1
|
Mustafa AM, Poulsen TG, Xia Y, Sheng K. Combinations of fungal and milling pretreatments for enhancing rice straw biogas production during solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY 2017; 224:174-182. [PMID: 27864131 DOI: 10.1016/j.biortech.2016.11.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
Rice straw was pretreated by different combinations of physical (milling) and biological (incubation with Pleurotus ostreatus fungus) treatment to improve its biodegradability and biogas production during solid-state anaerobic digestion (SS-AD). Effects of milling (⩽2mm) and incubation time (10, 20 and 30d), on lignin, cellulose, and hemicellulose degradation during fungal pretreatment and methane yield during digestion were assessed by comparison with untreated rice straw. Both incubation time and milling had significant impacts on both lignin removal during fungal pre-treatment and methane yield during digestion. A combination of fungal pretreatment at 30days followed by milling prior to anaerobic digestion resulted in 30.4% lignin removal, the highest selectivity value (the ratio between relative lignin removal and relative cellulose removal) of 4.22, and the highest methane yield of 258L/kgVS. This was equivalent to a 165% increase in methane yield from SS-AD compared to untreated rice straw.
Collapse
|
|
8 |
62 |
2
|
Kainthola J, Kalamdhad AS, Goud VV, Goel R. Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 286:121368. [PMID: 31071575 DOI: 10.1016/j.biortech.2019.121368] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 05/19/2023]
Abstract
The influence of three different fungal strains-namely, Pleurotus ostreatus (PO), Phanerochaete chrysosposrium (PC), and Ganoderma lucidum (GL)-on pretreatment of rice straw, followed by biochemical methane potential assay was evaluated on the basis of structural (Field Emission Scanning Electron Microscopy, X-ray diffraction etc.) and quantitative (soluble chemical oxygen demand, volatile fatty acids, etc.) analysis. Maximum lignocellulosic degradation was obtained with PC pretreated rice straw (36% more than an untreated sample), followed by PO. Enhancement in the methane yield after 5 weeks of inoculation time was obtained after pretreatment, which was 269.99, 295.91, and 339.31 mL/g VSadded, for PO, GL, and PC, respectively, 1.64-2.22-fold higher than the untreated one. Kinetic modelling of cumulative methane yield showed that modified gompertz model showed the best fit among all analysed models. This study demonstrated the usefulness of fungal species in enhancing the methane yield.
Collapse
|
|
6 |
46 |
3
|
Alexandropoulou M, Antonopoulou G, Fragkou E, Ntaikou I, Lyberatos G. Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:704-713. [PMID: 27080567 DOI: 10.1016/j.jenvman.2016.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
In this study fungal pretreatment of willow sawdust (WSD) via the white rot fungi Leiotrametes menziesii and Abortiporus biennis was studied and the effect on fractionation of lignocellulosic biomass and biochemical methane potential (BMP), was evaluated. Scanning electron microscopy (SEM) and IR spectroscopy were used to investigate the changes in the structural characteristics of the pretreated WSD. Fungal pretreatment results revealed that A. biennis is more attractive, since it resulted in higher lignin degradation and lower holocellulose uptake. Samples of the 14th and 30th d of cultivation (i.e. the middle and the end of the pretreatment experiment) with both fungi were used for BMP tests and the effect of pretreatment duration was also evaluated. BMP increase by 31 and 43% was obtained due to the cultivation of WSD with A. biennis, for 14 and 30 d, respectively. In addition, combination of biological (after 30 d of cultivation) with alkaline (NaOH 20 g/100 gTS) pretreatment was performed, in order to assess the effect of the chemical agent on biologically pretreated WSD, in terms of lignocellulosic content and BMP. Combination of alkaline with fungal pretreatment led to high lignin degradation for both fungi, while the cellulose and hemicellulose removal efficiencies were higher for combined alkaline and L. menziesii pretreatment. The maximum BMP was observed for the combined alkaline and A. biennis pretreatment and was 12.5 and 50.1% higher than the respective alkaline and fungal pretreatment alone and 115% higher than the respective BMP of raw WSD.
Collapse
|
|
8 |
39 |
4
|
Zhao J, Ge X, Vasco-Correa J, Li Y. Fungal pretreatment of unsterilized yard trimmings for enhanced methane production by solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY 2014; 158:248-52. [PMID: 24607461 DOI: 10.1016/j.biortech.2014.02.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 05/25/2023]
Abstract
Fungal pretreatment is an environmentally friendly process that has been widely studied to improve the digestibility of lignocellulosic biomass. However, sterilization of feedstocks, a costly process, is generally required prior to the fungal pretreatment. In this study, fungal pretreatment of unsterilized yard trimmings using yard trimmings pre-colonized with Ceriporiopsis subvermispora as an inoculum was investigated. Degradation of lignin, cellulose, hemicellulose, and dry matter in yard trimmings during 30 days of fungal pretreatment using different inoculum/substrate ratios (1:19, 1:9 and 1:4) was 14.8-20.2%, 8.1-15.4%, 20.7-27.8%, and 9.8-16.2%, respectively. Methane yields of 34.9-44.6L/kg volatile solids were achieved during solid-state anaerobic digestion (SS-AD) of the pretreated yard trimmings, which were comparable to those obtained by using the traditional method requiring feedstock sterilization. The technology developed in this study can save about 501-789 kJ/kg of dry yard trimmings processed, which is about half of the total biogas energy produced by SS-AD.
Collapse
|
|
11 |
35 |
5
|
Zhao X, Luo K, Zhang Y, Zheng Z, Cai Y, Wen B, Cui Z, Wang X. Improving the methane yield of maize straw: Focus on the effects of pretreatment with fungi and their secreted enzymes combined with sodium hydroxide. BIORESOURCE TECHNOLOGY 2018; 250:204-213. [PMID: 29174897 DOI: 10.1016/j.biortech.2017.09.160] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
In order to improve the methane yield, the alkaline and biological pretreatments on anaerobic digestion (AD) were investigated. Three treatments were tested: NaOH, biological (enzyme and fungi), and combined NaOH with biological. The maximum reducing sugar concentrations were obtained using Enzyme T (2.20 mg/mL) on the 6th day. The methane yield of NaOH + Enzyme A was 300.85 mL/g TS, 20.24% higher than the control. Methane yield obtained from Enzyme (T + A) and Enzyme T pretreatments were 277.03 and 273.75 mL/g TS, respectively, which were as effective as 1% NaOH (276.16 mL/g TS) in boosting methane production, and are environmentally friendly and inexpensive biological substitutes. Fungal pretreatment inhibited methane fermentation of maize straw, 15.68% was reduced by T + A compared with the control. The simultaneous reduction of DM, cellulose and hemicellulose achieved high methane yields. This study provides important guidance for the application of enzymes to AD from lignocellulosic agricultural waste.
Collapse
|
|
7 |
31 |
6
|
Lalak J, Kasprzycka A, Martyniak D, Tys J. Effect of biological pretreatment of Agropyron elongatum 'BAMAR' on biogas production by anaerobic digestion. BIORESOURCE TECHNOLOGY 2016; 200:194-200. [PMID: 26492171 DOI: 10.1016/j.biortech.2015.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
The aim of this work was to analyze the impact of three different moisture contents (MC), at 45% MC, 65% MC, 75% MC, on the degradation of cellulose, hemicellulose, and lignin during fungi treatment by Flammulina velutipes of Agropyron elongatum 'BAMAR' and on biogas production. The analysis of chemical composition shown that F. velutipes had greater selectivity for lignin biodegradation with the highest hemicellulose and lignin removal at 29.1% and 35.4%, respectively, and lowest cellulose removal (20.48%) at 65% MC. F. velutipes cultivated at 65% MC increased biogas production of 398.07Ndm(3)kg(-1)VS(-1), which was 120% higher than the untreated sample. These treatment conditions resulted in 134% more methane yield compared with untreated sample. The results of this study suggested that A. elongatum is a potential biomass for biogas production in agriculture biogas plant and white-rot fungus F. velutipes provides an effective methods for improve biodegradation of A. elongatum.
Collapse
|
|
9 |
27 |
7
|
Vasco-Correa J, Ge X, Li Y. Fungal pretreatment of non-sterile miscanthus for enhanced enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2016; 203:118-123. [PMID: 26722811 DOI: 10.1016/j.biortech.2015.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
Miscanthus was pretreated with the fungus Ceriporiopsis subvermispora under non-sterile conditions, using sterile miscanthus that had been previously colonized with the fungus as the inoculum. Inoculum ratios equal to or greater than 30% yielded a successful pretreatment, enhancing the enzymatic digestibility of miscanthus by 3- to 4-fold over that of raw miscanthus, which was comparable with the fungal pretreatment under sterile conditions. This enhanced digestibility was linearly correlated with lignin degradation. Although cellulose loss of up to 13% was observed for the successful non-sterile pretreatments, the final glucose yield was 3-4 times higher than that of raw miscanthus and comparable to that of the sterile pretreated miscanthus. A time course study showed that maximum glucose yield can be achieved with a pretreatment time of 21 days.
Collapse
|
Evaluation Study |
9 |
26 |
8
|
Fang W, Zhang X, Zhang P, Carol Morera X, van Lier JB, Spanjers H. Evaluation of white rot fungi pretreatment of mushroom residues for volatile fatty acid production by anaerobic fermentation: Feedstock applicability and fungal function. BIORESOURCE TECHNOLOGY 2020; 297:122447. [PMID: 31784247 DOI: 10.1016/j.biortech.2019.122447] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 05/14/2023]
Abstract
White rot fungi using P. sajor-caju and T. versicolor was examined to pretreat raw champost (lignin-rich) and oyster champost (cellulose-rich) for enhancement of fermentative volatile fatty acid (VFA) production. Results showed that the efficiency of pretreatment and VFA production was influenced by the fungal strains and substrates. P. sajor-caju pretreatment showed preferential lignin degradation on raw champost and obtained the maximum VFA yield (203 ± 9 mg COD/g VSadded), which increased by 60% and 74% compared to that of control and unpretreated champost, respectively. For cellulose-rich oyster champost, however, fungal pretreatment decreased VFA yield compared to unpretreated champost. Further mechanisms analysis demonstrated the two strains grow and secreted ligninolytic enzymes, which substantially influenced the characteristics of two champosts such as cellulose/lignin ratio and morphology in different extents. P. sajor-caju was highly efficient to lignin-rich champost on selectively degrading lignin and further enhancing digestibility such as VFA production.
Collapse
|
|
5 |
26 |
9
|
Kainthola J, Podder A, Fechner M, Goel R. An overview of fungal pretreatment processes for anaerobic digestion: Applications, bottlenecks and future needs. BIORESOURCE TECHNOLOGY 2021; 321:124397. [PMID: 33249324 DOI: 10.1016/j.biortech.2020.124397] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Lignin modifying or extracellular enzymes secreted by the white rot fungi have the ability of degrading wide range of lignocellulosic substrates and organic pollutants. Lignocellulosic biomass, despite being a renewable source of energy, is difficult to hydrolyse (hydrolysis being rate-limiting stage in anaerobic digestion process). Various pre-treatment techniques like physical, chemical, thermo-chemical and biological to enhance the accessibility of microbes to carbohydrates have been studied. Recently, usage of white- rot fungi in a biological pre-treatment technique have received renewed interest due to its low cost and eco-friendly nature. This review deals with: a) lignocellulosic biomass recalcitrance, b) various pre-treatment techniques and its economic feasibility, c) delignification and hydrolysis mechanism using white-rot fungi, d) factors controlling white-rot fungi pre- treatment process, and e) improvement in methane production through solid-state anaerobic digestion of white-rot fungi pre-treated lignocellulosic biomass. Finally a future perspective is also included.
Collapse
|
Review |
4 |
24 |
10
|
Mishra V, Jana AK, Jana MM, Gupta A. Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse. BIORESOURCE TECHNOLOGY 2017; 236:49-59. [PMID: 28390277 DOI: 10.1016/j.biortech.2017.03.148] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 05/06/2023]
Abstract
The objective of this work was to study the increase in multiple lignolytic enzyme productions through the use of supplements in combination in pretreatment of sweet sorghum bagasse (SSB) by Coriolus versicolor such that enzymes act synergistically to maximize the lignin degradation and selectivity. Enzyme activities were enhanced by metallic salts and phenolic compound supplements in SSF. Supplement of syringic acid increased the activities of LiP, AAO and laccase; gallic acid increased MnP; CuSO4 increased laccase and PPO to improve the lignin degradations and selectivity individually, higher than control. Combination of supplements optimized by RSM increased the production of laccase, LiP, MnP, PPO and AAO by 17.2, 45.5, 3.5, 2.4 and 3.6 folds respectively for synergistic action leading to highest lignin degradation (2.3 folds) and selectivity (7.1 folds). Enzymatic hydrolysis of pretreated SSB yielded ∼2.43 times fermentable sugar. This technique could be widely applied for pretreatment and enzyme productions.
Collapse
|
|
8 |
24 |
11
|
Zhao J, Zheng Y, Li Y. Fungal pretreatment of yard trimmings for enhancement of methane yield from solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY 2014; 156:176-81. [PMID: 24502916 DOI: 10.1016/j.biortech.2014.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/01/2014] [Accepted: 01/04/2014] [Indexed: 05/27/2023]
Abstract
Yard trimmings were pretreated by Ceriporiopsis subvermispora, a white-rot fungus that selectively degrades lignin, to enhance methane production via solid-state anaerobic digestion. Effects of moisture content (MC), at 45%, 60%, and 75%, on the degradation of holocellulose and lignin in the fungal pretreatment step and on methane production in the digestion step were studied with comparison to the control group (autoclaved without inoculation) and raw yard trimmings. It was found that C. subvermispora had a high lignin degradation of 20.9% but limited cellulose degradation of 7.4% at 60% MC. Consequently, samples pretreated at 60% MC achieved the highest methane yield of 44.6L/kg volatile solid (VS) in the digestion step, which was 106% and 154% higher than the control group (21.6L/kg VS) and the raw yard trimmings (17.6L/kg VS), respectively. The increase in methane production was probably caused by the degradation of lignin during the pretreatment.
Collapse
|
|
11 |
23 |
12
|
Mishra V, Jana AK, Jana MM, Gupta A. Improvement of selective lignin degradation in fungal pretreatment of sweet sorghum bagasse using synergistic CuSO 4-syringic acid supplements. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 193:558-566. [PMID: 28262421 DOI: 10.1016/j.jenvman.2017.02.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/23/2017] [Accepted: 02/21/2017] [Indexed: 05/28/2023]
Abstract
Sweet sorghum bagasse (SSB) generated in large quantities could be hydrolyzed to sugar and then fermented to green fuels. The hydrolysis of SSB polysaccharides interlocked in recalcitrant lignin network is the major problem. Pretreatment of SSB in SSF by using Coriolus versicolor with CuSO4-syringic acid supplements for effects on production of ligninocellulolytic enzymes, lignin degradation and selectivity values (SV) were studied. C. versicolor was selected based on high ligninolytic and low cellulolytic abilily. Individually, CuSO4 increased the activities of laccase (4.9 folds) and PPO (1.9 folds); syringic acid increased LiP (13 folds), AAO (2.8 folds) and laccase (5.6 folds) resulting in increased lignin degradation and SVs. Combined syringic acid (4.4 μmol g-1 SSB) and CuSO4 (4.4 μmol g-1 SSB) increased the activities of laccase, LiP, MnP, PPO and AAO by 11.2, 17.6, 2.8, 2.4 and 2.3 folds respectively due to synergistic effect, resulting in maximum lignin degradation 35.9 ± 1.3% (w w-1) (1.86 fold) and highest SV 3.07 (4.7 fold). Enzymatic hydrolysis of pretreated SSB yielded higher (∼2.2 times) fermentable sugar. Pretreated SSB was characterized by XRD, SEM, FTIR and TGA/DTG analysis to confirm results. It is possible to improve fungal pretreatment of agricultural waste by combination of supplements.
Collapse
|
|
8 |
14 |
13
|
Mishra V, Jana AK, Jana MM, Gupta A. Fungal pretreatment of sweet sorghum bagasse with supplements: improvement in lignin degradation, selectivity and enzymatic saccharification. 3 Biotech 2017; 7:110. [PMID: 28567622 DOI: 10.1007/s13205-017-0719-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/06/2017] [Indexed: 10/19/2022] Open
Abstract
Sweet sorghum bagasse (SSB) from food processing and agricultural industry has attracted the attention for uses in production of biofuel, enzymes and other products. The alteration in lignocellulolytic enzymes by use of supplements in fungal pretreatment of SSB to achieve higher lignin degradation, selectivity value and enzymatic hydrolysis to fermentable sugar was studied. Fungal strain Coriolus versicolor was selected for pretreatment due to high ligninolytic and low cellulolytic enzyme production resulting in high lignin degradation and selectivity value. SSB was pretreated with supplements of veratryl alcohol, syringic acid, catechol, gallic acid, vanillin, guaiacol, CuSO4 and MnSO4. The best results were obtained with CuSO4, gallic acid and syringic acid supplements. CuSO4 increased the activities of laccase (4.9-fold) and polyphenol oxidase (1.9-fold); gallic acid increased laccase (3.5-fold) and manganese peroxidase (2.5-fold); and syringic acid increased laccase (5.6-fold), lignin peroxidase (13-fold) and arylalcohol oxidase (2.8-fold) resulting in enhanced lignin degradations and selectivity values than the control. Reduced cellulolytic enzyme activities resulted in high cellulose recovery. Enzymatic hydrolysis of pretreated SSB yielded higher sugar due to degradation of lignin and reduced the crystallinity of cellulose. The study showed that supplements could be used to improve the pretreatment process. The results were confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric/differential thermogravimetric analysis of SSB.
Collapse
|
Journal Article |
8 |
14 |
14
|
You T, Li X, Wang R, Zhang X, Xu F. Effects of synergistic fungal pretreatment on structure and thermal properties of lignin from corncob. BIORESOURCE TECHNOLOGY 2019; 272:123-129. [PMID: 30317155 DOI: 10.1016/j.biortech.2018.09.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 05/14/2023]
Abstract
Synergistic fungal pretreatment involving white-rot and brown-rot fugal pretreatment has shown great potential for enhancing the yield of sugars from biomass time-effectively and environmentally benign. In this work, the effects of this integrated fungal pretreatment on lignin characteristics and thermal behavior of corncob were examined in the view of whole plant valorization. The results show that an efficient deconstruction of lignin was achieved by white-rot fungus, and subsequent brown-rot fungus promoted the preferential breakdown of guaiacyl units, further enhancing lignin extraction efficiency (62.3%). Consequently, less phenolic hydroxyl, methoxyl, tricin, ester-linked p-coumaric acid, more carboxylic acid, ratio of syringyl to guaiacyl units, β-O-4' linkage and molecular weight were found in W-BL. Thermal stability was improved and the increased phenol and alkyl-phenols contents in pyrolysis products demonstrated that synergistic fungal pretreatment definitely improved the lignin oil quality. These discoveries provide new insights into set strategy for microbial screening, pretreatment and lignin processing.
Collapse
|
|
6 |
14 |
15
|
Ma J, Yue H, Li H, Zhang J, Zhang Y, Wang X, Gong S, Liu GQ. Selective delignification of poplar wood with a newly isolated white-rot basidiomycete Peniophora incarnata T-7 by submerged fermentation to enhance saccharification. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:135. [PMID: 34118970 PMCID: PMC8199694 DOI: 10.1186/s13068-021-01986-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/05/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Pretreatment is a critical step required for efficient conversion of woody biomass into biofuels and platform chemicals. Fungal pretreatment is regarded as one of the most promising technology for woody biomass conversion but remains challenging for industrial application. The exploration of potential fungus strain with high efficient delignification and less processing time for woody biomass pretreatment will be valuable for development of biorefinery industry. Here, a newly isolated white-rot basidiomycete Peniophora incarnate T-7 was employed for poplar wood pretreatment. RESULTS The chemical component analysis showed that cellulose, hemicellulose and lignin from poplar wood declined by 16%, 48% and 70%, respectively, after 7 days submerged fermentation by P. incarnate T-7. Enzymatic saccharification analysis revealed that the maximum yields of glucose and xylose from 7 days of P. incarnate T-7 treated poplar wood reached 33.4% and 27.6%, respectively, both of which were enhanced by sevenfold relative to the untreated group. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) characterization confirmed that lignocellulosic structure of poplar wood was largely broken by P. incarnate T-7, including delignification and de-crystalline of cellulose. Meanwhile, lignin component of poplar wood was selectively degraded by P. incarnate T-7, and G-type unit of lignin was preferentially attacked by the strain. Furthermore, quantitative proteomic analysis revealed that a considerable amount of lignocellulolytic enzymes were detected in the secretory proteins of P. incarnate T-7, especially with high abundance of lignin-degrading enzymes and hemicellulases. Combination of quantitative proteomic with transcriptomic analysis results showed that most of those lignocellulolytic enzymes were highly upregulated on poplar wood substrate compared to glucose substrate. CONCLUSIONS This study showed that P. incarnate T-7 could selectively delignify poplar wood by submerged fermentation with short time of 7 days, which greatly improved its enzymatic saccharification efficiency. Our results suggested that P. incarnate T-7 might be a promising candidate for industrial woody biomass pretreatment.
Collapse
|
research-article |
4 |
13 |
16
|
Vasco-Correa J, Li Y. Solid-state anaerobic digestion of fungal pretreated Miscanthus sinensis harvested in two different seasons. BIORESOURCE TECHNOLOGY 2015; 185:211-7. [PMID: 25770468 DOI: 10.1016/j.biortech.2015.02.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 05/11/2023]
Abstract
Solid-state anaerobic digestion of Miscanthus sinensis harvested in fall and spring was compared under different total solids contents and feedstock-to-inoculum ratios. The highest specific methane yields reached 170-175LCH4/kg volatile solids for both harvest seasons. Miscanthus harvested in fall generated a 6% higher methane yield in average than miscanthus harvested in spring. Fungal pretreatment with Ceriporiopsis subvermispora decreased the lignin content of miscanthus harvested in spring by 25.7%, but there was no significant delignification observed for miscanthus harvested in fall. Fungal pretreatment of miscanthus harvested in spring increased the specific methane yield by 25%, but fungal pretreatment caused a slight methane yield reduction for miscanthus harvested in fall. Methane yields for miscanthus were comparable with those from other energy crops.
Collapse
|
|
10 |
13 |
17
|
Ghosh Ray S, Ghangrekar MM. Enhancing organic matter removal, biopolymer recovery and electricity generation from distillery wastewater by combining fungal fermentation and microbial fuel cell. BIORESOURCE TECHNOLOGY 2015; 176:8-14. [PMID: 25460978 DOI: 10.1016/j.biortech.2014.10.158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 02/05/2023]
Abstract
For enhancing organic matter removal from cereal-based distillery stillage two-stage treatment consisting of fermentation by Aspergillus awamori followed by microbial fuel cell (MFC) is proposed. Considerable reduction in total and soluble chemical oxygen demand (COD) up to 70% and 40%, respectively, along with 98% reduction of suspended solids (SS) has been achieved during fungal pretreatment. The process generated chitosan, a useful fermentation byproduct from fungal mycelia, as 0.6-0.7g/l of settled sludge with mycelium (3.8% solids). Prior treatment of wastewater with fungal strain enhanced the power generation in MFC by 2.9 times at an organic loading rate of 1.5kgCOD/m(3)day, demonstrating soluble COD reduction of 92% in MFC. While treating distillery wastewater, this two-stage integrated biological process demonstrated overall 99% COD removal and almost complete removal of SS, delivering ample scope for scale-up and industrial application to offer effective solution for distillery wastewater treatment.
Collapse
|
Evaluation Study |
10 |
12 |
18
|
Liu X, Hiligsmann S, Gourdon R, Bayard R. Anaerobic digestion of lignocellulosic biomasses pretreated with Ceriporiopsis subvermispora. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 193:154-162. [PMID: 28213299 DOI: 10.1016/j.jenvman.2017.01.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
Fungal pretreatment by Ceriporiopsis subvermispora of two forest residues (hazel and acacia branches) and two agricultural lignocellulosic residues (barley straw and sugarcane bagasse) were studied as a pretreatment to improve their subsequent anaerobic digestion for methane production. Biomass samples were grinded to 2 ranges of particle sizes (<4 or 1 mm), autoclaved, inoculated with two strains of C. subvermispora (ATCC 90467 and ATCC 96608) and incubated at 28 °C for 28 days. The effects of fungal pretreatment were assessed by analyzing the samples before and after incubations for dry solids mass, biochemical composition, bio-methane production (BMP) and availability of cellulose to hydrolysis. The production of ligninolytic enzymes MnP and/or laccase was observed with both strains during incubation on most of the samples tested. It almost doubled the hazel branches BMP per unit mass of dry solids but did not improve however the BMP of the agricultural residues and acacia branches. These observations were explained by the fact that although both strains were able to degrade 20-25% of lignin in <1 mm and <4 mm hazel branches samples, none of them was successful however to significantly degrade lignin in the other samples, except for sugarcane bagasse.
Collapse
|
|
8 |
11 |
19
|
Phutela UG, Sahni N. Microscopic Structural Changes in Paddy Straw Pretreated with Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138. Indian J Microbiol 2012; 53:227-31. [PMID: 24426113 DOI: 10.1007/s12088-012-0321-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/15/2012] [Indexed: 11/27/2022] Open
Abstract
The present study reports the pretreatment of paddy straw by Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138 to observe the changes in chemical composition and its correlation with change of surface structure, morphology and porosity of paddy straw. Compared with untreated straw, cellulose decreased by 15.9 and 19.3 % in T. reesei MTCC 164 and C. versicolor MTCC 138 pretreated paddy straw respectively. Lignin content increased by 41.4 % in T. reesei pretreated paddy straw whereas decreased by 19.1 % in C. versicolor pretreated straw. The microscopic structural changes were examined by scanning electron microscopy under reasonable conditions. Results showed that digestibility of paddy straw are increased by treating paddy straw with both the cultures. Both surface area and pore size of treated straw were increased partially due to solubilization of silica components.
Collapse
|
Journal Article |
13 |
10 |
20
|
Brethauer S, Robert Lawrence S, Michael Hans-Peter S. Enhanced simultaneous saccharification and fermentation of pretreated beech wood by in situ treatment with the white rot fungus Irpex lacteus in a membrane aerated biofilm reactor. BIORESOURCE TECHNOLOGY 2017; 237:135-138. [PMID: 28400170 DOI: 10.1016/j.biortech.2017.03.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study was to investigate the combination of steam pretreatment and biological treatment with lignin degrading fungal strains in order to enable efficient bioprocessing of beech wood to ethanol. In a sequential process of steam and fungal pretreatment followed by enzymatic hydrolysis, Irpex lacteus almost doubled the glucose yield for mildly pretreated beech wood, but could not improve yields for more severely pretreated substrates. However, when simultaneous saccharification and fermentation is combined with in situ I. lacteus treatment, which is enabled by the application of a membrane aerated biofilm reactor, ethanol yields of optimally steam pretreated beech could be improved from 65 to 80%. Generally, in situ fungal treatment during bioprocessing of lignocellulose is an interesting method to harness the versatile abilities of white rot fungi.
Collapse
|
|
8 |
6 |
21
|
Sun Z, Mao Y, Liu S, Zhang H, Xu Y, Geng R, Lu J, Huang S, Yuan Q, Zhang S, Dong Q. Effect of pretreatment with Phanerochaete chrysosporium on physicochemical properties and pyrolysis behaviors of corn stover. BIORESOURCE TECHNOLOGY 2022; 361:127687. [PMID: 35878774 DOI: 10.1016/j.biortech.2022.127687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Fungal pretreatment can selectively degrade partial biomass components, which undoubtedly exerts a significant influence on biomass pyrolysis behavior. The corn stover was pretreated with Phanerochaete chrysosporium, and its influence on the physicochemical properties and pyrolysis behaviors of biomass together with the product characteristics were investigated. The Phanerochaete chrysosporium was more active to degrade hemicellulose and lignin. The hemicellulose and lignin contents in corn stover were decreased by 35.14 % and 31.80 %, respectively, after five weeks pretreatment, compared to the untreated sample. The reaction activation energy decreased from 52.89 kJ·mol-1 for the untreated sample to 40.88 kJ·mol-1 for the sample pretreated for five weeks. The Phanerochaete chrysosporium pretreatment was beneficial to the biochar production but exerted an unfavorable effect on the texture structure. The Phanerochaete chrysosporium also had an obvious influence on the bio-oil compositions. This study can provide a scientific reference for the application of biological pretreatment for biomass pyrolysis technology.
Collapse
|
|
3 |
6 |
22
|
Kasprzycka A, Lalak-Kańczugowska J, Tys J. Flammulina velutipes treatment of non-sterile tall wheat grass for enhancing biodegradability and methane production. BIORESOURCE TECHNOLOGY 2018; 263:660-664. [PMID: 29776722 DOI: 10.1016/j.biortech.2018.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
In this study fungal pretreatment of non-sterile tall wheat grass via the white rot fungi Flammulina velutipes was studied and the effect on biodegradability of lignocellulosic biomass and methane production, was evaluated. Degradation of lignin, cellulose, hemicellulose, and dry matter in non-sterile tall wheat grass during 28 days of fungal pretreatment using different inoculum ratio (0%-50%) and moisture content (MC) (45% MC, 65% MC, and 75% MC) were assessed via comparison to untreated biomass. Pretreatment with F. velutipes was most effective at 65% MC and 40% inoculum ratio, resulting in 22% lignin removal. The corresponding methane yields were 181.3 Ndm3·kg VS-1, which were 280% higher than for the untreated tall wheat grass.
Collapse
|
|
7 |
6 |
23
|
Chen F, Martín C, Lestander TA, Grimm A, Xiong S. Shiitake cultivation as biological preprocessing of lignocellulosic feedstocks - Substrate changes in crystallinity, syringyl/guaiacyl lignin and degradation-derived by-products. BIORESOURCE TECHNOLOGY 2022; 344:126256. [PMID: 34737055 DOI: 10.1016/j.biortech.2021.126256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Formulation of substrates based on three hardwood species combined with modulation of nitrogen content by whey addition (0-2%) was investigated in an experiment designed in D-optimal model for their effects on biological preproceesing of lignocellulosic feedstock by shiitake mushroom (Lentinula edodes) cultivation. Nitrogen loading was shown a more significant role than wood species for both mushroom production and lignocellulose degradation. The fastest mycelial colonisation occurred with no nitrogen supplementation, but the highest mushroom yields were achieved when 1% whey was added. Low nitrogen content resulted in increased delignification and minimal glucan consumption. Delignification was correlated with degradation of syringyl lignin unit, as indicated by a significant reduction (41.5%) of the syringyl-to-guaiacyl ratio after cultivation. No significant changes in substrate crystallinity were observed. The formation of furan aldehydes and aliphatic acids was negligible during the pasteurisation and fungal cultivation, while the content of soluble phenolics increased up to seven-fold.
Collapse
|
|
3 |
5 |
24
|
Hovorka M, Száková J, García-Sánchez M, Acebal MB, García-Romera I, Tlustoš P. Risk element sorption/desorption characteristics of dry olive residue: a technique for the potential immobilization of risk elements in contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22614-22622. [PMID: 27557964 DOI: 10.1007/s11356-016-7488-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Olive oil production is one of the most relevant agroindustrial activities in the Mediterranean region and generates a huge amount of both solid and semi-solid wastes, the uncontrolled disposal of which might lead to serious environmental problems. Due to its organic matter and mineral nutrient content, the waste material can be applied to agricultural soil as a fertilizer. However, due to its high organic matter content, dry olive residue (DOR), commonly called "alperujo," has the potential to immobilize risk elements in contaminated soils. The main objective of this study was to assess the possible effect of DOR on sorption of risk elements such as cadmium (Cd), lead (Pb), and zinc (Zn) in the soil. A set of batch sorption experiments were carried out to assess the ability of DOR to adsorb Cd, Pb, and Zn where the effect of the preceding biotransformation of DOR by four species of fungi: Penicillium chrysogenum, Coriolopsis floccosa, Bjerkhandera adusta, and Chondrostereum purpureum was compared. The Freundlich and Langmuir sorption isotherms were calculated to assess the sorption characteristics of both transformed and non-transformed DOR. The results showed good potential sorption capacity of DOR, especially for Pb and to a lesser extent for Cd and Zn. Better sorption characteristics were reported for the biotransformed DOR samples, which are expected to show higher humification of the organic matter. However, the desorption experiments showed weakness and instability of the DOR-bound elements, especially in the case of Zn. Thus, future research should aim to verify the DOR sorption pattern in contaminated soil as well as the potential stabilization of the DOR element bounds where the increase of the pH levels of the DOR samples needs to be taken into account.
Collapse
|
|
9 |
4 |
25
|
Yu H, Liu F, Ke M, Zhang X. Thermogravimetric analysis and kinetic study of bamboo waste treated by Echinodontium taxodii using a modified three-parallel-reactions model. BIORESOURCE TECHNOLOGY 2015; 185:324-30. [PMID: 25795446 DOI: 10.1016/j.biortech.2015.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/26/2015] [Accepted: 03/01/2015] [Indexed: 05/16/2023]
Abstract
In this study, the effect of pretreatment with Echinodontium taxodii on thermal decomposition characteristics and kinetics of bamboo wastes was investigated by thermogravimetric analysis. The results showed fungal pretreatment can enhance the thermal degradation of bamboo. The negative effect of extractives in bamboo on the thermal decomposition can be decreased by the pretreatment. A modified three-parallel-reactions model based on isolated lignin was firstly proposed to study pyrolysis kinetics of bamboo lignocellulose. Kinetic analysis showed that with increasing pretreatment time fungal delignification was enhanced to transform the lignin component with high activation energy into that with low activation energy and raise the cellulose content in bamboo, making the thermal decomposition easier. These results demonstrated fungal pretreatment provided a potential way to improve thermal conversion efficiency of bamboo.
Collapse
|
|
10 |
4 |