1
|
Akram H, Dayal V, Mahlknecht P, Georgiev D, Hyam J, Foltynie T, Limousin P, De Vita E, Jahanshahi M, Ashburner J, Behrens T, Hariz M, Zrinzo L. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin 2018; 18:130-142. [PMID: 29387530 PMCID: PMC5790021 DOI: 10.1016/j.nicl.2018.01.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/23/2017] [Accepted: 01/13/2018] [Indexed: 02/02/2023]
Abstract
The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.
Collapse
Key Words
- AC, anterior commissure
- BEDPOSTX, Bayesian estimation of diffusion parameters obtained using sampling techniques X
- BET, brain extraction tool
- CI, confidence interval
- CON, connectivity
- Connectivity
- DBS
- DBS, deep brain stimulation
- DF, degrees of freedom
- DICOM, digital imaging and communications in medicine
- DRT
- DWI
- DWI, diffusion weighted imaging
- Deep brain stimulation
- Dentate nucleus
- Dentato-rubro-thalamic tract
- Diffusion weighted imaging
- EV, explanatory variable
- FLIRT, FMRIB's linear image registration tool
- FMRIB, Oxford centre for functional MRI of the brain
- FNIRT, FMRIB's non-linear image registration tool
- FSL, FMRIB's software library
- FoV, field of view
- GLM, general linear model
- HARDI, high angular resolution diffusion imaging
- HFS, high frequency stimulation
- IPG, implantable pulse generator
- LC, Levodopa challenge
- LEDD, l-DOPA equivalent daily dose
- M1, primary motor cortex
- MMS, mini-mental score
- MNI, Montreal neurological institute
- MPRAGE, magnetization-prepared rapid gradient-echo
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- NHNN, National Hospital for Neurology and Neurosurgery
- NIfTI, neuroimaging informatics technology initiative
- PC, posterior commissure
- PD
- PFC, prefrontal cortex
- PMC, premotor cortex
- Parkinson's disease
- S1, primary sensory cortex
- SAR, specific absorption rate
- SD, standard deviation
- SE, standard error
- SMA, supplementary motor area
- SNR, signal-to-noise ratio
- SSEPI, single-shot echo planar imaging
- STN, subthalamic nucleus
- TFCE, threshold-free cluster enhancement
- TMS, transcranial magnetic stimulation
- Tremor
- UPDRS, unified Parkinson's disease rating scale
- VBM, voxel based morphometry
- VIM
- VL
- VL, ventral lateral
- VP, ventral posterior
- VTA, volume of tissue activated
- Ventrointermedialis
- Ventrolateral nucleus
- cZI, caudal zona incerta
Collapse
|
research-article |
7 |
135 |
2
|
Arnold C, Gehrig J, Gispert S, Seifried C, Kell CA. Pathomechanisms and compensatory efforts related to Parkinsonian speech. Neuroimage Clin 2013; 4:82-97. [PMID: 24319656 PMCID: PMC3853351 DOI: 10.1016/j.nicl.2013.10.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022]
Abstract
Voice and speech in Parkinson's disease (PD) patients are classically affected by a hypophonia, dysprosody, and dysarthria. The underlying pathomechanisms of these disabling symptoms are not well understood. To identify functional anomalies related to pathophysiology and compensation we compared speech-related brain activity and effective connectivity in early PD patients who did not yet develop voice or speech symptoms and matched controls. During fMRI 20 PD patients ON and OFF levodopa and 20 control participants read 75 sentences covertly, overtly with neutral, or with happy intonation. A cue-target reading paradigm allowed for dissociating task preparation from execution. We found pathologically reduced striato-prefrontal preparatory effective connectivity in early PD patients associated with subcortical (OFF state) or cortical (ON state) compensatory networks. While speaking, PD patients showed signs of diminished monitoring of external auditory feedback. During generation of affective prosody, a reduced functional coupling between the ventral and dorsal striatum was observed. Our results suggest three pathomechanisms affecting speech in PD: While diminished energization on the basis of striato-prefrontal hypo-connectivity together with dysfunctional self-monitoring mechanisms could underlie hypophonia, dysarthria may result from fading speech motor representations given that they are not sufficiently well updated by external auditory feedback. A pathological interplay between the limbic and sensorimotor striatum could interfere with affective modulation of speech routines, which affects emotional prosody generation. However, early PD patients show compensatory mechanisms that could help improve future speech therapies.
Collapse
Key Words
- AC, auditory cortex
- CN, caudate nucleus
- COMT, catechol-O-methyltransferase
- CON, control participant
- DAT1, dopamine transporter
- DLPFC, dorsolateral prefrontal cortex
- Dysarthria
- Dysarthrophonia
- EPI, echo-planar imaging
- FWE, family-wise error
- Functional MRI
- GLM, general linear model
- HRF, hemodynamic response function
- Hypophonia
- IFG, inferior frontal gyrus
- LSVT, Lee Silverman Voice Treatment
- PD, Parkinson's disease
- PPI, psycho-physiological interaction
- PUT, putamen
- Parkinson's disease
- ROI, region of interest
- SEM, standard error of the mean
- SMA, supplementary motor area
- SPL, superior parietal lobule
- STS, superior temporal sulcus
- SVC, small volume correction
- Speech production
- T, Tesla
- UPDRS, Unified Parkinson's Disease Rating Scale
- dPMC, dorsal premotor cortex
- dstriatum, dorsal striatum
- fMRI, functional magnetic response imaging
- mPFC, medial prefrontal cortex
- vstriatum, ventral striatum
Collapse
|
research-article |
12 |
64 |
3
|
Case M, Zhang H, Mundahl J, Datta Y, Nelson S, Gupta K, He B. Characterization of functional brain activity and connectivity using EEG and fMRI in patients with sickle cell disease. NEUROIMAGE-CLINICAL 2016; 14:1-17. [PMID: 28116239 PMCID: PMC5226854 DOI: 10.1016/j.nicl.2016.12.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/19/2016] [Indexed: 11/29/2022]
Abstract
Sickle cell disease (SCD) is a red blood cell disorder that causes many complications including life-long pain. Treatment of pain remains challenging due to a poor understanding of the mechanisms and limitations to characterize and quantify pain. In the present study, we examined simultaneously recording functional MRI (fMRI) and electroencephalogram (EEG) to better understand neural connectivity as a consequence of chronic pain in SCD patients. We performed independent component analysis and seed-based connectivity on fMRI data. Spontaneous power and microstate analysis was performed on EEG-fMRI data. ICA analysis showed that patients lacked activity in the default mode network (DMN) and executive control network compared to controls. EEG-fMRI data revealed that the insula cortex's role in salience increases with age in patients. EEG microstate analysis showed patients had increased activity in pain processing regions. The cerebellum in patients showed a stronger connection to the periaqueductal gray matter (involved in pain inhibition), and negative connections to pain processing areas. These results suggest that patients have reduced activity of DMN and increased activity in pain processing regions during rest. The present findings suggest resting state connectivity differences between patients and controls can be used as novel biomarkers of SCD pain.
Simultaneous EEG-fMRI recordings revealed altered connectivity in sickle cell patients. Reduced activity observed in default mode network and executive control network. Patients' salience network strength increases with age; opposite seen in controls. EEG-fMRI parameters reflect disease severity in sickle cell patients.
Collapse
Key Words
- BOLD, blood-oxygen-level dependent
- CBA, cardioballistic artifact
- DMN, default mode network
- ECN, executive control network
- EEG
- EEG, electroencephalography
- FDR, false discovery rate
- FWHM, full width at half maximum
- Functional MRI
- GLM, general linear model
- HRF, hemodynamic response function
- ICA, independent component analysis
- MNI, montreal neurological institute
- OBS, optimal basis set
- PAG, periaqueductal gray
- PCA, principal component analysis
- PCC, posterior cingulate cortex
- PFC, prefrontal cortex
- Pain
- ROI, region of interest
- RSN, resting state networks
- Resting state networks
- SCD, sickle cell disease
- SMA, supplementary motor area
- Sickle cell disease
- fMRI, functional magnetic resonance imaging
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
58 |
4
|
Gupta A, Mayer EA, Sanmiguel CP, Van Horn JD, Woodworth D, Ellingson BM, Fling C, Love A, Tillisch K, Labus JS. Patterns of brain structural connectivity differentiate normal weight from overweight subjects. NEUROIMAGE-CLINICAL 2015; 7:506-17. [PMID: 25737959 PMCID: PMC4338207 DOI: 10.1016/j.nicl.2015.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Alterations in the hedonic component of ingestive behaviors have been implicated as a possible risk factor in the pathophysiology of overweight and obese individuals. Neuroimaging evidence from individuals with increasing body mass index suggests structural, functional, and neurochemical alterations in the extended reward network and associated networks. Aim To apply a multivariate pattern analysis to distinguish normal weight and overweight subjects based on gray and white-matter measurements. Methods Structural images (N = 120, overweight N = 63) and diffusion tensor images (DTI) (N = 60, overweight N = 30) were obtained from healthy control subjects. For the total sample the mean age for the overweight group (females = 32, males = 31) was 28.77 years (SD = 9.76) and for the normal weight group (females = 32, males = 25) was 27.13 years (SD = 9.62). Regional segmentation and parcellation of the brain images was performed using Freesurfer. Deterministic tractography was performed to measure the normalized fiber density between regions. A multivariate pattern analysis approach was used to examine whether brain measures can distinguish overweight from normal weight individuals. Results 1. White-matter classification: The classification algorithm, based on 2 signatures with 17 regional connections, achieved 97% accuracy in discriminating overweight individuals from normal weight individuals. For both brain signatures, greater connectivity as indexed by increased fiber density was observed in overweight compared to normal weight between the reward network regions and regions of the executive control, emotional arousal, and somatosensory networks. In contrast, the opposite pattern (decreased fiber density) was found between ventromedial prefrontal cortex and the anterior insula, and between thalamus and executive control network regions. 2. Gray-matter classification: The classification algorithm, based on 2 signatures with 42 morphological features, achieved 69% accuracy in discriminating overweight from normal weight. In both brain signatures regions of the reward, salience, executive control and emotional arousal networks were associated with lower morphological values in overweight individuals compared to normal weight individuals, while the opposite pattern was seen for regions of the somatosensory network. Conclusions 1. An increased BMI (i.e., overweight subjects) is associated with distinct changes in gray-matter and fiber density of the brain. 2. Classification algorithms based on white-matter connectivity involving regions of the reward and associated networks can identify specific targets for mechanistic studies and future drug development aimed at abnormal ingestive behavior and in overweight/obesity.
Multivariate analysis can be used to classify overweight from normal weight individuals. Anatomical connectivity achieved 97% accuracy in the classification algorithm. Greater connectivity was observed in extended reward and somatosensory regions. Morphological gray-matter achieved 69% accuracy in the classification algorithm. Lower morphological values were observed in regions of the extended reward network.
Collapse
Key Words
- ACC, anterior cingulate cortex
- ANOVA, analysis of variance
- Anatomical white-matter connectivity
- BMI, body mass index
- CT, cortical thickness
- Classification algorithm
- DTI, diffusion tensor imaging
- DWI, diffusion-weighted MRIs
- FA, flip angle
- FACT, fiber assignment by continuous tracking
- FDR, false-discovery rate
- FOV, field of view
- GLM, general linear model
- GMV, gray matter volume
- HAD, hospital anxiety and Depression Scale
- HC, healthy control
- MC, mean curvature
- Morphological gray-matter
- Multivariate analysis
- NPV, negative predictive value
- OFG, orbitofrontal gyrus
- Obesity
- Overweight
- PPC, posterior parietal cortex
- PPV, positive predictive value
- Reward network
- SA, surface area
- SPSS, statistical package for the social sciences
- TE, echo time
- TR, repetition time
- VIP, variable importance in projection
- VTA, ventral tegmental area
- aMCC, anterior mid cingulate cortex
- dlPFC, dorsolateral prefrontal cortex
- sPLS-DA, sparse partial least squares for discrimination Analysis
- sgACC, subgenual anterior cingulate cortex
- vmPFC, ventromedial prefrontal cortex
Collapse
|
Research Support, N.I.H., Extramural |
10 |
56 |
5
|
Goodrich JM, Sánchez BN, Dolinoy DC, Zhang Z, Hernández-Ávila M, Hu H, Peterson KE, Téllez-Rojo MM. Quality control and statistical modeling for environmental epigenetics: a study on in utero lead exposure and DNA methylation at birth. Epigenetics 2015; 10:19-30. [PMID: 25580720 DOI: 10.4161/15592294.2014.989077] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA methylation data assayed using pyrosequencing techniques are increasingly being used in human cohort studies to investigate associations between epigenetic modifications at candidate genes and exposures to environmental toxicants and to examine environmentally-induced epigenetic alterations as a mechanism underlying observed toxicant-health outcome associations. For instance, in utero lead (Pb) exposure is a neurodevelopmental toxicant of global concern that has also been linked to altered growth in human epidemiological cohorts; a potential mechanism of this association is through alteration of DNA methylation (e.g., at growth-related genes). However, because the associations between toxicants and DNA methylation might be weak, using appropriate quality control and statistical methods is important to increase reliability and power of such studies. Using a simulation study, we compared potential approaches to estimate toxicant-DNA methylation associations that varied by how methylation data were analyzed (repeated measures vs. averaging all CpG sites) and by method to adjust for batch effects (batch controls vs. random effects). We demonstrate that correcting for batch effects using plate controls yields unbiased associations, and that explicitly modeling the CpG site-specific variances and correlations among CpG sites increases statistical power. Using the recommended approaches, we examined the association between DNA methylation (in LINE-1 and growth related genes IGF2, H19 and HSD11B2) and 3 biomarkers of Pb exposure (Pb concentrations in umbilical cord blood, maternal tibia, and maternal patella), among mother-infant pairs of the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) cohort (n = 247). Those with 10 μg/g higher patella Pb had, on average, 0.61% higher IGF2 methylation (P = 0.05). Sex-specific trends between Pb and DNA methylation (P < 0.1) were observed among girls including a 0.23% increase in HSD11B2 methylation with 10 μg/g higher patella Pb.
Collapse
Key Words
- ANOVA, analysis of variance
- DMR, differentially methylated region
- DNA methylation
- ELEMENT, early life exposures in Mexico to environmental toxicants
- GEE, generalized estimating equation
- GLM, general linear model
- H19, H19, imprinted maternally expressed transcript (non-protein coding)
- HSD11B2, hydroxysteroid (11-β) dehydrogenase 2
- IGF2, insulin-like growth factor 2
- K-XRF, K X-ray fluorescence
- LINE-1, long interspersed element-1
- OLS, ordinary linear regression
- PCR, polymerase chain reaction
- Pb, lead
- environmental exposure
- lead
- pyrosequencing
- quality control
- statistical methods
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
45 |
6
|
Lin J, Lv X, Niu M, Liu L, Chen J, Xie F, Zhong M, Qiu S, Li L, Huang R. Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy. NEUROIMAGE-CLINICAL 2017; 14:610-621. [PMID: 28348952 PMCID: PMC5357686 DOI: 10.1016/j.nicl.2017.02.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 02/02/2017] [Accepted: 02/28/2017] [Indexed: 01/08/2023]
Abstract
Conventional MRI studies showed that radiation-induced brain necrosis in patients with nasopharyngeal carcinoma (NPC) in years after radiotherapy (RT) could involve brain gray matter (GM) and impair brain function. However, it is still unclear the radiation-induced brain morphological changes in NPC patients with normal-appearing GM in the early period after RT. In this study, we acquired high-resolution brain structural MRI data from three groups of patients, 22 before radiotherapy (pre-RT) NPC patients with newly diagnosed but not yet medically treated, 22 NPC patients in the early-delayed stage after radiotherapy (post-RT-ED), and 20 NPC patients in the late-delayed stage after radiotherapy (post-RT-LD), and then analyzed the radiation-induced cortical thickness alteration in NPC patients after RT. Using a vertex-wise surface-based morphometry (SBM) approach, we detected significantly decreased cortical thickness in the precentral gyrus (PreCG) in the post-RT-ED group compared to the pre-RT group. And the post-RT-LD group showed significantly increased cortical thickness in widespread brain regions, including the bilateral inferior parietal, left isthmus of the cingulate, left bank of the superior temporal sulcus and left lateral occipital regions, compared to the pre-RT group, and in the bilateral PreCG compared to the post-RT-ED group. Similar analysis with ROI-wise SBM method also found the consistent results. These results indicated that radiation-induced brain injury mainly occurred in the post-RT-LD group and the cortical thickness alterations after RT were dynamic in different periods. Our findings may reflect the pathogenesis of radiation-induced brain injury in NPC patients with normal-appearing GM and an early intervention is necessary for protecting GM during RT.
Collapse
Key Words
- 2D-CRT, conventional two-dimensional radiotherapy
- AJCC, American Joint Committee on Cancer
- ANOVA, analysis of variance
- Brain injury
- CMBs, cerebral microbleeds
- CT, cortical thickness
- Cortical thickness
- DMN, default mode network
- FDR, false discovery rate
- FWHM, full width at half maximum
- GLM, general linear model
- GM, gray matter
- ICC, isthmus of the cingulate cortex
- IMRT, intensity-modulated radiation therapy
- IPC, inferior parietal cortex
- KPS, Karnofsky performance status scale
- LOC, lateral occipital cortex
- MTC, middle temporal cortex
- NPC, nasopharyngeal carcinoma
- PoCG, postcentral gyrus
- PreCG, precentral gyrus
- PreCUN, precuneus
- RA, relative alteration
- RT, radiotherapy
- Radiotherapy
- SBM, surface-based morphometry
- STC, superior temporal cortex
- Structural MRI
- Surface-based morphometry
- VBM, voxel-based morphometry
- WM, white matter
- bSTS, bank of the superior temporal sulcus
- cMFC, caudal middle frontal cortex
- post-RT-ED, in the early-delayed stage after radiotherapy
- post-RT-LD, in the late-delayed stage after radiotherapy
- pre-RT, before radiotherapy
Collapse
|
Journal Article |
8 |
39 |
7
|
Hagemeier J, Ramanathan M, Schweser F, Dwyer MG, Lin F, Bergsland N, Weinstock-Guttman B, Zivadinov R. Iron-related gene variants and brain iron in multiple sclerosis and healthy individuals. NEUROIMAGE-CLINICAL 2017; 17:530-540. [PMID: 29201641 PMCID: PMC5699896 DOI: 10.1016/j.nicl.2017.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/14/2022]
Abstract
Brain iron homeostasis is known to be disturbed in multiple sclerosis (MS), yet little is known about the association of common gene variants linked to iron regulation and pathological tissue changes in the brain. In this study, we investigated the association of genetic determinants linked to iron regulation with deep gray matter (GM) magnetic susceptibility in both healthy controls (HC) and MS patients. Four hundred (400) patients with MS and 150 age- and sex-matched HCs were enrolled and obtained 3 T MRI examination. Three (3) single nucleotide polymorphisms (SNPs) associated with iron regulation were genotyped: two SNPs in the human hereditary hemochromatosis protein gene HFE: rs1800562 (C282Y mutation) and rs1799945 (H63D mutation), as well as the rs1049296 SNP in the transferrin gene (C2 mutation). The effects of disease and genetic status were studied using quantitative susceptibility mapping (QSM) voxel-based analysis (VBA) and region-of-interest (ROI) analysis of the deep GM. The general linear model framework was used to compare groups. Analyses were corrected for age and sex, and adjusted for false discovery rate. We found moderate increases in susceptibility in the right putamen of participants with the C282Y (+ 6.1 ppb) and H63D (+ 6.9 ppb) gene variants vs. non-carriers, as well as a decrease in thalamic susceptibility of progressive MS patients with the C282Y mutation (left: − 5.3 ppb, right: − 6.7 ppb, p < 0.05). Female MS patients had lower susceptibility in the caudate (− 6.0 ppb) and putamen (left: − 3.9 ppb, right: − 4.6 ppb) than men, but only when they had a wild-type allele (p < 0.05). Iron-gene linked increases in putamen susceptibility (in HC and relapsing remitting MS) and decreases in thalamus susceptibility (in progressive MS), coupled with apparent sex interactions, indicate that brain iron in healthy and disease states may be influenced by genetic factors.
Magnetic susceptibility and common gene variants linked to iron were investigated. The C282Y and H63D alleles were associated with putamen and thalamus susceptibility changes. Dependent on allele status, men and women differed in deep GM susceptibility in MS.
Collapse
Key Words
- EDSS, Expanded Disability Status Scale
- FDR, false discovery rate
- FWE, family-wise error rate
- GLM, general linear model
- GM, gray matter
- GRE, gradient recalled echo
- HC, healthy control
- HFE, human hemochromatosis gene
- Iron
- Iron related genes
- MS, multiple sclerosis
- MSSS, multiple sclerosis severity scale
- Multiple sclerosis
- QSM
- QSM, quantitative susceptibility mapping
- Quantitative susceptibility mapping
- ROI, region of interest
- RRMS, relapsing-remitting multiple sclerosis
- SNP, single nucleotide polymorphism
- T1w, T1-weighted
- TF, transferrin
- TFCE, threshold-free cluster enhancement
- VBA, voxel-based analysis
- ppb, parts per billion
Collapse
|
Journal Article |
8 |
35 |
8
|
Kvamme TL, Schmidt C, Strelchuk D, Chang-Webb YC, Baek K, Voon V. Sexually dimorphic brain volume interaction in college-aged binge drinkers. Neuroimage Clin 2015; 10:310-7. [PMID: 26900571 PMCID: PMC4724035 DOI: 10.1016/j.nicl.2015.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 12/04/2022]
Abstract
BACKGROUND Binge consumption of alcohol is a major societal problem associated with important cognitive, physiological and neurotoxic consequences. Converging evidence highlights the need to assess binge drinking (BD) and its effects on the developing brain while taking into account gender differences. Here, we compared the brain volumetric differences between genders in college-aged binge drinkers and healthy volunteers. METHOD T1-weighted magnetic resonance imaging (MRI) images of 30 binge drinkers (18 males) and 46 matched healthy volunteers (23 males) were examined using voxel-based morphometry. The anatomical scans were covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Whole brain voxel-wise group comparisons were performed using a cluster extent threshold correction. RESULTS Several large clusters qualified with group-by-gender interactions were observed in prefrontal, striatal and medial temporal areas, whereby BD females had more volume than non-BD females, while males showed the inverse pattern of decreased volume in BD males and increased volume in non-BD males. AUDIT scores negatively correlated with volume in the right superior frontal cortex and precentral gyrus. CONCLUSIONS These findings dovetail with previous studies reporting that a state effect of BD in college-aged drinkers and the severity of alcohol use are associated with volumetric alterations in the cortical and subcortical areas of the brain. Our study indicates that these widespread volumetric changes vary differentially by gender, suggesting either sexual dimorphic endophenotypic risk factors, or differential neurotoxic sensitivities for males and females.
Collapse
Key Words
- AAL, Automatic Anatomical Labeling
- AUDIT, Alcohol Use Disorders Identification Test
- AUDs, alcohol-use disorders
- Adolescence
- Alcohol
- BD, binge drinking
- BDI, Beck Depression Inventory
- Binge drinking
- FWE, familywise error
- GLM, general linear model
- Gender
- HV, healthy volunteer
- ICBM, International Consortium for Brain Mapping
- IFG, inferior frontal gyrus
- MNI, Montreal Neurological Institute
- MRI, magnetic resonance imaging
- Magnetic resonance imaging
- NIAAA, National Institute of Alcoholism and Alcohol Abuse
- Neurodevelopment
- PFC, prefrontal cortex
- SPM, Statistical Parametric Mapping
- STAI, Spielberger Trait Anxiety Inventory
- SVCs, small volume corrections
- Striatum
- UPPS-P, UPPS-P Impulsive Behavior
- Voxel-based morphometry
- WBIC, Wolfson Brain Imaging Center
Collapse
|
research-article |
10 |
34 |
9
|
Desbordes G, Li A, Loggia ML, Kim J, Schalock PC, Lerner E, Tran TN, Ring J, Rosen BR, Kaptchuk TJ, Pfab F, Napadow V. Evoked itch perception is associated with changes in functional brain connectivity. NEUROIMAGE-CLINICAL 2014; 7:213-21. [PMID: 25610783 PMCID: PMC4300003 DOI: 10.1016/j.nicl.2014.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/28/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Abstract
Chronic itch, a highly debilitating condition, has received relatively little attention in the neuroimaging literature. Recent studies suggest that brain regions supporting itch in chronic itch patients encompass sensorimotor and salience networks, and corticostriatal circuits involved in motor preparation for scratching. However, how these different brain areas interact with one another in the context of itch is still unknown. We acquired BOLD fMRI scans in 14 atopic dermatitis patients to investigate resting-state functional connectivity before and after allergen-induced itch exacerbated the clinical itch perception in these patients. A seed-based analysis revealed decreased functional connectivity from baseline resting state to the evoked-itch state between several itch-related brain regions, particularly the insular and cingulate cortices and basal ganglia, where decreased connectivity was significantly correlated with increased levels of perceived itch. In contrast, evoked itch increased connectivity between key nodes of the frontoparietal control network (superior parietal lobule and dorsolateral prefrontal cortex), where higher increase in connectivity was correlated with a lesser increase in perceived itch, suggesting that greater interaction between nodes of this executive attention network serves to limit itch sensation via enhanced top-down regulation. Overall, our results provide the first evidence of itch-dependent changes in functional connectivity across multiple brain regions.
Atopic dermatitis patients were subjected to allergen-induced itch. Evoked itch reduced functional connectivity between itch-related brain regions. Evoked itch increased functional connectivity within frontoparietal control network. The above changes in functional connectivity correlated with perceived itch level. Itch sensation may be top-down regulated by frontoparietal control network.
Collapse
Key Words
- AD, atopic dermatitis
- ASL, arterial spin labeling
- Atopic dermatitis
- BA, Brodmann area
- BOLD, blood-oxygen-level dependent
- DMN, default mode network
- ECG, electrocardiography
- Eczema
- GLM, general linear model
- ITCH, evoked itch resting-state scan
- Insula
- L, left
- MNI, Montreal Neurological Institute
- MR, magnetic resonance
- PCC, posterior cingulate cortex
- PET, positron emission tomography
- PMC, premotor cortex
- Pruritus
- Putamen
- R, right
- REST, baseline resting-state scan
- S1/M1, primary sensorimotor cortex
- SCORAD, SCORing atopic dermatitis scale
- SPL, Superior parietal lobule
- VAS, visual analog scale
- aMCC, anterior mid-cingulate cortex
- dlPFC, dorsolateral prefrontal cortex
- fMRI, functional magnetic resonance imaging
- fcMRI, functional connectivity magnetic resonance imaging
- pMCC, posterior mid-cingulate cortex
- vlPFC, ventrolateral prefrontal cortex.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
33 |
10
|
Manning KE, Tait R, Suckling J, Holland AJ. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults. NEUROIMAGE-CLINICAL 2017. [PMID: 29527494 PMCID: PMC5842730 DOI: 10.1016/j.nicl.2017.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19–27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of myelin content using magnetisation transfer saturation indicated that myelination of the cortex was broadly similar in the PWS and control groups, with the exception of highly localised areas, including the insula. The bilateral nature of these abnormalities suggests a systemic biological cause, with possible developmental and maturational mechanisms discussed, and may offer insight into the contribution of imprinted genes to neural development.
Twenty young adults with PWS and forty age and sex-matched control participants underwent multiparameter mapping MRI. Large and widespread bilateral clusters of both increased and decreased grey matter volume were identified in PWS. Volumetric increases in PWS were largely driven by greater cortical thickness. Myelination of the cortex in PWS was broadly similar to the typically-developing control group. Potential developmental and maturational explanations are considered, including insights into the of the role of imprinted genes.
Collapse
Key Words
- ACC, anterior cingulate cortex
- ANTS, Advanced Normalisation Tools Software
- BMI, body mass index
- CamBA, Cambridge Brain Analysis software
- Cortical thickness
- FA, flip angle
- GLM, general linear model
- GM, grey matter
- Genomic imprinting
- Grey matter
- IQ, intelligence quotient
- MPM, multiparameter mapping
- MRI, magnetic resonance imaging
- MT, magnetisation transfer
- Multiparameter mapping
- Myelination
- NHS, National Health Service
- NSPN, NeuroScience in Psychiatry Network
- OFC, orbitofrontal cortex
- PD, proton density
- PFC, prefrontal cortex
- PWS, Prader-Willi syndrome
- PWSA UK, Prader-Willi Syndrome Association UK
- Prader-Willi syndrome
- TE, echo time
- TIV, total intracranial volume
- TR, repetition time
- UPD, uniparental disomy
- WM, white matter
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
25 |
11
|
Schwarz NF, Nordstrom LK, Pagen LHG, Palombo DJ, Salat DH, Milberg WP, McGlinchey RE, Leritz EC. Differential associations of metabolic risk factors on cortical thickness in metabolic syndrome. NEUROIMAGE-CLINICAL 2017; 17:98-108. [PMID: 29062686 PMCID: PMC5641920 DOI: 10.1016/j.nicl.2017.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022]
Abstract
Objective Metabolic syndrome (MetS) refers to a cluster of risk factors for cardiovascular disease, including obesity, hypertension, dyslipidemia, and hyperglycemia. While sizable prior literature has examined associations between individual risk factors and quantitative measures of cortical thickness (CT), only very limited research has investigated such measures in MetS. Furthermore, the relative contributions of these risk factors to MetS-related effects on brain morphology have not yet been studied. The primary goal of this investigation was to examine how MetS may affect CT. A secondary goal was to explore the relative contributions of individual risk factors to regional alterations in CT, with the potential to identify risk factor combinations that may underlie structural changes. Methods Eighteen participants with MetS (mean age = 59.78 years) were age-matched with 18 healthy control participants (mean age = 60.50 years). CT measures were generated from T1-weighted images and groups were contrasted using whole-brain general linear modeling. A follow-up multivariate partial least squares correlation (PLS) analysis, including the full study sample with complete risk factor measurements (N = 53), was employed to examine which risk factors account for variance in group structural differences. Results Participants with MetS demonstrated significantly reduced CT in left hemisphere inferior parietal, rostral middle frontal, and lateral occipital clusters and in a right hemisphere precentral cluster. The PLS analysis revealed that waist circumference, high-density lipoprotein cholesterol (HDL-C), triglycerides, and glucose were significant contributors to reduced CT in these clusters. In contrast, diastolic blood pressure showed a significantly positive association with CT while systolic blood pressure did not emerge as a significant contributor. Age was not associated with CT. Conclusion These results indicate that MetS can be associated with regionally specific reductions in CT. Importantly, a novel link between a risk factor profile comprising indices of obesity, hyperglycemia, dyslipidemia and diastolic BP and localized alterations in CT emerged. While the pathophysiological mechanisms underlying these associations remain incompletely understood, these findings may be relevant for future investigations of MetS and might have implications for treatment approaches that focus on specific risk factor profiles with the aim to reduce negative consequences on the structural integrity of the brain.
Cortical thickness is reduced bilaterally in metabolic syndrome. Five out of six risk factor components contribute to altered cortical thickness. Particular risk factor combination may be an important target for intervention.
Collapse
|
Journal Article |
8 |
25 |
12
|
Adamczyk P, Wyczesany M, Domagalik A, Daren A, Cepuch K, Błądziński P, Cechnicki A, Marek T. Neural circuit of verbal humor comprehension in schizophrenia - an fMRI study. Neuroimage Clin 2017; 15:525-540. [PMID: 28652967 PMCID: PMC5473647 DOI: 10.1016/j.nicl.2017.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/03/2017] [Accepted: 06/01/2017] [Indexed: 11/17/2022]
Abstract
Individuals with schizophrenia exhibit problems with understanding the figurative meaning of language. This study evaluates neural correlates of diminished humor comprehension observed in schizophrenia. The study included chronic schizophrenia (SCH) outpatients (n = 20), and sex, age and education level matched healthy controls (n = 20). The fMRI punchline based humor comprehension task consisted of 60 stories of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible and how funny it was. Three contrasts were analyzed in both groups reflecting stages of humor processing: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution and elaboration; and funny vs neutral - complete humor processing. Additionally, parametric modulation analysis was performed using both subjective ratings separately. Between-group comparisons revealed that the SCH subjects had attenuated activation in the right posterior superior temporal gyrus (BA 41) in case of irresolvable incongruity processing of nonsensical puns; in the left dorsomedial middle and superior frontal gyri (BA 8/9) in case of incongruity resolution and elaboration processing of funny puns; and in the interhemispheric dorsal anterior cingulate cortex (BA 24) in case of complete processing of funny puns. Additionally, during comprehensibility ratings the SCH group showed a suppressed activity in the left dorsomedial middle and superior frontal gyri (BA 8/9) and revealed weaker activation during funniness ratings in the left dorsal anterior cingulate cortex (BA 24). Interestingly, these differences in the SCH group were accompanied behaviorally by a protraction of time in both types of rating responses and by indicating funny punchlines less comprehensible. Summarizing, our results indicate neural substrates of humor comprehension processing impairments in schizophrenia, which is accompanied by fronto-temporal hypoactivation.
Collapse
Key Words
- ABS, absurd/nonsensical punchline
- ACC, anterior cingulate cortex
- BA, Brodmann's area
- CON, healthy controls/control group
- Communication skills
- EEG, electroencephalography
- ERPs, EEG event-related potentials
- FDR, False Discovery Rate
- FUN, funny punchline
- FWHM, full-width-at-half-maximum
- Figurative meaning
- Functional magnetic resonance imaging
- GLM, general linear model
- Humor
- IFG, inferior frontal gyrus
- IPL, Inferior Parietal Lobule
- ISI, interstimulus-interval
- L, left hemisphere
- MFG, medial frontal gyrus
- MNI, Montreal Neurological Institute coordinates
- MOG, middle occipital gyrus
- MRI, magnetic resonance imaging
- MTG, middle temporal gyrus
- MoCA, Montreal Cognitive Assessment
- NEU, neutral/unfunny punchline
- PANSS, Positive and Negative Syndrome Scale
- PFC, prefrontal cortex
- R, right hemisphere
- RHLB, Right Hemisphere Language Battery
- RT, reaction time
- SCH, schizophrenia outpatients/clinical group
- SD, standard deviations
- SEM, standard error of the mean
- SFG, Superior Frontal Gyrus
- SOA, stimulus onset asynchrony
- STG, superior temporal gyrus
- Schizophrenia
- TP, temporal pole
- TPJ, temporoparietal junction
- ToM, theory of mind.
- dACC, dorsal anterior cingulate cortex
- dlPFC, dorsolateral prefrontal cortex
- dmMFG, dorsomedial Middle Frontal Gyrus
- fMRI, functional magnetic resonance imaging
- fNIRS, functional near-infrared spectroscopy
- k, number of voxels in analyzed cluster size
- ns, non-significant group difference
- pSTG, posterior Superior Temporal Gyrus
- sLORETA, standardized low resolution brain electromagnetic tomography analysis
Collapse
|
research-article |
8 |
23 |
13
|
Differences between men and women in dietary intakes and metabolic profile in response to a 12-week nutritional intervention promoting the Mediterranean diet. J Nutr Sci 2015; 4:e13. [PMID: 26090094 PMCID: PMC4463935 DOI: 10.1017/jns.2015.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/27/2014] [Accepted: 12/15/2014] [Indexed: 01/22/2023] Open
Abstract
Few studies have compared men and women in response to nutritional interventions but none
has assessed differences between men and women in the response to a nutritional
intervention programme based on the self-determination theory (SDT) and using the
Mediterranean diet (MedDiet) as a model of healthy eating, in a context of CVD prevention
and within a non-Mediterranean population. The present study aimed to document differences
between men and women in changes in dietary, anthropometric and metabolic variables, in
response to a nutritional intervention programme promoting the adoption of the MedDiet and
based on the SDT. A total of sixty-four men and fifty-nine premenopausal women presenting
risk factors for CVD were recruited through different media advertisements in the Québec
City Metropolitan area (Canada). The 12-week nutritional programme used a motivational
interviewing approach and included individual and group sessions. A validated FFQ was
administered to evaluate dietary intakes from which a Mediterranean score (Medscore) was
derived. Both men and women significantly increased their Medscore in response to the
intervention (P < 0·0001). Men showed a significantly greater
decrease in red and processed meat (−0·4 (95 % CI −0·7, −0·1) portions per d) and a
greater increase in fruit (0·9 (95 % CI 0·2, 1·6) portions per d) intakes than women.
Significant decreases were observed for BMI and waist circumference in both men and women
(P ≤ 0·04). Significant greater decreases were found for total
cholesterol (total-C):HDL-cholesterol (HDL-C) (−0·2; 95 % CI −0·4, −0·03) and TAG:HDL-C
(−0·2; 95 % CI −0·4, −0·04) ratios in men than in women. When adjusting for the baseline
value of the response variable, differences between men and women became non-significant
for red and processed meat and fruit intakes whereas significant differences between men
and women (i.e. larger increases in men than women) were observed for legumes, nuts and
seeds (0·6 (95 % CI 0·2, 1·0) portions per d) and whole-grain products (0·5 (95 % CI 0·01,
1·0) portions per d) intakes. For metabolic variables, differences between men and women
became non-significant for total-C:HDL-C and TAG:HDL-C ratios when adjusted for the
baseline value of the response variable. The present results suggest that the nutritional
intervention promoting the adoption of the Mediterranean diet and based on the SDT led to
greater improvements in dietary intakes in men than in women, which appear to have
contributed to beneficial anthropometric and metabolic changes, more particularly in men.
However, the more deteriorated metabolic profile found in men at baseline seems to
contribute to a large extent to the more beneficial changes in CVD risk factors observed
in men as compared with women.
Collapse
|
Journal Article |
10 |
20 |
14
|
Löfgren M, Sandström A, Bileviciute-Ljungar I, Mannerkorpi K, Gerdle B, Ernberg M, Fransson P, Kosek E. The effects of a 15-week physical exercise intervention on pain modulation in fibromyalgia: Increased pain-related processing within the cortico-striatal- occipital networks, but no improvement of exercise-induced hypoalgesia. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100114. [PMID: 36660198 PMCID: PMC9843267 DOI: 10.1016/j.ynpai.2023.100114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Dysfunctional top-down pain modulation is a hallmark of fibromyalgia (FM) and physical exercise is a cornerstone in FM treatment. The aim of this study was to explore the effects of a 15-week intervention of strengthening exercises, twice per week, supervised by a physiotherapist, on exercise-induced hypoalgesia (EIH) and cerebral pain processing in FM patients and healthy controls (HC). FM patients (n = 59) and HC (n = 39) who completed the exercise intervention as part of a multicenter study were examined at baseline and following the intervention. Following the exercise intervention, FM patients reported a reduction of pain intensity, fibromyalgia severity and depression. Reduced EIH was seen in FM patients compared to HC at baseline and no improvement of EIH was seen following the 15-week resistance exercise intervention in either group. Furthermore, a subsample (Stockholm site: FM n = 18; HC n = 19) was also examined with functional magnetic resonance imaging (fMRI) during subjectively calibrated thumbnail pressure pain stimulations at baseline and following intervention. A significant main effect of exercise (post > pre) was observed both in FM patients and HC, in pain-related brain activation within left dorsolateral prefrontal cortex and caudate, as well as increased functional connectivity between caudate and occipital lobe bordering cerebellum (driven by the FM patients). In conclusion, the results indicate that 15-week resistance exercise affect pain-related processing within the cortico-striatal-occipital networks (involved in motor control and cognition), rather than directly influencing top-down descending pain inhibition. In alignment with this, exercise-induced hypoalgesia remained unaltered.
Collapse
Key Words
- AAL, Automated Anatomical Labeling
- ACR, American College of Rheumatology
- CNS, central nervous system
- CPM, conditioned pain modulation
- EIH, exercise-induced hypoalgesia
- Exercise induced hypoalgesia
- Exercise intervention
- FD, Frame-wise displacement
- FEW, family-wise error
- FIQ, Fibromyalgia Impact Questionnaire
- FM, fibromyalgia
- FOV, field of view
- FWHM, full-width-half-maximum
- Fibromyalgia
- Functional connectivity
- Functional magnetic resonance imaging (fMRI)
- GLM, general linear model
- HADS, Hospital Anxiety and Depression Scale
- HC, healthy controls
- MNI, Montreal Neurological Institute
- MVC, maximum voluntary contraction force
- NSAIDs, non-steroidal anti-inflammatory drugs
- P50, pressure stimuli corresponding to a pain rating of 50mm on a 100 mm VAS
- PPI, psychophysiological interaction
- PPTs, pressure pain thresholds
- Pressure pain
- RM, repetition maximum
- SM, stimulation maximum
- SPM, Statistical Parametric Mapping
- T1, longitudinal relaxation time
- T2, transverse relaxation time
- TR/TE, time repetition/time echo
- VAS, visual analogue scale
- VOI, volume of interest
- dlPFC, dorsolateral prefrontal cortex
- fMRI, functional magnetic resonance imaging
- rACC, rostral anterior cingulate cortex
Collapse
|
research-article |
2 |
4 |
15
|
Lee D, Guiomar R, Gonçalves ÓF, Almeida J, Ganho-Ávila A. Effects of transcranial direct current stimulation on neural activity and functional connectivity during fear extinction. Int J Clin Health Psychol 2023; 23:100342. [PMID: 36299490 PMCID: PMC9578989 DOI: 10.1016/j.ijchp.2022.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Background/Objective Anxiety disorders are highly prevalent and negatively impact daily functioning and quality of life. Transcranial direct current stimulation (tDCS) targeting the dorsolateral prefrontal cortex (dlPFC), especially in the right hemisphere impacts extinction learning; however, the underlying neural mechanisms are elusive. Therefore, we aimed to investigate the effects of cathodal tDCS stimulation to the right dlPFC on neural activity and connectivity patterns during delayed fear extinction in healthy participants. Methods We conducted a two-day fear conditioning and extinction procedure. On the first day, we collected fear-related self-reports, clinical questionnaires, and skin conductance responses during fear acquisition. On the second day, participants in the tDCS group (n = 16) received 20-min offline tDCS before fMRI and then completed the fear extinction session during fMRI. Participants in the control group (n = 18) skipped tDCS and directly underwent fMRI to complete the fear extinction procedure. Whole-brain searchlight classification and resting-state functional connectivity analyses were performed. Results Whole-brain searchlight classification during fear extinction showed higher classification accuracy of threat and safe cues in the left anterior dorsal and ventral insulae and hippocampus in the tDCS group than in the control group. Functional connectivity derived from the insula with the dlPFC, ventromedial prefrontal cortex, and inferior parietal lobule was increased after tDCS. Conclusion tDCS over the right dlPFC may function as a primer for information exchange among distally connected areas, thereby increasing stimulus discrimination. The current study did not include a sham group, and one participant of the control group was not randomized. Therefore, to address potential allocation bias, findings should be confirmed in the future with a fully randomized and sham controlled study.
Collapse
Key Words
- ACC, anterior cingulate cortex
- CS, conditioned stimulus
- EPI, echo-planar imaging
- FOV, field of view
- Fear extinction
- GLM, general linear model
- HC, hippocampus
- IPL, inferior parietal lobule
- PFC, prefrontal cortex
- Resting-state functional connectivity
- SCR, skin conductance response
- TE, echo time
- TR, repetition time
- US, unconditioned stimulus
- Whole-brain searchlight classification
- dAI, dorsal anterior insula
- dlPFC, dorsolateral prefrontal cortex
- fMRI, functional magnetic resonance imaging
- tDCS
- tDCS, transcranial direct current stimulation
- vAI, ventral anterior insula
- vmPFC, ventromedial prefrontal cortex
Collapse
|
research-article |
2 |
|