 (gcSOCS3) promoter activity, and also indicated that gcCRFB4 but not gcCRFB5 might be the ortholog of mammalian IL-10R2. Furthermore, mutation of a putative STAT3-binding element in gcSOCS3 promoter attenuated the stimulation of gcIL-10 on gcSOCS3 promoter activity, indicating that gcIL-10 may modulate gcSOCS3 transcription at least partly via STAT3 activation. This notion was further supported by our observation that gcIL-10 was able to induce STAT3 phosphorylation and STAT3 inhibitor could abolish the upregulation of gcSOCS3 mRNA expression by gcIL-10 in grass carp head kidney leukocytes. Taken together, this study for the first time functionally characterized the teleost IL-10 receptor subunits and clarified the conservation of fish IL-10 signaling during evolution, thus laying the ground for further understanding the critical immune events led by IL-10 in teleost.
Collapse
|
|
11 |
5 |
8
|
Zhang S, Wang X, Li C, Feng S, Zhang A, Yang K, Zhou H. Identification and functional characterization of grass carp (Ctenopharyngodon idella) tumor necrosis factor receptor 2 and its soluble form with potentiality for targeting inflammation. FISH & SHELLFISH IMMUNOLOGY 2019; 86:393-402. [PMID: 30502465 DOI: 10.1016/j.fsi.2018.11.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/15/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Tumor necrosis factor-alpha (TNF-α) signals through two distinct cell surface receptors, TNFR1 and TNFR2 in mammals. In the present study, grass carp Tnfr2 (gcTnfr2) was isolated and characterized. Sequence alignment and phylogenetic analysis suggested that gcTnfr2 was a homolog of goldfish and zebrafish Tnfr2. Tissue distribution assay showed gctnfr2 transcripts were expressed in all examined tissues similar to gctnfr1. To functionally characterize the newly cloned molecule, gcTnfr2 was overexpressed in COS7 cell lines and it showed the ability to mediate the recombinant grass carp Tnf (rgcTnf)-α-triggered NF-κΒ activity and gcil1b promoter activity, clarifying its role in mediating Tnf-α signaling. The recombinant soluble form of gcTnfr2 (rgcsTnfr2) was prepared and it was able to interact with rgcTnf-α with higher affinity than that of rgcsTnfr1. Moreover, grass carp soluble Tnfr2 (gcsTnfr2) were detected in the culture medium of grass carp head kidney leukocytes (HKLs) and heat-inactivated A. hydrophila challenge significantly induced its production, indicating involvement of gcsTnfr2 in inflammation response. In agreement with this notion, rgcsTnfr2 effectively antagonized the effect of rgcTnf-α on il1b mRNA expression in HKLs, suggesting anti-Tnf-α property of gcsTnfr2. To strengthen the anti-inflammatory role of soluble Tnfr2, bacteria were injected intraperitoneally in grass carp followed by rgcsTnfr2. Hematoxylin-eosin (HE) staining of head kidney, spleen and intestine showed that rgcsTnfr2 could significantly improve infection-induced histopathological changes. These results functionally identified gcTnfr2 and its soluble form, particularly highlighting the role of gcsTnfr2 against Tnf-α-triggered inflammatory signaling. In this line, rgcsTnfr2 displayed anti-inflammatory potentiality during infection, thereby providing a powerful mediator of inflammation control in fish.
Collapse
|
|
6 |
5 |
9
|
Wei H, Lv M, Wen C, Zhang A, Yang K, Zhou H, Wang X. Identification of an intercellular cell adhesion molecule-1 homologue from grass carp: Evidence for its involvement in the immune cell adhesion in teleost. FISH & SHELLFISH IMMUNOLOGY 2018; 81:67-72. [PMID: 29981884 DOI: 10.1016/j.fsi.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Intercellular cell adhesion molecule-1 (ICAM-1) is a single-chain transmembrane glycoprotein which plays key roles in transendothelial migration of leukocytes and interaction between antigen presenting cells and T cells. In teleost, information of cell adhesion-related molecules is still lacking. In this study, we identified a gene from grass carp sharing similar exon and intron organization with human ICAM-1. Cloning and in silico analysis of its homologues in zebrafish and other two cyprinid fishes, respectively demonstrated the existence of the gene in these fishes. Moreover, the molecular features of these genes in fishes were conserved compared with human ICAM-1. In grass carp, the transcripts of this gene were detected with high levels in heart and liver and its mRNA expression in headkidney leukocytes was induced by Il-1β. Overexpression of this molecule in COS-7 cells could increase the adhesion of the cells with grass carp peripheral blood lymphocytes (PBLs), and the adhesion was further enhanced by lipopolysaccharide stimulation on PBLs. Further studies revealed that the mRNA levels of lymphocyte function-associated antigen-1, a ligand for ICAM-1, were much higher in the PBLs adhering to the COS-7 cells with overexpressing this molecule than in the PBLs alone. These results collectively showed that the newly cloned cDNA encodes grass carp intercellular cell adhesion molecule-1 (Icam-1) and it can mediate the adhesion of PBLs. This provides functional evidence for the existence of Icam-1 in teleost and will facilitate investigation on the transendothelial migration of leukocytes in fish species.
Collapse
|
|
7 |
5 |
10
|
Zhang S, Zhang R, Ma T, Qiu X, Wang X, Zhang A, Zhou H. Identification and functional characterization of tumor necrosis factor receptor 1 (TNFR1) of grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 58:24-32. [PMID: 27620818 DOI: 10.1016/j.fsi.2016.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/14/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Tumor necrosis factor-alpha (TNF-α) exerts its regulatory effects by binding one of two TNF receptors, TNF-α receptor 1 (TNFR1) or TNFR2. In this study, we isolated and identified the cDNA sequence of grass carp TNFR1 (gcTNFR1). Similar to its homologs in other fish species, the putative protein of gcTNFR1 possessed an extracellular region containing three TNF homology domains, a transmembrane region and a cytoplasmic region with a conserved death domain. Consistent with the widespread expression of mammalian TNFR1, gcTNFR1 transcripts ubiquitously expressed in spleen, thymus, liver, heart, gill, intestine, brain and head kidney with the highest expression levels in head kidney. To reveal its inductive expression patterns in inflammatory response, effect of in vivo bacterial infection on gcTNFR1 gene expression was examined, showing a rapid increase of gcTNFR1 expression in head kidney, gill, liver and intestine, which is consistent with the role of TNF-α as an early response gene during immune challenges. To define the functional role of gcTNFR1, recombinant extracellular region of gcTNFR1 (rgcTNFR1) was prepared and used to perform in vitro binding assay, demonstrating its ability to interact with recombinant grass carp TNF-α (rgcTNF-α). Furthermore, to characterize the function of gcTNFR1 in affecting rgcTNF-α actions, the effect of overexpressing gcTNFR1 on rgcTNF-α-induced grass carp IL-1β (gcIL-1β) promoter activity was determined in COS7 cells. Results showed that gcTNFR1 was involved in the regulation of rgcTNF-α on gcIL-1β transcription. Consistently, rgcTNFR1 was effective in attenuating the effect of rgcTNF-α on IL-1β mRNA expression in grass carp head kidney leukocytes, providing evidence for the involvement of TNFR1 in TNF-α signaling in grass carp. These data facilitate a better understanding of TNF-α receptor signaling in grass carp.
Collapse
MESH Headings
- Aeromonas hydrophila/physiology
- Amino Acid Sequence
- Animals
- Carps/classification
- Carps/genetics
- Carps/immunology
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Fish Diseases/genetics
- Fish Diseases/immunology
- Fish Diseases/microbiology
- Fish Proteins/chemistry
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Gene Expression Regulation
- Gram-Negative Bacterial Infections/genetics
- Gram-Negative Bacterial Infections/immunology
- Gram-Negative Bacterial Infections/microbiology
- Gram-Negative Bacterial Infections/veterinary
- Head Kidney/immunology
- Immunity, Innate/genetics
- Leukocytes/immunology
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Sequence Alignment
Collapse
|
|
9 |
5 |
11
|
Yin L, Ren J, Wang D, Feng S, Qiu X, Lv M, Wang X, Zhou H. Functional characterization of three fish-specific interleukin-23 isoforms as regulators of Th17 signature cytokine expression in grass carp head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2019; 92:315-321. [PMID: 31202965 DOI: 10.1016/j.fsi.2019.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Mammalian Interleukin (IL)-23 is a heterodimeric cytokine with an IL-23-specific P19 subunit and a P40 subunit shared with IL-12, and plays a key role in the regulation of cell differentiation as well as inflammation. We previously demonstrated the existence of three soluble fish Interleukin (Il)-23 isoforms consist of a single P19 and one of three P40 isoforms (P40a/b/c) in grass carp. In the present study, three recombinant grass carp Il-23 (rgcIl-23) isoforms were prepared by linking gcP19 and gcP40a/b/c in a prokaryotic expression system, and then their functional properties were verified in grass carp head kidney leukocytes (HKLs). All three rgcIl-23 isoforms showed the bioactivities to divergently upregulate the mRNA expression of Th17 signature cytokines (il17a/f1, il21, il22 and il26) as well as Il-23 receptor (il23r) in HKLs. Moreover, they also promoted gcIl-17a/f1 secretion in a dose-dependent manner, strengthening their roles in Th17-like response. Furthermore, induction of il17a/f1 and il23r transcription by rgcIl-23 was blocked by a STAT3 inhibitor in grass carp HKLs, suggesting the involvement of STAT3 signaling in these inductions. Taken together, we for the first time identified the bioactivities of fish Il-23 isoforms and particularly revealed the existence of Il-23/Il-17a/f1 axis in fish, thereby advancing our understanding of Th17-like responses in fish immunity.
Collapse
|
|
6 |
5 |
12
|
Liu J, Liu J, Wang H, Khan A, Xu Y, Hou Y, Wang Y, Zhou Z, Zheng J, Liu F, Cai X. Genome wide identification of GDSL gene family explores a novel GhirGDSL26 gene enhancing drought stress tolerance in cotton. BMC PLANT BIOLOGY 2023; 23:14. [PMID: 36609252 PMCID: PMC9824929 DOI: 10.1186/s12870-022-04001-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Current climate change scenarios are posing greater threats to the growth and development of plants. Thus, significant efforts are required that can mitigate the negative effects of drought on the cotton plant. GDSL esterase/lipases can offer an imperative role in plant development and stress tolerance. However, thesystematic and functional roles of the GDSL gene family, particularly in cotton under water deficit conditions have not yet been explored. RESULTS In this study, 103, 103, 99, 198, 203, 239, 249, and 215 GDSL proteins were identified in eight cotton genomes i.e., Gossypium herbaceum (A1), Gossypium arboretum (A2), Gossypium raimondii (D5), Gossypium hirsutum (AD1), Gossypium barbadense (AD2), Gossypium tomentosum (AD3), Gossypium mustelinum (AD4), Gossypium darwinii (AD5), respectively. A total of 198 GDSL genes of Gossypium hirsutum were divided into eleven clades using phylogenetic analysis, and the number of GhirGDSL varied among different clades. The cis-elements analysis showed that GhirGDSL gene expression was mainly related to light, plant hormones, and variable tense environments. Combining the results of transcriptome and RT-qPCR, GhirGDSL26 (Gh_A01G1774), a highly up-regulated gene, was selected for further elucidating its tole in drought stress tolerance via estimating physiological and biochemical parameters. Heterologous expression of the GhirGDSL26 gene in Arabidopsis thaliana resulted in a higher germination and survival rates, longer root lengths, lower ion leakage and induced stress-responsive genes expression under drought stress. This further highlighted that overexpressed plants had a better drought tolerance as compared to the wildtype plants. Moreover, 3, 3'-diaminobenzidine (DAB) and Trypan staining results indicated reduced oxidative damage, less cell membrane damage, and lower ion leakage in overexpressed plants as compared to wild type. Silencing of GhirGDSL26 in cotton via VIGS resulting in a susceptible phenotype, higher MDA and H2O2 contents, lower SOD activity, and proline content. CONCLUSION Our results demonstrated that GhirGDSL26 plays a critical role in cotton drought stress tolerance. Current findings enrich our knowledge of GDSL genes in cotton and provide theoretical guidance and excellent gene resources for improving drought tolerance in cotton.
Collapse
|
research-article |
2 |
5 |
13
|
Wang D, Wang X, Mei Y, Dong H. The wheat homolog of putative nucleotide-binding site-leucine-rich repeat resistance gene TaRGA contributes to resistance against powdery mildew. Funct Integr Genomics 2016; 16:115-26. [PMID: 26815536 DOI: 10.1007/s10142-015-0471-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/20/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023]
Abstract
Powdery mildew, one of the most destructive wheat diseases worldwide, is caused by Blumeria graminis f. sp. tritici (Bgt), a fungal species with a consistently high mutation rate that makes individual resistance (R) genes ineffective. Therefore, effective resistance-related gene cloning is vital for breeding and studying the resistance mechanisms of the disease. In this study, a putative nucleotide-binding site-leucine-rich repeat (NBS-LRR) R gene (TaRGA) was cloned using a homology-based cloning strategy and analyzed for its effect on powdery mildew disease and wheat defense responses. Real-time reverse transcription-PCR (RT-PCR) analyses revealed that a Bgt isolate 15 and salicylic acid stimulation significantly induced TaRGA in the resistant variety. Furthermore, the silencing of TaRGA in powdery mildew-resistant plants increased susceptibility to Bgt15 and prompted conidia propagation at the infection site. However, the expression of TaRGA in leaf segments after single-cell transient expression assay highly increased the defense responses to Bgt15 by enhancing callose deposition and phenolic autofluorogen accumulation at the pathogen invading sites. Meanwhile, the expression of pathogenesis-related genes decreased in the TaRGA-silenced plants and increased in the TaRGA-transient-overexpressing leaf segments. These results implied that the TaRGA gene positively regulates the defense response to powdery mildew disease in wheat.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
4 |
14
|
Yao F, Yang X, Wang X, Wei H, Zhang A, Zhou H. Molecular and functional characterization of an IL-1β receptor antagonist in grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:207-216. [PMID: 25475961 DOI: 10.1016/j.dci.2014.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
In the present study, we discovered a novel IL-1 family member (nIL-1F) from grass carp that possessed the ability to bind with grass carp IL-1β receptor type 1 (gcIL-1R1) and attenuate grass carp IL-1β activity in head kidney leukocytes (HKLs), suggesting that it may function as an IL-1β receptor antagonist. Grass carp nIL-1F transcript was constitutively expressed with the highest levels in some lymphoid organs, including head kidney, spleen and intestine, implying its potential in grass carp immunity. In agreement with this notion, in vitro and in vivo studies showed that nIL-1F mRNA was inductively expressed in grass carp with a rapid kinetics, indicating that it may be an early response gene during immune challenges. In addition, recombinant grass carp IL-1β (rgcIL-1β) induced nIL-1F mRNA expression via NF-κB and MAPK (JNK, p38 and p42/44) signaling pathways in HKLs. Particularly, the orthologs of nIL-1F found in other fish species, including zebrafish, pufferfish and rainbow trout are not homologous to mammalian IL-1β receptor antagonist (IL-1Ra), indicating that fish nIL-1F and mammalian IL-1Ra may not share a common evolutionary ancestor. Taken together, our data suggest the existence of a naturally occurring fish nIL-1F, which may function like mammalian IL-1Ra, being beneficial to understand the auto-regulatory mechanism of IL-1β activity in fish immunity.
Collapse
|
|
10 |
4 |
15
|
Du L, Zhou H, Qin L, Wei H, Zhang A, Yang K, Wang X. Identification and functional evaluation of two STAT3 variants in grass carp: Implication for the existence of specific alternative splicing of STAT3 gene in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:326-333. [PMID: 28698048 DOI: 10.1016/j.dci.2017.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
A STAT family member, STAT3, becomes activated as a DNA binding protein in response to cytokines and growth factors. In teleost, STAT3 cDNA has been cloned and identified in a few species, but only a single STAT3 transcript is revealed in these studies. In the present study, two variants of STAT3 gene generated by alternative splicing were isolated from grass carp and nominated as STAT3α1 and STAT3α2 based on the homology with their mammalian orthologs. In particular, the homologs of STAT3α1/2 were also found in various fish species, including zebrafish, takifugu, tilapia, medaka and goldfish. Intriguingly, sequence alignment and genomic structure analysis revealed that fish STAT3α1/2 are generated through similar alternative splicing events, implying the potential physiological significance of generating STAT3 variants in fish. Grass carp STAT3α1/2 (gcSTAT3α1/2) were ubiquitously expressed although the transcript levels of STAT3α2 were markedly higher than STAT3α1 in all examined tissues. In vivo and in vitro studies showed that the expression patterns of these two variants were similar under the stimulation of immune stimuli. To reveal the role of gcSTAT3α1/2 in fish immunity, their phosphorylation and involvement in IL-17A/F1 mRNA expression were demonstrated in grass carp peripheral blood lymphocytes upon LPS or PHA challenge, providing evidence for the functional conservation of STAT3 signaling in fish. These findings also raise a question of whether both gcSTAT3α1/2 participate in transcriptional regulation in fish. Actually, our results showed that both of them had the ability to translocate into the nucleus upon activation, and to amplify IL-10 signaling, indicating the existence of STAT3 isoforms with functional redundancy in teleost.
Collapse
|
|
8 |
3 |
16
|
Huo S, Zhang J, Liang S, Wu F, Zuo Y, Cui D, Zhang Y, Zhong Z, Zhong F. Membrane-bound and soluble porcine CD83 functions antithetically in T cell activation and dendritic cell differentiation in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103398. [PMID: 31121186 DOI: 10.1016/j.dci.2019.103398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Emerging evidence suggests that CD83, a dendritic cells (DCs) maturation marker in humans and mice, may prossess immunomodulatory capacities. Although porcine CD83 shares ∼75% sequence homology with its human counterpart, whether it functions as an immunoregulatory molecule remains unknown. To investigate porcine CD83 function, we deleted it in porcine DCs by RNA intereference. Results show that membrane-bound CD83 (mCD83) promotes DC-mediated T cell proliferation and cytokine production, thus confirming its immunoregulatory capacity. Intriguingly, porcine soluble CD83 (sCD83) treatment instead led to inhibition of DC-mediated T cell activation. Moreover, porcine sCD83 also inhibited differentiation of prepheral blood mononuclear cells (PBMCs) into DCs. These results collectively indicate that in addition to being a DC maturation maker, both membrane bound and souble porcine CD83 serve as immunoregulatory molecules with opposite effects on DC-mediated T cell activation and DC differentiation.
Collapse
|
|
6 |
3 |
17
|
Wang X, Tang S, Song F, Chen C, Guo X, Shen X. Bmo-miR-2758 Targets BmFMBP-1 (Lepidoptera: Bombycidae) and Suppresses Its Expression in BmN Cells. JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew009. [PMID: 27001963 PMCID: PMC4801057 DOI: 10.1093/jisesa/iew009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/28/2016] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) are an abundant family of endogenous noncoding small RNA molecules. They play crucial roles on regulation of life processes both in plants and animals. Fibroin modulator binding protein-1 (FMBP-1) is a silk gland transcription factor of Bombyx mori, which is considered as a trans-activator of fibroin genes. And bioinformatics prediction showed that at the 3' untranslated region (3' UTR) of BmFMBP-1 there were binding sites for three bmo-miRNAs, bmo-miR-2b*, bmo-miR-305, and bmo-miR-2758, separately. In order to validate whether these bmo-miRNAs involved in the regulation of BmFMBP-1 expression, the expression levels of three bmo-miRNAs and BmFMBP-1 in the middle silk gland (MSG) and posterior silk gland (PSG) during the fourth- and fifth-larval stages of B. mori were measured by semi-quantitative reverse transcription polymerase chain reaction. The results revealed that the expression level of bmo-miR-2758 was the highest in the three, and it expressed higher in the PSG than in the MSG with a similar expression pattern as BmFMBP-1, implying that bmo-miR-2758 may involved in regulation of BmFMBP-1. To validate the regulation function of bmo-miR-2758 on BmFMBP-1, recombinant plasmids pcDNA3 [ie1-egfp-pri-bmo-miR-2758-SV40] and pGL3 [A3-luc-FMBP-1 3' UTR-SV40] were constructed and co-transfected in BmN cells. The dual-luciferase reporter assay system was used for assay of transient expression. The results showed that the expression of the luciferase reporter was significantly decreased when pGL3 [A3-luc-FMBP-1 3' UTR-SV40] co-transfected with pcDNA3 [ie1-egfp-pri-bmo-miR-2758-SV40] (P < .01). Furthermore, when the artificial antisense RNA of bmo-miR-2758 (inhibitor) was added to the above co-transfection, the expression of the luciferase reporter was recovered significantly (P < 0.01). These results suggest that bmo-miR-2758 represses the expression of BmFMBP-1 in vitro.
Collapse
|
research-article |
9 |
3 |
18
|
Feng ZQ, Li T, Wang X, Sun WJ, Zhang TT, You CX, Wang XF. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111158. [PMID: 35151440 DOI: 10.1016/j.plantsci.2021.111158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen is an essential nutrient for plant growth and development. Low utilization of nitrogen fertilizer during agricultural production causes a series of environmental problems, such as water eutrophication, soil acidity, and air pollution. Investigating the patterns and mechanisms of crop NO3- absorption and utilization therefore key to fully improving crop nitrogen utilization rates and promoting sustainable agricultural development. Apple is one of the most important horticultural crops in the world. Its nitrogen demand by apple during the growth period is very high, but few studies have been performed on apple genes, that regulate the NO3- response. Here, we found that the apple transcription factor MdNLP7 promoted nitrogen absorption and assimilation by activating the expression of MdNIA2 and MdNRT1.1. MdNLP7 also regulated H2O2 content by increasing catalase activity, which may also influence nitrate utilization. Our findings provide insight into the mechanisms by which MdNLP7 controls nitrate utilization in apple.
Collapse
|
|
3 |
1 |
19
|
Abstract
Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.
Collapse
|
|
8 |
1 |
20
|
Qiu X, Lv M, Jian X, Chen D, Zhou H, Zhang A, Wang X. In vitro characterization of grass carp (Ctenopharyngodon idella) IL-26 in regulating inflammatory factors. FISH & SHELLFISH IMMUNOLOGY 2017; 66:148-155. [PMID: 28495510 DOI: 10.1016/j.fsi.2017.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
Interleukin 26 (IL-26) gene has been identified in human, amphibian and teleost but not in rodents. It is well accepted that IL-26 was a crucial member of IL-10 family which acts as a pro-inflammatory cytokine in human. However, the role of IL-26 in regulating inflammation in lower vertebrates including teleost has not been defined yet. In the present study, grass carp IL-26 (gcIL-26) coding sequence was isolated and identified. Its chromosomal synteny was also analyzed, showing that gcIL-26 gene is flanked by IL-22 and IFN-γ genes with the same transcriptional orientation as seen in human, amphibian and zebrafish. Given that zebrafish and grass carp IL-26 shared relatively low amino acid identities with human IL-26, the functional roles of fish IL-26 are indispensable to be elucidated. Accordingly, recombinant gcIL-26 (rgcIL-26) was prepared by using Pichia pastoris expression system, and it was found to be partially glycosylated. Using grass carp head kidney leucocytes as cell model, rgcIL-26 displayed the bioactivity to stimulate the mRNA expression of some pro-inflammatory cytokines including IL-8, IL-1β and IL-6, while inhibit mRNA expression of an anti-inflammatory cytokine, IL-10. Moreover, rgcIL-26 also up-regulated inos expression and NO production in grass carp monocytes/macrophages, strengthening its pro-inflammatory properties in fish. Those results collectively demonstrated the functional role of IL-26 in regulating inflammatory response in fish.
Collapse
|
|
8 |
1 |
21
|
Chen SQ, Luo C, Liu Y, Liang RZ, Huang X, Lu TT, Guo YH, Li RY, Huang CT, Wang Z, He XH. Lack of the CCT domain changes the ability of mango MiCOL14A to resist salt and drought stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111826. [PMID: 37574138 DOI: 10.1016/j.plantsci.2023.111826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
CONSTANS (CO) is the key gene in the photoperiodic pathway that regulates flowering in plants. In this paper, a CONSTANS-like 14A (COL14A) gene was obtained from mango, and its expression patterns and functions were characterized. Sequence analysis shows that MiCOL14A-JH has an additional A base, which leads to code shifting in subsequent coding boxes and loss of the CCT domain. The MiCOL14A-JH and MiCOL14A-GQ genes both belonged to group Ⅲ of the CO/COL gene family. Analysis of tissue expression patterns showed that MiCOL14A was expressed in all tissues, with the highest expression in the leaves of seedling, followed by lower expression levels in the flowers and stems of adult leaves. However, there was no significant difference between different mango varieties. At different development stages of flowering, the expression level of MiCOL14A-GQ was the highest in the leaves before floral induction period, and the lowest at flowering stage, while the highest expression level of MiCOL14A-JH appeared in the leaves at flowering stage. The transgenic functional analysis showed that both MiCOL14A-GQ and MiCOL14A-JH induced delayed flowering of transgenic Arabidopsis. In addition, MiCOL14A-JH enhanced the resistance of transgenic Arabidopsis to drought stress, while MiCOL14A-GQ increased the sensitivity of transgenic Arabidopsis to salt stress. Further proteinprotein interaction analysis showed that MiCOL14A-JH directly interacted with MYB30-INTERACTING E3 LIGASE 1 (MiMIEL1), CBL-interacting protein kinase 9 (MiCIPK9) and zinc-finger protein 4 (MiZFP4), but MiCOL14A-GQ could not interact with these three stress-related proteins. Together, our results demonstrated that MiCOL14A-JH and MiCOL14A-GQ not only regulate flowering but also play a role in the abiotic stress response in mango, and the lack of the CCT domain affects the proteinprotein interaction, thus affecting the gene response to stress. The insertion of an A base can provide a possible detection site for mango resistance breeding.
Collapse
|
|
2 |
1 |
22
|
Fu MK, He YN, Yang XY, Tang X, Wang M, Dai WS. Genome-wide identification of the GRF family in sweet orange (Citrus sinensis) and functional analysis of the CsGRF04 in response to multiple abiotic stresses. BMC Genomics 2024; 25:37. [PMID: 38184538 PMCID: PMC10770916 DOI: 10.1186/s12864-023-09952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Citrus is one of the most valuable fruits worldwide and an economic pillar industry in southern China. Nevertheless, it frequently suffers from undesirable environmental stresses during the growth cycle, which severely restricts the growth, development and yield of citrus. In plants, the growth-regulating factor (GRF) family of transcription factors (TF) is extensively distributed and plays an vital part in plant growth and development, hormone response, as well as stress adaptation. However, the systematic identification and functional analysis of GRF TFs in citrus have not been reported. RESULTS Here, a genome-wide identification of GRF TFs was performed in Citrus sinensis, 9 members of CsGRFs were systematically identified and discovered to be scattered throughout 5 chromosomes. Subsequently, physical and chemical properties, phylogenetic relationships, structural characteristics, gene duplication events, collinearity and cis-elements of promoter were elaborately analyzed. In particular, the expression patterns of the CsGRF genes in response to multiple phytohormone and abiotic stress treatments were investigated. Predicated on this result, CsGRF04, which exhibited the most differential expression pattern under multiple phytohormone and abiotic stress treatments was screened out. Virus-induced gene silencing (VIGS) technology was utilized to obtain gene silenced plants for CsGRF04 successfully. After the three stress treatments of high salinity, low temperature and drought, the CsGRF04-VIGS lines showed significantly reduced resistance to high salinity and low temperature stresses, but extremely increased resistance to drought stress. CONCLUSIONS Taken together, our findings systematically analyzed the genomic characterization of GRF family in Citrus sinensis, and excavated a CsGRF04 with potential functions under multiple abiotic stresses. Our study lay a foundation for further study on the function of CsGRFs in abiotic stress and hormone signaling response.
Collapse
|
research-article |
1 |
|
23
|
Chen S, Liao B, Guo S, Shen X, Meng Y, Liang Y, Xu J, Chen S. Genetic analysis reveals the inconsistency of amorpha-4,11-diene synthase, a key enzyme in the artemisinin synthesis pathway, in asteraceae. Chin Med 2023; 18:5. [PMID: 36627656 PMCID: PMC9832723 DOI: 10.1186/s13020-023-00708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Amorpha-4,11-diene synthase (ADS) is a key enzyme in the artemisinin biosynthetic pathway. ADS promotes the first step of artemisinin synthesis by cyclizing faresyl pyrophosphate to synthesize the sesquiterpene product amorpha-4,11-diene. Thanks to the continuous improvement of genomic information, its evolutionary trace can be analyzed in a genome view. METHODS Phylogenetic analysis was used to identify ADS-like genes in other Asteraceae. Gene structure and motif analysis was used to analyze the structural similarity of these identified genes. Heterologous expression and GC-MS analysis were performed to determine whether the functions of ADS and Cna4666 are consistent. Validation of ADS genes evolutionary trajectories was achieved by selective pressure and synteny analysis. RESULT In this study, we extracted 8 ADS genes from the Artemisia annua L. genome annotation and 121 ADS similar genes from the genomes of Artemisia annua L. and other plants in the Asteraceae, and further exploring their evolutionary relationship. Phylogenetic analysis showed that the genes most closely related to ADS genes were found in the genome of Chrysanthemum nankingense. Among them, the gene structure and motif composition of Cna4666 is very similar to ADS, we wondered whether it has the potential to synthesize amorpha-4,11-diene. Therefore, we extracted the products of recombinant p0_ADS.1 and Cna4666 proteins by HS-SPME combined with GC-MS analysis, the results indicate that Cna4666 is an α-bisabolol synthase, which cannot synthesize amorpha-4,11-diene. Through synteny analysis, we did not find collinear blocks of ADS genes in the Helianthus annuus and C. nankingense genomes. Furthermore, Ka/Ks ratios indicated that the evolution of ADS genes from their similar genes principally underwent purifying selection, and there was a strong positive selection between ADS genes. CONCLUSIONS This study proved that ADS is a multi-copy gene in Artemisia annua L., and they are not widely distributed in Asteraceae. The data will increase our understanding of the evolutionary selection pressure on ADS genes. The results suggest that ADS genes are subject to strong positive selection internally, and it is possible that they are a recently evolved gene in the Artemisia.
Collapse
|
research-article |
2 |
|
24
|
Jue D, Li Z, Zhang W, Tang J, Xie T, Sang X, Guo Q. Identification and functional analysis of the LEAFY gene in longan flower induction. BMC Genomics 2024; 25:308. [PMID: 38528464 DOI: 10.1186/s12864-024-10229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Flowering at the right time is a very important factor affecting the stable annual yield of longan. However, a lack of knowledge of the regulatory mechanism and key genes of longan flowering restricts healthy development of the longan industry. Therefore, identifying relevant genes and analysing their regulatory mechanism are essential for scientific research and longan industry development. RESULTS DlLFY (Dimocarpus longan LEAFY) contains a 1167 bp open reading frame and encodes 388 amino acids. The amino acid sequence has a typical LFY/FLO family domain. DlLFY was expressed in all tissues tested, except for the leaf, pericarp, and pulp, with the highest expression occurring in flower buds. Expression of DlLFY was significantly upregulated at the early flower induction stage in "SX" ("Shixia"). The results of subcellular localization and transactivation analysis showed that DlLFY is a typical transcription factor acting as a transcriptional activator. Moreover, overexpression of DlLFY in Arabidopsis promoted early flowering and restrained growth, resulting in reduced plant height and rosette leaf number and area in transgenic plants. DNA affinity purification sequencing (DAP-Seq) analysis showed that 13 flower-related genes corresponding to five homologous genes of Arabidopsis may have binding sites and be putative target genes. Among these five flower-related genes, only AtTFL1 (terminal flower 1) was strongly inhibited in transgenic lines. CONCLUSION Taken together, these results indicate that DlLFY plays a pivotal role in controlling longan flowering, possibly by interacting with TFL1.
Collapse
|
|
1 |
|
25
|
Chen Y, Huang R, Chen J, Lin C, Wu Y, Chen J, Shen Q, Wang F, Duan L, Cui H. Molecular cloning and functional characterization of 2,3-oxidosqualene cyclases from Artemisia argyi. Protein Expr Purif 2024; 222:106533. [PMID: 38876402 DOI: 10.1016/j.pep.2024.106533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024]
Abstract
Artemisia argyi is a traditional medicinal and edible plant, generating various triterpenoids with pharmacological activities, such as anti-virus, anti-cancer, and anti-oxidant. The 2,3-oxidosqualene cyclase family of A. argyi offers novel insights into the triterpenoid pathway, which might contribute to the medicinal value of its tissue extracts. Nevertheless, the biosynthesis of active triterpenoids in Artemisia argyi is still uncertain. In this study, four putative OSC (2,3-oxidosqualene cyclase) genes (AaOSC1-4) were first isolated and identified from A. argyi. Through the yeast heterologous expression system, three AaOSCs were characterized for the biosynthesis of diverse triterpenoids including cycloartenol, β-amyrin, (3S,13R)-malabarica-14(27),17,21-trien-3β-ol, and dammara-20,24-dien-3β-ol. AaOSC1 was a multifunctional dammara-20,24-dien-3β-ol synthase, which yielded 8 different triterpenoids, including tricyclic, and tetracyclic products. AaOSC2 and AaOSC3 were cycloartenol, and β-amyrin synthases, respectively. As a result, these findings provide a deeper understanding of the biosynthesis pathway of triterpenes in A. argyi.
Collapse
|
|
1 |
|