1
|
Boyer-Guittaut M, Poillet L, Liang Q, Bôle-Richard E, Ouyang X, Benavides GA, Chakrama FZ, Fraichard A, Darley-Usmar VM, Despouy G, Jouvenot M, Delage-Mourroux R, Zhang J. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 2014; 10:986-1003. [PMID: 24879149 PMCID: PMC4091181 DOI: 10.4161/auto.28390] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/18/2014] [Accepted: 02/28/2014] [Indexed: 12/14/2022] Open
Abstract
GABARAPL1/GEC1 is an early estrogen-induced gene which encodes a protein highly conserved from C. elegans to humans. Overexpressed GABARAPL1 interacts with GABAA or kappa opioid receptors, associates with autophagic vesicles, and inhibits breast cancer cell proliferation. However, the function of endogenous GABARAPL1 has not been extensively studied. We hypothesized that GABARAPL1 is required for maintaining normal autophagic flux, and plays an important role in regulating cellular bioenergetics and metabolism. To test this hypothesis, we knocked down GABARAPL1 expression in the breast cancer MDA-MB-436 cell line by shRNA. Decreased expression of GABARAPL1 activated procancer responses of the MDA-MB-436 cells including increased proliferation, colony formation, and invasion. In addition, cells with decreased expression of GABARAPL1 exhibited attenuated autophagic flux and a decreased number of lysosomes. Moreover, decreased GABARAPL1 expression led to cellular bioenergetic changes including increased basal oxygen consumption rate, increased intracellular ATP, increased total glutathione, and an accumulation of damaged mitochondria. Taken together, our results demonstrate that GABARAPL1 plays an important role in cell proliferation, invasion, and autophagic flux, as well as in mitochondrial homeostasis and cellular metabolic programs.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Aldehydes/pharmacology
- Apoptosis Regulatory Proteins/metabolism
- Autophagy/genetics
- Autophagy/physiology
- Beclin-1
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival/drug effects
- DNA Damage
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Energy Metabolism
- Female
- Gene Knockdown Techniques
- Humans
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/metabolism
- Lysosomes/metabolism
- Lysosomes/pathology
- Membrane Potential, Mitochondrial
- Membrane Proteins/metabolism
- Microtubule-Associated Proteins/antagonists & inhibitors
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Mitophagy/genetics
- Mitophagy/physiology
- Neoplasm Invasiveness
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Small Interfering/genetics
- Sequestosome-1 Protein
- Tumor Stem Cell Assay
Collapse
|
Research Support, N.I.H., Extramural |
11 |
83 |
2
|
Skytte Rasmussen M, Mouilleron S, Kumar Shrestha B, Wirth M, Lee R, Bowitz Larsen K, Abudu Princely Y, O'Reilly N, Sjøttem E, Tooze SA, Lamark T, Johansen T. ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8. Autophagy 2017; 13:834-853. [PMID: 28287329 PMCID: PMC5446077 DOI: 10.1080/15548627.2017.1287651] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 12/29/2022] Open
Abstract
The cysteine protease ATG4B cleaves off one or more C-terminal residues of the inactive proform of proteins of the ortholog and paralog LC3 and GABARAP subfamilies of yeast Atg8 to expose a C-terminal glycine that is conjugated to phosphatidylethanolamine during autophagosome formation. We show that ATG4B contains a C-terminal LC3-interacting region (LIR) motif important for efficient binding to and cleavage of LC3 and GABARAP proteins. We solved the crystal structures of the GABARAPL1-ATG4B C-terminal LIR complex. Analyses of the structures and in vitro binding assays, using specific point mutants, clearly showed that the ATG4B LIR binds via electrostatic-, aromatic HP1 and hydrophobic HP2 pocket interactions. Both these interactions and the catalytic site-substrate interaction contribute to binding between LC3s or GABARAPs and ATG4B. We also reveal an unexpected role for ATG4B in stabilizing the unlipidated forms of GABARAP and GABARAPL1. In mouse embryonic fibroblast (MEF) atg4b knockout cells, GABARAP and GABARAPL1 were unstable and degraded by the proteasome. Strikingly, the LIR motif of ATG4B was required for stabilization of the unlipidated forms of GABARAP and GABARAPL1 in cells.
Collapse
|
research-article |
8 |
83 |
3
|
MicroRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1. Biosci Rep 2016; 36:BSR20160139. [PMID: 27623937 PMCID: PMC5064457 DOI: 10.1042/bsr20160139] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/13/2016] [Indexed: 02/07/2023] Open
Abstract
Deep vein thrombosis (DVT) is a common type of venous thrombosis. Successful resolution of DVT-related thrombi is important in the treatment of DVT. Endothelial progenitor cells (EPCs) have emerged as a promising therapeutic choice for DVT-related thrombus resolution; however, the clinical application of EPCs faces many challenges. In the present study, the expression of miR-582, miR-195 and miR-532 under hypoxic or normoxic conditions was measured using quantitative real-time PCR analysis (qRT-PCR) and the results showed that the increased fold of miR-195 was highest in human EPCs (hEPCs) under hypoxic conditions. Then the role and regulating mechanism of miR-195 in improving the function of EPCs was investigated. To investigate the effect of miR-195 inhibition on the autophagy of hEPCs, the expression of the autophagy-related genes LC3B and beclin1 was examined using western blotting, and the formation of autophagosomes was observed using TEM. The results indicated that the inhibition of miR-195 expression could promote autophagy of hEPCs. In addition, we investigated the role of miR-195 on the proliferation, migration and angiogenesis of hEPCs under hypoxia. The results revealed that miR-195 inhibition promotes cell proliferation, migration and angiogenesis of hEPCs under hypoxia. Furthermore, GABA type A receptor associated protein like 1 (GABARAPL1) was identified as a directed target of miR-195 and GABARAPL1 silencing could decrease the effect of miR-195 knockdown on cell proliferation, migration, angiogenesis and autophagy of hEPCs under hypoxia. Together, these results indicate that miR-195 regulates cell proliferation, migration, angiogenesis and autophagy of hEPCs by targeting GABARAPL1.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
48 |
4
|
Jacquet M, Guittaut M, Fraichard A, Despouy G. The functions of Atg8-family proteins in autophagy and cancer: linked or unrelated? Autophagy 2021; 17:599-611. [PMID: 32255730 PMCID: PMC8032235 DOI: 10.1080/15548627.2020.1749367] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 01/04/2023] Open
Abstract
The Atg8-family proteins are subdivided into two subfamilies: the GABARAP and LC3 subfamilies. These proteins, which are major players of the autophagy pathway, present a conserved glycine in their C-terminus necessary for their association to the autophagosome membrane. This family of proteins present multiple roles from autophagy induction to autophagosome-lysosome fusion and have been described to play a role during cancer progression. Indeed, GABARAPs are described to be downregulated in cancers, and high expression has been linked to a good prognosis. Regarding LC3 s, their expression does not correlate to a particular tumor type or stage. The involvement of Atg8-family proteins during cancer, therefore, remains unclear, and it appears that their anti-tumor role may be associated with their implication in selective protein degradation by autophagy but might also be independent, in some cases, of their conjugation to autophagosomes. In this review, we will then focus on the involvement of GABARAP and LC3 subfamilies during autophagy and cancer and highlight the similarities but also the differences of action of each subfamily member.Abbreviations: AIM: Atg8-interacting motif; AMPK: adenosine monophosphate-associated protein kinase; ATG: autophagy-related; BECN1: beclin 1; BIRC6/BRUCE: baculoviral IAP repeat containing 6; BNIP3L/NIX: BCL2 interacting protein 3 like; GABARAP: GABA type A receptor-associated protein; GABARAPL1/2: GABA type A receptor associated protein like 1/2; GABRA/GABAA: gamma-aminobutyric acid type A receptor subunit; LAP: LC3-associated phagocytosis; LMNB1: lamin B1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PI4K2A/PI4KIIα: phosphatidylinositol 4-kinase type 2 alpha; PLEKHM1: plecktrin homology and RUN domain containing M1; PtdIns3K-C1: class III phosphatidylinositol 3-kinase complex 1; SQSTM1: sequestosome 1; ULK1: unc51-like autophagy activating kinase 1.
Collapse
|
Review |
4 |
45 |
5
|
Keulers TG, Libregts SF, Beaumont JE, Savelkouls KG, Bussink J, Duimel H, Dubois L, Zonneveld MI, López‐Iglesias C, Bezstarosti K, Demmers JA, Vooijs M, Wauben M, Rouschop KM. Secretion of pro-angiogenic extracellular vesicles during hypoxia is dependent on the autophagy-related protein GABARAPL1. J Extracell Vesicles 2021; 10:e12166. [PMID: 34859607 PMCID: PMC8640512 DOI: 10.1002/jev2.12166] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
Tumour hypoxia is a hallmark of solid tumours and contributes to tumour progression, metastasis development and therapy resistance. In response to hypoxia, tumour cells secrete pro-angiogenic factors to induce blood vessel formation and restore oxygen supply to hypoxic regions. Extracellular vesicles (EVs) are emerging as mediators of intercellular communication in the tumour microenvironment. Here we demonstrate that increased expression of the LC3/GABARAP protein family member GABARAPL1, is required for endosomal maturation, sorting of cargo to endosomes and the secretion of EVs. Silencing GABARAPL1 results in a block in the early endosomal pathway and impaired secretion of EVs with pro-angiogenic properties. Tumour xenografts of doxycycline inducible GABARAPL1 knockdown cells display impaired vascularisation that results in decreased tumour growth, elevated tumour necrosis and increased therapy efficacy. Moreover, our data show that GABARAPL1 is expressed on the EV surface and targeting GABARAPL1+ EVs with GABARAPL1 targeting antibodies results in blockade of pro-angiogenic effects in vitro. In summary, we reveal that GABARAPL1 is required for EV cargo loading and secretion. GABARAPL1+ EVs are detectable and targetable and are therefore interesting to pursue as a therapeutic target.
Collapse
|
research-article |
4 |
23 |
6
|
Brigger D, Torbett BE, Chen J, Fey MF, Tschan MP. Inhibition of GATE-16 attenuates ATRA-induced neutrophil differentiation of APL cells and interferes with autophagosome formation. Biochem Biophys Res Commun 2013; 438:283-8. [PMID: 23891751 PMCID: PMC4225710 DOI: 10.1016/j.bbrc.2013.07.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 12/11/2022]
Abstract
Autophagy is an intracellular bulk degradation process involved in cell survival upon stress induction, but also with a newly identified function in myeloid differentiation. The autophagy-related (ATG)8 protein family, including the GABARAP and LC3 subfamilies, is crucial for autophagosome biogenesis. In order to evaluate the significance of the GABARAPs in the pathogenesis of acute myeloid leukemia (AML), we compared their expression in primary AML patient samples, CD34(+) progenitor cells and in granulocytes from healthy donors. GABARAPL1 and GABARAPL2/GATE-16, but not GABARAP, were significantly downregulated in particular AML subtypes compared to normal granulocytes. Moreover, the expression of GABARAPL1 and GATE-16 was significantly induced during ATRA-induced neutrophil differentiation of acute promyelocytic leukemia cells (APL). Lastly, knocking down GABARAPL2/GATE-16 in APL cells attenuated neutrophil differentiation and decreased autophagic flux. In conclusion, low GABARAPL2/GATE-16 expression is associated with an immature myeloid leukemic phenotype and these proteins are necessary for neutrophil differentiation of APL cells.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
22 |
7
|
Poillet-Perez L, Jacquet M, Hervouet E, Gauthier T, Fraichard A, Borg C, Pallandre JR, Gonzalez BJ, Ramdani Y, Boyer-Guittaut M, Delage-Mourroux R, Despouy G. GABARAPL1 tumor suppressive function is independent of its conjugation to autophagosomes in MCF-7 breast cancer cells. Oncotarget 2017; 8:55998-56020. [PMID: 28915569 PMCID: PMC5593540 DOI: 10.18632/oncotarget.19639] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
The GABARAPL1 protein belongs to the ATG8 family whose members are involved in autophagy. Our laboratory previously demonstrated that GABARAPL1 associates with autophagic vesicles, regulates autophagic flux and acts as a tumor suppressor protein in breast cancer. In this study, we aimed to determine whether GABARAPL1 conjugation to autophagosomes is necessary for its tumor suppressive functions using the MCF-7 breast cancer cell line overexpressing GABARAPL1 or a G116A mutant, which is unable to be lipidated and associated to autophagosomes. We show that the G116A mutation impaired GABARAPL1 function in autophagosome/lysosome fusion and inhibited lysosome activity but did not alter MTOR and ULK1 activities or tumor growth in vivo. Our results demonstrate for the first time that GABARAPL1 plays different regulatory functions during early and late stages of autophagy, independently or not of its conjugation to autophagosomes, but its tumor suppressive function appeared to be independent of its conjugation to autophagic vesicles.
Collapse
|
Journal Article |
8 |
19 |
8
|
Su W, Li S, Chen X, Yin L, Ma P, Ma Y, Su B. GABARAPL1 suppresses metastasis by counteracting PI3K/Akt pathway in prostate cancer. Oncotarget 2018; 8:4449-4459. [PMID: 27966458 PMCID: PMC5354845 DOI: 10.18632/oncotarget.13879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/02/2016] [Indexed: 01/14/2023] Open
Abstract
Metastasis remains the primary cause of prostate cancer (CaP)-related death. Using a genome wide shRNA screen, we identified GABARAPL1 as a potential CaP metastasis suppressor. GABARAPL1 mRNA levels inversely correlate with the invasive potential of a panel of human CaP cell lines. Lower mRNA levels correlate with higher Gleason scores in clinical CaP tumor samples. Moreover, Kaplan-Meier curves analysis showed that GABARAPL1 down-regulation in cancer tissues is associated with decreased disease-free survival in CaP patients. Knockdown of GABARAPL1 in human LNCaP cells results in increased invasion in vitro and lymph node metastasis in vivo. Vice versa, ectopic expression of GABARAPL1 decreases the invasiveness of CWR22Rv1 cells. Our previous in vitro shRNA screening identified FOXO4, a PI3K/Akt-inactivating downstream target, as a potential CaP metastasis suppressor. We show here that silencing FOXOs leads to reduced GABARAPL1 expression and enhanced invasion in LNCaP cells. Transfection of constitutively-activated Akt (myr-Akt) increased the invasion of LNCaP cells, which is associated with the inactivation of FOXOs and decreased GABARAPL1 expression. Indeed, forced expression of GABARAPL1 reversed the increased invasiveness of LNCaP/myr-Akt cells. Finally, immunohistochemistry analysis shows that Akt phosphorylation is negatively correlated with GABARAPL1 expression in human CaP tissues. Taken together, our data indicate that the suppression of FOXOs-GABARAPL1 signaling by Akt is an important mechanism for CaP progression and metastasis.
Collapse
|
Journal Article |
7 |
13 |
9
|
Lee TG, Kim SY, Kim HR, Kim H, Kim CH. Radiation Induces Autophagy via Histone H4 Lysine 20 Trimethylation in Non-small Cell Lung Cancer Cells. Anticancer Res 2020; 40:2537-2548. [PMID: 32366398 DOI: 10.21873/anticanres.14224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Radiotherapy-induced autophagy affects radiation-sensitivity and radiotherapy efficacy. Histone modifications also occur during radiotherapy. This study assessed radiotherapy effects on histone modification and autophagy in non-small cell lung cancer (NSCLC) cells. MATERIALS AND METHODS NSCLC cells were subjected to γ-irradiation. Autophagy was detected using western blotting and acridine orange staining. Radiation effect on cell growth was evaluated by clonogenic assay. Histone modifications were assessed by western blotting. Next generation sequencings (NGSs) were conducted to identify histone modification target genes. RESULTS Radio-protective autophagy and histone H4 lysine 20 trimethylation (H4K20me3) were up-regulated after irradiation. By NGSs, genes that are differentially expressed upon irradiation were identified, including the candidate H4K20me3 target gene GABARAPL1. Furthermore, we showed that GABARAPL1 is essential for the radiation-induced autophagy. CONCLUSION Our findings revealed the regulatory axis of radiation-induced H4K20me3-GABARAPL1 in radio-protective autophagy. Modulation of this axis may be a new strategy to enhance radiotherapy efficacy in NSCLC.
Collapse
|
Journal Article |
5 |
9 |
10
|
Ran L, Hong T, Xiao X, Xie L, Zhou J, Wen G. GABARAPL1 acts as a potential marker and promotes tumor proliferation and metastasis in triple negative breast cancer. Oncotarget 2017; 8:74519-74526. [PMID: 29088804 PMCID: PMC5650359 DOI: 10.18632/oncotarget.20159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/04/2017] [Indexed: 12/22/2022] Open
Abstract
GABAA-receptor-associated protein like-1 (GABARAPL1) is involved in a variety of cancers. The purpose of this study was to investigate the expression, prognostic roles and functions of GABARAPL1 in triple negative breast cancer (TNBC). Quantitative real-time PCR (qRT-PCR) showed that GABARAPL1 was up regulated in both TNBC cell lines and clinical TNBC tissues. High GABARAPL1 expression level was associated with shorter overall survival (OS) and disease free survival (DFS). Furthermore, inhibition of GABARAPL1 suppressed cell proliferation, tumorigenesis, invasion and metastasis, and induced cell apoptosis. We found that metadherin (MTDH) was a downstream target of GABARAPL1. Inhibition of GABARAPL1 suppressed the mRNA and protein expression of MTDH, and overexpression of MTDH could reverse the effects of GABARAPL1 inhibition, which meant GABARAPL1 performed its function partly through MTDH. Our findings demonstrate that GABARAPL1 acts as a tumor promoter in TNBC partly through MTDH. Targeting at GABARAPL1 could be a potential therapeutic strategy for TNBC.
Collapse
|
research-article |
8 |
7 |
11
|
Su B, Zhang L, Liu S, Chen X, Zhang W. GABARAPL1 Promotes AR+ Prostate Cancer Growth by Increasing FL-AR/AR-V Transcription Activity and Nuclear Translocation. Front Oncol 2019; 9:1254. [PMID: 31803623 PMCID: PMC6872515 DOI: 10.3389/fonc.2019.01254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
The next generation Androgen receptor (AR)-targeted therapies are now in widespread clinical use and prolong prostate cancer (CaP) patient survival. However, the therapies are not curative due to diverse range of resistance mechanisms. AR variants (AR-V), one major mechanism of resistance, has recently gained momentum. Here, we found that GABARAPL1 knockdown inhibits the growth of AR-positive LNCaP and CWR22rv1 CaP cells in vitro and in vivo, decreases AR/AR-V transcription activity and AR nuclear translocation. Pulldown assay shows that both of Full-length (FL)-AR and AR-V were able to interact with GABARAPL1, suggesting that GABARAPL1 may play its role through directly scaffolding AR. The further analysis from Oncomine database showed that negative correlation between GABARAPL1 expression and 5-years survival in CaP cases. Our findings have identified GABARAPL1 as critical regulator of FL-AR/AR-V, suggesting the potential benefit of targeting GABARAPL1 to treat AR-positive CaP that is resistant to next generation AR inhibitors.
Collapse
|
Journal Article |
6 |
6 |
12
|
Shu CW, Bee YS, Chen JL, Tsen CL, Tsai WL, Sheu SJ. Detection of Autophagy-Related Gene Expression by Conjunctival Impression Cytology in Age-Related Macular Degeneration. Diagnostics (Basel) 2021; 11:diagnostics11020296. [PMID: 33673354 PMCID: PMC7918710 DOI: 10.3390/diagnostics11020296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose: To investigate the association of autophagy-related gene expression with age-related macular degeneration (AMD). Methods: Patients with AMD were recruited for analysis by conjunctival impression cytology. mRNA was assessed by real-time polymerase chain reaction (RT-PCR) to evaluate whether the expression of 26 autophagy-related genes (ATGs) was correlated with AMD. Further studies on cell viability and autophagic flux in response to oxidative stress by H2O2 were performed in human retinal pigment epithelial (RPE) cell lines based on the results of impression cytology. Results: Both the neovascular AMD (nAMD) and polypoidal choroidal vasculopathy (PCV) groups had significantly higher mRNA levels of gamma-aminobutyric acid receptor-associated protein-like 1 (GABARAPL1) and microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) than the control group, but there was no significant difference between these two groups. Age difference existed only in the AMD group. GABARAPL1 and MAP1LC3B mRNA expression increased significantly after acute oxidative stress in adult retinal pigment epithelial (ARPE-19) cells. Cell viability significantly increased and decreased in the cells harboring GABARAPL1 expression vector and silenced with siRNA against GABARAPL1, respectively, during short-term oxidative stress, whereas viability increased in the GABARAPL1-silenced cells after long-term oxidative stress. Silencing GABARAPL1 itself caused a reduction in autophagic flux under both short and long-term oxidative stress. Conclusion: Our study showed the possibility of assessing autophagy-related gene expression by conjunctival impression cytology. GABARAPL1 was significantly higher in AMD. Although an in vitro study showed an initial protective effect of autophagy, a cell viability study revealed the possibility of a harmful effect after long-term oxidative injury. The underlying mechanism or critical factors require further investigation.
Collapse
|
|
4 |
3 |
13
|
Mei T, Li Y, Orduña Dolado A, Li Z, Andersson R, Berliocchi L, Rasmussen LJ. Pooled analysis of frontal lobe transcriptomic data identifies key mitophagy gene changes in Alzheimer's disease brain. Front Aging Neurosci 2023; 15:1101216. [PMID: 37358952 PMCID: PMC10288858 DOI: 10.3389/fnagi.2023.1101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Background The growing prevalence of Alzheimer's disease (AD) is becoming a global health challenge without effective treatments. Defective mitochondrial function and mitophagy have recently been suggested as etiological factors in AD, in association with abnormalities in components of the autophagic machinery like lysosomes and phagosomes. Several large transcriptomic studies have been performed on different brain regions from AD and healthy patients, and their data represent a vast source of important information that can be utilized to understand this condition. However, large integration analyses of these publicly available data, such as AD RNA-Seq data, are still missing. In addition, large-scale focused analysis on mitophagy, which seems to be relevant for the aetiology of the disease, has not yet been performed. Methods In this study, publicly available raw RNA-Seq data generated from healthy control and sporadic AD post-mortem human samples of the brain frontal lobe were collected and integrated. Sex-specific differential expression analysis was performed on the combined data set after batch effect correction. From the resulting set of differentially expressed genes, candidate mitophagy-related genes were identified based on their known functional roles in mitophagy, the lysosome, or the phagosome, followed by Protein-Protein Interaction (PPI) and microRNA-mRNA network analysis. The expression changes of candidate genes were further validated in human skin fibroblast and induced pluripotent stem cells (iPSCs)-derived cortical neurons from AD patients and matching healthy controls. Results From a large dataset (AD: 589; control: 246) based on three different datasets (i.e., ROSMAP, MSBB, & GSE110731), we identified 299 candidate mitophagy-related differentially expressed genes (DEG) in sporadic AD patients (male: 195, female: 188). Among these, the AAA ATPase VCP, the GTPase ARF1, the autophagic vesicle forming protein GABARAPL1 and the cytoskeleton protein actin beta ACTB were selected based on network degrees and existing literature. Changes in their expression were further validated in AD-relevant human in vitro models, which confirmed their down-regulation in AD conditions. Conclusion Through the joint analysis of multiple publicly available data sets, we identify four differentially expressed key mitophagy-related genes potentially relevant for the pathogenesis of sporadic AD. Changes in expression of these four genes were validated using two AD-relevant human in vitro models, primary human fibroblasts and iPSC-derived neurons. Our results provide foundation for further investigation of these genes as potential biomarkers or disease-modifying pharmacological targets.
Collapse
|
research-article |
2 |
2 |
14
|
Jacquet M, Hervouet E, Baudu T, Herfs M, Parratte C, Feugeas JP, Perez V, Reynders C, Ancion M, Vigneron M, Baguet A, Guittaut M, Fraichard A, Despouy G. GABARAPL1 Inhibits EMT Signaling through SMAD-Tageted Negative Feedback. BIOLOGY 2021; 10:biology10100956. [PMID: 34681055 PMCID: PMC8533302 DOI: 10.3390/biology10100956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Epithelial–mesenchymal transition (EMT) is involved in metastasis formation, chemoresistance, apoptosis resistance, and acquisition of stem cell properties, making this process an attractive target in cancer. However, direct targeting of EMT remains challenging. Autophagy—an intracellular mechanism—has been noted to be involved in the regulation of EMT—mainly by its involvement in the degradation of EMT actors, explaining why understanding of how autophagy could regulate EMT might be promising in the development of new cancer therapies. Here, we found that GABARAPL1—an autophagy-related gene—was increased in human NSCLC mesenchymal tumors compared to epithelial tumors, and induction of EMT in an A549 lung cancer cell line by TGF-β/TNF-α cytokines also led to an increase in GABARAPL1 expression. This regulation could involve the EMT-related transcription factors of the SMAD family. To understand the role of GABARAPL1 in EMT regulation in lung cancer cells, A549 KO GABARAPL1 were designed and used to investigate whether GABARAPL1 could inhibit EMT via its involvement in SMAD degradation. The results indicate that GABARAPL1-mediated autophagic degradation could intervene as a negative EMT-regulatory loop. Abstract The pathway of selective autophagy, leading to a targeted elimination of specific intracellular components, is mediated by the ATG8 proteins, and has been previously suggested to be involved in the regulation of the Epithelial–mesenchymal transition (EMT) during cancer’s etiology. However, the molecular factors and steps of selective autophagy occurring during EMT remain unclear. We therefore analyzed a cohort of lung adenocarcinoma tumors using transcriptome analysis and immunohistochemistry, and found that the expression of ATG8 genes is correlated with that of EMT-related genes, and that GABARAPL1 protein levels are increased in EMT+ tumors compared to EMT- ones. Similarly, the induction of EMT in the A549 lung adenocarcinoma cell line using TGF-β/TNF-α led to a high increase in GABARAPL1 expression mediated by the EMT-related transcription factors of the SMAD family, whereas the other ATG8 genes were less modified. To determine the role of GABARAPL1 during EMT, we used the CRISPR/Cas9 technology in A549 and ACHN kidney adenocarcinoma cell lines to deplete GABARAPL1. We then observed that GABARAPL1 knockout induced EMT linked to a defect of GABARAPL1-mediated degradation of the SMAD proteins. These findings suggest that, during EMT, GABARAPL1 might intervene in an EMT-regulatory loop. Indeed, induction of EMT led to an increase in GABARAPL1 levels through the activation of the SMAD signaling pathway, and then GABARAPL1 induced the autophagy-selective degradation of SMAD proteins, leading to EMT inhibition.
Collapse
|
|
4 |
2 |
15
|
Vianello C, Salluzzo M, Anni D, Boriero D, Buffelli M, Carboni L. Increased Expression of Autophagy-Related Genes in Alzheimer's Disease-Type 2 Diabetes Mellitus Comorbidity Models in Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054540. [PMID: 36901549 PMCID: PMC10002426 DOI: 10.3390/ijerph20054540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/31/2023]
Abstract
The association between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) has been extensively demonstrated, but despite this, the pathophysiological mechanisms underlying it are still unknown. In previous work, we discovered a central role for the autophagy pathway in the common alterations observed between AD and T2DM. In this study, we further investigate the role of genes belonging to this pathway, measuring their mRNA expression and protein levels in 3xTg-AD transgenic mice, an animal model of AD. Moreover, primary mouse cortical neurons derived from this model and the human H4Swe cell line were used as cellular models of insulin resistance in AD brains. Hippocampal mRNA expression showed significantly different levels for Atg16L1, Atg16L2, GabarapL1, GabarapL2, and Sqstm1 genes at different ages of 3xTg-AD mice. Significantly elevated expression of Atg16L1, Atg16L2, and GabarapL1 was also observed in H4Swe cell cultures, in the presence of insulin resistance. Gene expression analysis confirmed that Atg16L1 was significantly increased in cultures from transgenic mice when insulin resistance was induced. Taken together, these results emphasise the association of the autophagy pathway in AD-T2DM co-morbidity, providing new evidence about the pathophysiology of both diseases and their mutual interaction.
Collapse
|
research-article |
2 |
1 |
16
|
Koutsifeli P, Daniels LJ, Neale J, Fong S, Varma U, Annandale M, Li X, Nursalim Y, Bell JR, Weeks KL, Stotland A, Taylor DJ, Gottlieb RA, Delbridge LM, Mellor KM. Methods for detection of cardiac glycogen-autophagy. AUTOPHAGY REPORTS 2024; 3:2405331. [PMID: 40395528 PMCID: PMC11864643 DOI: 10.1080/27694127.2024.2405331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 05/22/2025]
Abstract
Glycogen-autophagy ('glycophagy') is a selective autophagy process involved in delivering glycogen to the lysosome for bulk degradation. Glycophagy protein intermediaries include STBD1 as a glycogen tagging receptor, delivering the glycogen cargo into the forming phagosome by partnering with the Atg8 homolog, GABARAPL1. Glycophagy is emerging as a key process of energy metabolism and development of reliable tools for assessment of glycophagy activity is an important priority. Here we show that antibodies raised against the N-terminus of the GABARAPL1 protein (but not the full-length protein) detected a specific endogenous GABARAPL1 immunoblot band at 18kDa. A stable GFP-GABARAPL1 cardiac cell line was used to quantify GABARAPL1 lysosomal flux via measurement of GFP puncta in response to lysosomal inhibition with bafilomycin. Endogenous glycophagy flux was quantified in primary rat ventricular myocytes by the extent of glycogen accumulation with bafilomycin combined with chloroquine treatment (no effect observed with bafilomycin or chloroquine alone). In wild-type isolated mouse hearts, bafilomycin alone and bafilomycin combined with chloroquine (but not chloroquine alone) elicited a significant increase in glycogen content signifying basal glycophagy flux. Collectively, these methodologies provide a comprehensive toolbox for tracking cardiac glycophagy activity to advance research into the role of glycophagy in health and disease.
Collapse
|
report |
1 |
|
17
|
McMann E, Gorski SM. Last but not least: emerging roles of the autophagy-related protein ATG4D. Autophagy 2024; 20:1916-1927. [PMID: 38920354 PMCID: PMC11346562 DOI: 10.1080/15548627.2024.2369436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The evolutionarily conserved ATG4 cysteine proteases regulate macroautophagy/autophagy through the priming and deconjugation of the Atg8-family proteins. In mammals there are four ATG4 family members (ATG4A, ATG4B, ATG4C, ATG4D) but ATG4D has been relatively understudied. Heightened interest in ATG4D has been stimulated by recent links to human disease. Notably, genetic variations in human ATG4D were implicated in a heritable neurodevelopmental disorder. Genetic analyses in dogs, along with loss-of-function zebrafish and mouse models, further support a neuroprotective role for ATG4D. Here we discuss the evidence connecting ATG4D to neurological diseases and other pathologies and summarize its roles in both autophagy-dependent and autophagy-independent cellular processes.Abbrevation: ATG: autophagy related; BafA1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; BH3: BCL2 homology region 3; CASP3: caspase 3; EV: extracellular vesicle; GABA: gamma aminobutyric acid; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; LIR: LC3-interacting region; MAP1LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MYC: MYC proto-oncogene, bHLH transcription factor; PE: phosphatidylethanolamine; PS: phosphatidylserine; QKO: quadruple knockout; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel; SQSTM1: sequestosome 1.
Collapse
|
Review |
1 |
|
18
|
James SL, Koutsifeli P, D'Souza RF, Masson SW, Woodhead JS, Merry TL, Delbridge LM, Mellor KM. Glycophagy is involved in cardiac glycogen regulation in response to exercise. Curr Res Physiol 2024; 7:100131. [PMID: 39282594 PMCID: PMC11402405 DOI: 10.1016/j.crphys.2024.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Cardiac glycogen-autophagy ('glycophagy') is disturbed in cardiometabolic pathologies. The physiological role of cardiac glycophagy is unclear. Exercise induces transient cardiac glycogen accumulation. Thus, this study experimentally examined glycophagy involvement during recovery from an exhaustive exercise protocol. Peak myocardial glycogen accumulation in mice was evident at 2 h post-exercise, preceded by transient activation of glycogen synthase. At 4 and 16 h post-exercise, glycogen degradation was associated with decreased STBD1 (glycophagy tagging protein) and increased GABARAPL1 (Atg8 protein), suggesting that glycophagy activity was increased. These findings provide the first evidence that glycophagy is involved in cardiac glycogen physiologic homeostasis post-exercise.
Collapse
|
|
1 |
|
19
|
Baudu T, Parratte C, Perez V, Ancion M, Millevoi S, Hervouet E, Peigney A, Peixoto P, Overs A, Herfs M, Fraichard A, Guittaut M, Baguet A. The NMD Pathway Regulates GABARAPL1 mRNA during the EMT. Biomedicines 2021; 9:biomedicines9101302. [PMID: 34680418 PMCID: PMC8533616 DOI: 10.3390/biomedicines9101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
EMT is a reversible cellular process that is linked to gene expression reprogramming, which allows for epithelial cells to undergo a phenotypic switch to acquire mesenchymal properties. EMT is associated with cancer progression and cancer therapeutic resistance and it is known that, during the EMT, many stress response pathways, such as autophagy and NMD, are dysregulated. Therefore, our goal was to study the regulation of ATG8 family members (GABARAP, GABARAPL1, LC3B) by the NMD and to identify molecular links between these two cellular processes that are involved in tumor development and metastasis formation. IHC experiments, which were conducted in a cohort of patients presenting lung adenocarcinomas, showed high GABARAPL1 and low UPF1 levels in EMT+ tumors. We observed increased levels of GABARAPL1 correlated with decreased levels of NMD factors in A549 cells in vitro. We then confirmed that GABARAPL1 mRNA was indeed targeted by the NMD in a 3′UTR-dependent manner and we identified four overlapping binding sites for UPF1 and eIF4A3 that are potentially involved in the recognition of this transcript by the NMD pathway. Our study suggests that 3′UTR-dependent NMD might be an important mechanism that is involved in the induction of autophagy and could represent a promising target in the development of new anti-cancer therapies.
Collapse
|
|
4 |
|
20
|
Huang X, Zhou L, Chen J, Zhang S. Targeting GABARAPL1/HIF-2a axis to induce tumor cell apoptosis in nasopharyngeal carcinoma. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:157-164. [PMID: 38234672 PMCID: PMC10790296 DOI: 10.22038/ijbms.2023.72952.15863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 01/19/2024]
Abstract
Objectives The primary gene mutations associated with nasopharyngeal carcinoma (NPC) are located within the phosphoinositide 3-kinase-mammalian target of rapamycin signaling pathways, which have inhibitory effects on autophagy. Compounds that target autophagy could potentially be used to treat NPC. However, autophagy-related molecular targets in NPC remain to be elucidated. We aimed to examine levels of autophagy-related genes, including autophagy-related 4B cysteine peptidase (ATG4B) and gamma-aminobutyric acid (GABA) type A receptor-associated protein-like 1 (GABARAPL1), in NPC cells and explored their potential role as novel targets for the treatment of NPC. Materials and Methods The mRNA and protein expression of autophagy-related genes were detected in several NPC cells. Levels of GABARAPL1 were modified by either overexpression or knockdown, followed by examining downstream targets using RT-qPCR and western blotting. The role of GABARAPL1 in NPC proliferation and apoptosis was examined by flow cytometry. Furthermore, the role of GABARAPL1 was assessed in vivo using a nude mouse xenograft tumor model. The underlying mechanism by which GABARAPL1 regulated nasopharyngeal tumor growth was investigated. Results Autophagy-related 4B cysteine peptidase (ATG4B), GABARAPL1, and Unc-51-like kinase 1 (ULK1) were significantly down-regulated in multiple NPC cell lines. Overexpression of GABARAPL1 up-regulated the expression of autophagy-related proteins, decreased the level of hypoxia-inducible factor (HIF)-2α, and induced apoptosis in NPC cells. Importantly, overexpression of GABARAPL1 slowed tumor growth. Western blotting showed that autophagy was activated, and HIF-2α was down-regulated in tumor tissues. Conclusion HIF-2α, as a substrate for autophagic degradation, may play an interesting role during NPC progression.
Collapse
|
research-article |
1 |
|
21
|
Zhang Y, Sun Y, Shi J, Xu P, Wang Y, Liu J, Gong X, Wang Y, Tang Y, Liu H, Zhou X, Lin Z, Baba O, Morita T, Yu B, Pan L. Decoding the molecular mechanism of selective autophagy of glycogen mediated by autophagy receptor STBD1. Proc Natl Acad Sci U S A 2024; 121:e2402817121. [PMID: 39236246 PMCID: PMC11406230 DOI: 10.1073/pnas.2402817121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Autophagy of glycogen (glycophagy) is crucial for the maintenance of cellular glucose homeostasis and physiology in mammals. STBD1 can serve as an autophagy receptor to mediate glycophagy by specifically recognizing glycogen and relevant key autophagic factors, but with poorly understood mechanisms. Here, we systematically characterize the interactions of STBD1 with glycogen and related saccharides, and determine the crystal structure of the STBD1 CBM20 domain with maltotetraose, uncovering a unique binding mode involving two different oligosaccharide-binding sites adopted by STBD1 CBM20 for recognizing glycogen. In addition, we demonstrate that the LC3-interacting region (LIR) motif of STBD1 can selectively bind to six mammalian ATG8 family members. We elucidate the detailed molecular mechanism underlying the selective interactions of STBD1 with ATG8 family proteins by solving the STBD1 LIR/GABARAPL1 complex structure. Importantly, our cell-based assays reveal that both the STBD1 LIR/GABARAPL1 interaction and the intact two oligosaccharide binding sites of STBD1 CBM20 are essential for the effective association of STBD1, GABARAPL1, and glycogen in cells. Finally, through mass spectrometry, biochemical, and structural modeling analyses, we unveil that STBD1 can directly bind to the Claw domain of RB1CC1 through its LIR, thereby recruiting the key autophagy initiation factor RB1CC1. In all, our findings provide mechanistic insights into the recognitions of glycogen, ATG8 family proteins, and RB1CC1 by STBD1 and shed light on the potential working mechanism of STBD1-mediated glycophagy.
Collapse
|
|
1 |
|
22
|
Meng J, Xu L, Ma B, Hao C, Guo Y, Wang J, Chen J. GABARAPL1 is essential for ACR-induced autophagic cell death of mouse Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117426. [PMID: 39626489 DOI: 10.1016/j.ecoenv.2024.117426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Acrylamide (ACR), a chemical extensively utilized in industry and food processing sectors, has been recognized for its potentially irreversible adverse effect on male reproductive system; however, the underlying mechanism remains elusive. Our study reveals that ACR markedly triggers oxidative stress-mediated autophagy and upregulates the expression of GABAA-receptor-associated protein like-1 (GABARAPL1). Intriguingly, overexpression of GABARAPL1 significantly induces autophagy, while its knockdown alleviates ACR-induced autophagic responses, underscoring its pivotal function. Furthermore, we demonstrate that transcription factors cAMP response element-binding protein 1 (CREB1) and POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) synergistically enhance Gabarapl1 gene transcription by interacting with its promoter region, contributing to ACR-induced autophagy in mouse Leydig cells. Notably, our findings suggest a reciprocal regulation between PATZ1 and CREB1. This study suggests the critical role of GABARAPL1 in ACR-induced autophagy of mouse Leydig cells, shedding light on the underlying mechanism of ACR-caused male reproductive impairment.
Collapse
|
|
1 |
|
23
|
Li J, Oh SI, Liu C, Zhao B. Inhibition of GABARAP or GABARAPL1 prevents aminoglycoside- induced hearing loss. Proc Natl Acad Sci U S A 2025; 122:e2416453122. [PMID: 39928869 PMCID: PMC11848329 DOI: 10.1073/pnas.2416453122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/06/2025] [Indexed: 02/12/2025] Open
Abstract
Aminoglycosides (AGs) are highly potent, broad-spectrum antibiotics frequently used as first-line treatments for multiple life-threatening infections. Despite their severe ototoxicity, causing irreversible hearing loss in millions of people annually, no preventive therapy has been approved. We previously reported that GABARAP and several other central autophagy proteins are essential for AG-induced hearing loss. This finding opens avenues for the rational design and development of inhibitors that selectively target proteins in this pathway, thereby mitigating AG ototoxicity. In this study, we generated a mouse model with a targeted deletion of GABARAPL1, a homolog of GABARAP, and another model deficient in both GABARAP and GABARAPL1. We found that normal hearing is unaffected by the depletion of these proteins. Remarkably, both proteins are essential for AG-induced hearing loss, with GABARAP playing a more significant role. To further explore the therapeutic potential, we designed and validated short hairpin RNAs targeting the mouse and human GABARAP gene. By inhibiting GABARAP expression in inner ear hair cells using adeno-associated virus-mediated RNA interference, we successfully prevented AG-induced hair cell death and subsequent hearing loss. Our findings underscore the critical role of GABARAP in AG ototoxicity and highlight its potential as a therapeutic target for preventing AG-induced hearing loss.
Collapse
|
research-article |
1 |
|
24
|
Zhang C, Wu S. ZNF197-AS1/miR-425/ GABARAPL1 axis: a novel regulatory mechanism in uveal melanoma. Am J Physiol Cell Physiol 2024; 327:C1638-C1650. [PMID: 39308299 PMCID: PMC11774234 DOI: 10.1152/ajpcell.00457.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 12/10/2024]
Abstract
This study investigates the role of the long noncoding RNA (lncRNA) ZNF197-AS1 in uveal melanoma (UM), focusing on its function within a competing endogenous RNA (ceRNA) network. Using the UM-related TCGA (The Cancer Genome Atlas) dataset, we analyzed the expression levels of ZNF197-AS1 and its correlation with miR-425 and GABARAPL1, an essential autophagy-related gene. Our analysis revealed that ZNF197-AS1 acts as a ceRNA by competitively binding to miR-425, resulting in the upregulation of GABARAPL1. This interaction plays a crucial role in the growth and metastasis of UM. The expression of GABARAPL1 showed a strong correlation with the clinical outcomes of patients with UM. Furthermore, in vitro assays confirmed that ZNF197-AS1 impedes UM cell proliferation, migration, and invasion by modulating the miR-425/GABARAPL1 axis. These findings suggest that ZNF197-AS1 can effectively inhibit UM progression through this ceRNA regulatory network. This study provides valuable insights into the molecular mechanisms underlying UM and highlights the potential of targeting the ZNF197-AS1/miR-425/GABARAPL1 axis as a therapeutic strategy for UM.NEW & NOTEWORTHY This study identifies the ZNF197-AS1/miR-425/GABARAPL1 axis as a novel regulatory mechanism in uveal melanoma. ZNF197-AS1 upregulates GABARAPL1 by sponging miR-425, inhibiting UM cell proliferation, migration, and invasion. This discovery highlights a potential therapeutic target, providing new insights into UM progression and patient outcomes.
Collapse
|
research-article |
1 |
|
25
|
Guo H, Li Y, Wang S, Yang Y, Xu T, Zhao J, Wang J, Zuo W, Wang P, Zhao G, Wang H, Hou W, Dong H, Cai Y. Dysfunction of astrocytic glycophagy exacerbates reperfusion injury in ischemic stroke. Redox Biol 2024; 74:103234. [PMID: 38861834 PMCID: PMC11215420 DOI: 10.1016/j.redox.2024.103234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Glycophagy has evolved from an alternative glycogen degradation pathway into a multifaceted pivot to regulate cellular metabolic hemostasis in peripheral tissues. However, the pattern of glycophagy in the brain and its potential therapeutic impact on ischemic stroke remain unknown. Here, we observed that the dysfunction of astrocytic glycophagy was caused by the downregulation of the GABA type A receptor-associated protein like 1 (GABARAPL1) during reperfusion in ischemic stroke patients and mice. PI3K-Akt pathway activation is involved in driving GABARAPL1 downregulation during cerebral reperfusion. Moreover, glycophagy dysfunction-induced glucosamine deficiency suppresses the nuclear translocation of specificity protein 1 and TATA binding protein, the transcription factors for GABARAPL1, by decreasing their O-GlcNAcylation levels, and accordingly feedback inhibits GABARAPL1 in astrocytes during reperfusion. Restoring astrocytic glycophagy by overexpressing GABARAPL1 decreases DNA damage and oxidative injury in astrocytes and improves the survival of surrounding neurons during reperfusion. In addition, a hypocaloric diet in the acute phase after cerebral reperfusion can enhance astrocytic glycophagic flux and accelerate neurological recovery. In summary, glycophagy in the brain links autophagy, metabolism, and epigenetics together, and glycophagy dysfunction exacerbates reperfusion injury after ischemic stroke.
Collapse
|
research-article |
1 |
|