1
|
Yu M, Amengual J, Menon A, Kamaly N, Zhou F, Xu X, Saw PE, Lee SJ, Si K, Ortega CA, Choi WI, Lee IH, Bdour Y, Shi J, Mahmoudi M, Jon S, Fisher EA, Farokhzad OC. Targeted Nanotherapeutics Encapsulating Liver X Receptor Agonist GW3965 Enhance Antiatherogenic Effects without Adverse Effects on Hepatic Lipid Metabolism in Ldlr -/- Mice. Adv Healthc Mater 2017; 6:10.1002/adhm.201700313. [PMID: 28730752 PMCID: PMC5656530 DOI: 10.1002/adhm.201700313] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/27/2017] [Indexed: 11/11/2022]
Abstract
The pharmacological manipulation of liver X receptors (LXRs) has been an attractive therapeutic strategy for atherosclerosis treatment as they control reverse cholesterol transport and inflammatory response. This study presents the development and efficacy of nanoparticles (NPs) incorporating the synthetic LXR agonist GW3965 (GW) in targeting atherosclerotic lesions. Collagen IV (Col IV) targeting ligands are employed to functionalize the NPs to improve targeting to the atherosclerotic plaque, and formulation parameters such as the length of the polyethylene glycol (PEG) coating molecules are systematically optimized. In vitro studies indicate that the GW-encapsulated NPs upregulate the LXR target genes and downregulate proinflammatory mediator in macrophages. The Col IV-targeted NPs encapsulating GW (Col IV-GW-NPs) successfully reaches atherosclerotic lesions when administered for 5 weeks to mice with preexisting lesions, substantially reducing macrophage content (≈30%) compared to the PBS group, which is with greater efficacy versus nontargeting NPs encapsulating GW (GW-NPs) (≈18%). In addition, mice administered the Col IV-GW-NPs do not demonstrate increased hepatic lipid biosynthesis or hyperlipidemia during the treatment period, unlike mice injected with the free GW. These findings suggest a new form of LXR-based therapeutics capable of enhanced delivery of the LXR agonist to atherosclerotic lesions without altering hepatic lipid metabolism.
Collapse
|
research-article |
8 |
55 |
2
|
Sandoval-Hernández AG, Hernández HG, Restrepo A, Muñoz JI, Bayon GF, Fernández AF, Fraga MF, Cardona-Gómez GP, Arboleda H, Arboleda GH. Liver X Receptor Agonist Modifies the DNA Methylation Profile of Synapse and Neurogenesis-Related Genes in the Triple Transgenic Mouse Model of Alzheimer's Disease. J Mol Neurosci 2015; 58:243-53. [PMID: 26553261 DOI: 10.1007/s12031-015-0665-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022]
Abstract
The liver X receptor agonist, GW3965, improves cognition in Alzheimer's disease (AD) mouse models. Here, we determined if short-term GW3965 treatment induces changes in the DNA methylation state of the hippocampus, which are associated with cognitive improvement. Twenty-four-month-old triple-transgenic AD (3xTg-AD) mice were treated with GW3965 (50 mg/kg/day for 6 days). DNA methylation state was examined by modified bisulfite conversion and hybridization on Illumina Infinium Methylation BeadChip 450 k arrays. The Morris water maze was used for behavioral analysis. Our results show in addition to improvement in cognition methylation changes in 39 of 13,715 interrogated probes in treated 3xTg-AD mice compared with untreated 3xTg-AD mice. These changes in methylation probes include 29 gene loci. Importantly, changes in methylation status were mainly from synapse-related genes (SYP, SYN1, and DLG3) and neurogenesis-associated genes (HMGB3 and RBBP7). Thus, our results indicate that liver X receptors (LXR) agonist treatment induces rapid changes in DNA methylation, particularly in loci associated with genes involved in neurogenesis and synaptic function. Our results suggest a new potential mechanism to explain the beneficial effect of GW3965.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
27 |
3
|
Hu Y, Zang J, Qin X, Yan D, Cao H, Zhou L, Ni J, Yu S, Wu J, Feng JF. Epithelial-to-mesenchymal transition correlates with gefitinib resistance in NSCLC cells and the liver X receptor ligand GW3965 reverses gefitinib resistance through inhibition of vimentin. Onco Targets Ther 2017; 10:2341-2348. [PMID: 28496332 PMCID: PMC5417672 DOI: 10.2147/ott.s124757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The role of epithelial-to-mesenchymal transition in cancer drug resistance is increasingly acknowledged. We examined whether epithelial-to-mesenchymal transition affects gefitinib resistance in non-small cell lung cancer (NSCLC) cells. Cell viability was detected by CCK-8 assay, VIM expression levels were determined by quantitative real-time polymerase chain reaction. Western blot and immunocytochemistry were performed to determine the protein expression level of vimentin. We observed morphologic differences between gefitinib-sensitive and -insensitive cells. Compared with the sensitive parental cell line, HCC827, vimentin expression levels were increased in HCC827 cells with acquired gefitinib resistance. Vimentin expression was also markedly upregulated in cells with intrinsic gefitinib resistance, and upregulated vimentin expression was correlated with gefitinib sensitivity. Our previous study demonstrated that coadministration of gefitinib and GW3965 resulted in decreased cell proliferation and induced apoptosis. Therefore, we investigated the relationship among GW3965, vimentin, and gefitinib resistance in NSCLC cells by analysis of the expression of vimentin in cells treated with a combination of gefitinib and GW3965. Gefitinib treatment led to increased levels of intracellular vimentin, while combined treatment with gefitinib and GW3965 resulted in decreased vimentin expression levels through reduction of gefitinib drug resistance in NSCLC cells. Overall, these findings suggest that vimentin expression is associated with sensitivity to gefitinib, and our study highlights the potential usefulness of the drug, GW3965, for reversal of gefitinib resistance through inhibition of vimentin expression.
Collapse
|
Journal Article |
8 |
16 |
4
|
Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotox Res 2018; 33:569-579. [PMID: 29297151 DOI: 10.1007/s12640-017-9845-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by beta-amyloid (Aβ) accumulation and neurofibrillary tangles formation in the brain which are associated to synaptic deficits and dementia. Liver X receptor (LXR) agonists have been demonstrated to revert of pathologic and cognitive defects in murine models of AD through the regulation of Apolipoprotein E, ATP-Binding Cassette A1 (ABCA1), by dampening neuroinflammation and also by reducing the levels of amyloid-β (Aβ) accumulation in the brain. However, the role of LXR with regard to the regulation of synaptic function remains relatively understudied. In the present paper, we analyzed the in-vitro effect of the LXR agonist GW3965 on synaptic function upon exposure of primary hippocampal cultures to oligomeric amyloid-β (oAβ(1-42)). We showed that oAβ(1-42) exposure significantly decreased the density of mature (mushroom shaped) dendritic spines density and synaptic contacts number. oAβ(1-42) also modulates the expression of pre- (VGlut1, SYT1, SV2A) and post-synaptic (SHANK2, NMDA) proteins, it decreases the expression of PINK1, and increases ROCKII, and activates of caspase-3; these changes were prevented by the pre-treating neuronal cultures with GW3965. These results show further support the role of the LXR agonist GW3965 in synaptic physiology and highlight its potential as an alternative pharmacological strategy for AD.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
15 |
5
|
Systems Pharmacology Dissection of Cholesterol Regulation Reveals Determinants of Large Pharmacodynamic Variability between Cell Lines. Cell Syst 2017; 5:604-619.e7. [PMID: 29226804 PMCID: PMC5747350 DOI: 10.1016/j.cels.2017.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/17/2017] [Accepted: 11/02/2017] [Indexed: 01/06/2023]
Abstract
In individuals, heterogeneous drug-response phenotypes result from a complex interplay of dose, drug specificity, genetic background, and environmental factors, thus challenging our understanding of the underlying processes and optimal use of drugs in the clinical setting. Here, we use mass-spectrometry-based quantification of molecular response phenotypes and logic modeling to explain drug-response differences in a panel of cell lines. We apply this approach to cellular cholesterol regulation, a biological process with high clinical relevance. From the quantified molecular phenotypes elicited by various targeted pharmacologic or genetic treatments, we generated cell-line-specific models that quantified the processes beneath the idiotypic intracellular drug responses. The models revealed that, in addition to drug uptake and metabolism, further cellular processes displayed significant pharmacodynamic response variability between the cell lines, resulting in cell-line-specific drug-response phenotypes. This study demonstrates the importance of integrating different types of quantitative systems-level molecular measurements with modeling to understand the effect of pharmacological perturbations on complex biological processes.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
14 |
6
|
Tsui KH, Chung LC, Feng TH, Lee TY, Chang PL, Chen WT, Juang HH. Divergent effect of liver X receptor agonists on prostate-specific antigen expression is dependent on androgen receptor in prostate carcinoma cells. Prostate 2015; 75:603-15. [PMID: 25560459 DOI: 10.1002/pros.22944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/17/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Liver X receptor (LXR) isoforms, LXRα and LXRβ, have similar protein structures and ligands, but diverse tissue distribution. We used two synthetic, non-steroidal LXR agonists, T0901317 and GW3965, to investigate the effects of LXR agonist modulation on prostate specific antigen (PSA) via the expressions of androgen receptors (AR), LXRα, or LXRβ, in prostate carcinoma cells. METHODS LXRα- or LXRβ-knockdown cells were transduced with specific shRNA lentiviral particles. LXRα and LXRβ expressions were assessed by immunoblotting and RT-qPCR assays. Cell proliferation was determined by (3) H-thymidine incorporation assays. The effects of LXR agonists and epigallocatechin gallate (EGCG) on PSA expression were determined by ELISA, immunoblotting, or transient gene expression assays. RESULTS Treatment with either T0901317 or GW3965 significantly attenuated cell proliferation of LNCaP cells. T0901317 treatment suppressed PSA expression while GW3965 treatment enhanced PSA expression. The increase of PSA promoter activity by GW3965 was dependent on the expression of AR. Either LXRα- or LXRβ-knockdown did not affect the activation of androgen on PSA gene expression. However, as compared with mock knockdown-LNCaP cells, the LXRα-knockdown but not the LXRβ-knockdown attenuated the effects of T0901317 and GW3965 on PSA expressions. The effect of GW3965 on PSA expression was blocked by the addition of EGCG. CONCLUSIONS Our results indicate that T0901317 and GW3965 have divergent effects on PSA expressions. The effects of LXR agonists on PSA expression are LXRα-dependent and AR-dependent. EGCG blocks the inducing effect of GW3965 on PSA expression.
Collapse
|
|
10 |
11 |
7
|
Yu W, Wang L, Yang L, Li YJ, Wang M, Qiu C, Yang Q, Li XB, Huang YL, Liu R, Wu YM. Activation of LXRβ Signaling in the Amygdala Confers Anxiolytic Effects Through Rebalancing Excitatory and Inhibitory Neurotransmission upon Acute Stress. Neurotherapeutics 2020; 17:1253-1270. [PMID: 32297184 PMCID: PMC7609627 DOI: 10.1007/s13311-020-00857-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The balance of major excitatory (glutamate, Glu) and inhibitory (γ-aminobutyric acid, GABA), named as E/I neurotransmission, is critical for proper information processing. Anxiety-like responses upon stress are accompanied by abnormal alterations in the formation and function of synapses, resulting in the imbalance of E/I neurotransmission in the amygdala. Liver X receptors (LXRs), including LXRα and LXRβ isoforms, are nuclear receptors responsible for regulating central nervous system (CNS) functions besides maintaining metabolic homeostasis. However, little is known about the contribution of LXRs in E/I balance in regulating anxiety-related behaviors induced by stress. In this study, we found stress-induced anxiety led to the expression reduction of LXRβ not LXRα in mice amygdala. GW3965, a dual agonist for both LXRα and LXRβ, alleviated anxiety-like behaviors of stressed mice through activation of LXRβ, confirmed by the knockdown of LXRβ mediated by lentiviral shRNAs in the basolateral amygdala (BLA). This was paralleled by correcting the disequilibrium of E/I neurotransmission in the stressed BLA. Importantly, GW3965 exerted anxiolytic effects by correcting the promoted amplitude and frequency of miniature excitatory postsynaptic current (mEPSC), and augmenting the decreased that of miniature inhibitory postsynaptic current (mIPSC) in the stressed BLA. This suggests that stress-induced anxiety-like behaviors can largely be ascribed to the deficit of LXRβ signaling in E/I neurotransmission in BLA. These findings highlight the deficiency of LXRβ signaling in the amygdala linked to anxiety disorder, and LXRβ activation may represent a potential novel target for anxiety treatment with an alteration in synaptic transmission in the amygdala.
Collapse
|
research-article |
5 |
11 |
8
|
Wang Q, Shen B, Qin X, Liu S, Feng J. Akt/mTOR and AMPK signaling pathways are responsible for liver X receptor agonist GW3965-enhanced gefitinib sensitivity in non-small cell lung cancer cell lines. Transl Cancer Res 2019; 8:66-76. [PMID: 35116735 PMCID: PMC8797756 DOI: 10.21037/tcr.2018.12.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND This study was to systemically analyze the mechanism of LXR ligand GW3965-induced sensitivity to EGFR-TKI in EGFR-TKI-resistant non-small cell lung cancer (NSCLC) cell lines. METHODS Gefitinib-resistant PC9 cell line (EGFR exon 19 deletion) was treated with single and combined treatment with GW3965 and gefitinib. Cell viability, apoptosis and autophagy were detected using MTT, flow cytometric analysis and immunofluorescent analysis, respectively. Autophagy-related signaling pathways were detected using Western blot analysis. RESULTS Inhibited cell viability by single and combined treatment with gefitinib and GW3965 were observed. Combined treatment with gefitinib and GW3965 increased LC3 II/I ratio and Beclin 1 expression. Synergistic effect of gefitinib and GW3965 on apoptosis and autophagosome accumulation as well as on the inhibition of Akt/mTOR signaling and activation of AMP-activated protein kinase (AMPK) was observed in gefitinib-resistant PC9 cells. AMPK expression showed similar profile with apoptosis and autophagy of PC9 cells. CONCLUSIONS We confirmed that GW3965 and gefitinib showed synergistic effect on Akt/mTOR inhibition, apoptosis and autophagy of lung cancer cells. Gefitinib sensitivity in PC9 cell line might be mediated by Akt/mTOR, AMPK and JNK signaling pathways.
Collapse
|
|
6 |
9 |
9
|
Liu J, Qi YB. Activation of LXRβ inhibits proliferation, promotes apoptosis, and increases chemosensitivity of gastric cancer cells by upregulating the expression of ATF4. J Cell Biochem 2019; 120:14336-14347. [PMID: 31210377 DOI: 10.1002/jcb.28558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022]
Abstract
Recently, great advances have been achieved in both surgery and chemotherapy for the treatment of gastric cancer, but there is still poor prognosis for this disease. The aim of this study is to investigate the role of liver X receptor β (LXRβ) in chemosensitivity of gastric cancer SGC7901 cells. From 171 patients with gastric cancer, the gastric cancer and paracancerous tissues were selected to measure the expression of LXRβ and ATF4. Gastric cancer cell lines were cultured and screened to figure out the proliferation and apoptosis of gastric cancer SGC7901 cells with the treatment of LXRβ agonist (GW3965), ATF4 short hairpin RNA (shRNA), and chemotherapy drug paclitaxel. The expression of apoptosis-related gene cleaved caspase-3 was detected by Western blot analysis. First, we found that the expressions of LXRβ and ATF4 in gastric cancer tissues and cells were significantly lower than those in their paracancerous tissues and gastric mucosal epithelial cells. In addition, activation of LXRβ and paclitaxel treatment suppressed proliferation of SGC7901 cells, and the expression of ATF4 was upregulated in a concentration-dependent manner. Furthermore, shRNA significantly inhibited the expression of ATF4 and blocked the chemosensitivity of SGC7901 cells to LXRβ activation. Our study demonstrates that the expression of LXRβ was low in gastric cancer. In addition, activation of LXRβ may inhibit the proliferation of gastric cancer cells, promote apoptosis, and increase chemosensitivity by upregulating the expression of ATF4.
Collapse
|
Journal Article |
6 |
8 |
10
|
Han S, Bal NB, Sadi G, Usanmaz SE, Uludag MO, Demirel-Yilmaz E. The effects of LXR agonist GW3965 on vascular reactivity and inflammation in hypertensive rat aorta. Life Sci 2018; 213:287-293. [PMID: 30366037 DOI: 10.1016/j.lfs.2018.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 11/17/2022]
Abstract
AIMS Liver X receptors (LXRs) play an important role in the regulation of cholesterol, fatty acid and glucose metabolisms together with inflammatory processes. In the present study, the effects of LXR agonist GW3965 on vascular reactivity and expression of functional proteins in DOCA-Salt induced hypertension were examined. MAIN METHODS Hypertension was induced through unilateral nephrectomy and deoxycorticosterone-acetate (DOCA) injection (20 mg/kg, twice a week) for 6 weeks in male Wistar albino rats (8 weeks old). An LXR agonist GW3965 (10 mg/kg/day, i.p.) was administered to animals for last seven days. KEY FINDINGS GW3965 treatment reduced systolic blood pressures in hypertensive rats. Acetylcholine-induced endothelium-dependent and sodium nitroprusside-induced endothelium-independent vasorelaxations were decreased in hypertensive rats but not affected by GW3965. GW3965 treatment enhanced plasma nitrite levels in normotensive rats. KCl and phenylephrine (Phe)-induced vasocontractions were reduced in hypertensive groups and increased with GW3965 treatment. Decreased sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) expression in the hypertensive aorta was not changed by GW3965 treatment. Expression of inositoltrisphosphate receptor1 (IP3R1) was increased by GW3965 in normotensive animals. The nuclear factor kappaB (NF-κB) and tumor necrosis factor alpha (TNF-α) expressions were increased in hypertensive rats and reduced by GW3965 treatment. SIGNIFICANCE The results of study indicate that the LXR agonist, GW3965, exhibited a beneficial effect on increased blood pressure and improved hypertension-induced impairment in contractile activity of vessel and inflammatory markers in vascular tissue. Therefore, these effects of LXR agonists on vessel should be taken into account in experimental or therapeutic approaches to hypertension.
Collapse
|
Journal Article |
7 |
8 |
11
|
Liver X receptors agonist GW3965 re-sensitizes gefitinib-resistant human non-small cell lung cancer cell to gefitinib treatment by inhibiting NF-κB in vitro. Oncotarget 2017; 8:15802-15814. [PMID: 28178657 PMCID: PMC5362524 DOI: 10.18632/oncotarget.15007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/06/2017] [Indexed: 01/16/2023] Open
Abstract
The recent research shows that the inhibition of the nuclear factor-κB (NF-κB) pathway is a promising therapeutic option for patients who progress after treatment with the novel mutant-selective EGFR-TKIs. For propose to find a nontoxic drug to reverse the acquired gefitinib resistance, we examined whether the Liver X Receptors agonist GW3965 affect gefitinib resistance of HCC827/GR-8-2 cells. Cell viability was measured by CCK-8 assay. Levels of NF-κB, p-AKT and caspases were detected by Western blot analysis. Immunocytochemical analysis was used to detect the expression of NF-κB, p-AKT intracellularly. Induction of apoptosis and cell cycle arrest was measured by Flow cytometry assay. And results revealed that more than 90% of HCC827/GR-8-2 cells lived upon treatment with gefitinib at a dose of 5μM for 48h. However, when under the combine treatment of GW3965 (5μM) & gefitinib(5μM), cell death rate was increased observably. Co-administration of gefitinib & GW3965 induced cell apoptosis and cell cycle arrest. Additionally, we observed a dose-dependent- down-regulation of NF-κB in HCC827/GR-8-2 cells treated with gefitinib & GW3965. GW3965 and gefitinib synergistically decreased cell proliferation and induced apoptosis by inhibiting NF-κB signaling pathway in gefitinib resistant cells. These findings support our hypothesis that GW3965 could act as a useful drug to reverse the gefitinib resistance.
Collapse
|
Journal Article |
8 |
8 |
12
|
Wang JZ, Fang Y, Ji WD, Xu H. LXR agonists promote the proliferation of neural progenitor cells through MEK-ERK pathway. Biochem Biophys Res Commun 2016; 483:216-222. [PMID: 28034754 DOI: 10.1016/j.bbrc.2016.12.163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 12/23/2016] [Indexed: 11/18/2022]
Abstract
The liver X receptors (LXRs) are transcriptional regulators of lipid homeostasis and may be critical for neurodegeneration and neurogenesis in vivo. However, it remains largely unknown about the role of LXRs and its agonists in the in vitro proliferation of neural progenitor cells (NPCs). Here we revealed for the first time that LXRs were markedly expressed in mouse NPCs and were critical for the in vitro proliferation. LXR agonists GW3965 and LXR623 promoted the proliferation of wildtype NPCs, but not NPCs from LXR double-knockout mice. Mechanistically, phosphorylation of MEK1/2 and ERK1/2 in NPCs was enhanced upon LXR agonist treatment, while abrogation of MEK/ERK phosphorylation by the inhibitors PD98059 and U0126 impaired the proliferation of wildtype NPCs in the presence or absence of LXR agonists. Collectively, our findings suggest that LXR agonists GW3965 and LXR623 can stimulate the NPC proliferation in LXR- and MEK/ERK-dependent manner.
Collapse
|
Journal Article |
9 |
7 |
13
|
Chen Z, Lai X, Ding H, Zhang A, Sun Y, Ling J, Chiao PJ, Chen Z, Xia X. ATF4/TXNIP/REDD1/mTOR signaling mediates the antitumor activities of liver X receptor in pancreatic cancers. CANCER INNOVATION 2022; 1:55-69. [PMID: 38089448 PMCID: PMC10686145 DOI: 10.1002/cai2.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 10/15/2024]
Abstract
Background Limited by difficulties in early detection and availabilities of effective treatments, pancreatic cancer is a highly malignant disease with poor prognosis. Nuclear receptors are a family of ligand-dependent transcription factors that are highly druggable therapeutic targets playing critical roles in human physiological and pathological development, including cancer. In this study, we explored the therapeutic potential as well as the molecular mechanisms of liver X receptor (LXR) agonist GW3965 in pancreatic cancer. Methods Soft-agar colony formation assay, xenograft tumors, Oligonucleotide microarray, Reverse transcription real-time polymerase chain reaction, Western immunoblotting and Immunohistochemistry were used in this study. Results We demonstrated pleotropic in vitro activities of GW3965 in pancreatic cell lines MIA PaCa-2 and BXPC3 including reduction of cell viability, inhibition of cell proliferation, stimulation of cell death, and suppression of colony formation, which translated to significant inhibition of xenograft tumor growth in vitro. By mapping the gene expression profiles, we identified the up-regulations of 188 and the down-regulations of 92 genes common to both cell lines following GW3965 treatment. Genes responsive to GW3965 represent a variety of biological pathways vital for multiple cellular functions. Specifically, we identified that the activating transcription factor 4/thioredoxin-interacting protein/regulated in development and DNA damage responses 1/mechanistic target of rapamycin (ATF4/TXNIP/REDD1/mTOR) signaling critically controls GW3965-mediated regulation of cell proliferation/death. The significance of the ATF4/TXNIP/REDD1/mTOR pathway was further supported by associated expressions in xenograft tumors as well as human pancreatic cancer samples. Conclusions This study provides the pre-clinical evidence that LXR agonist is a promising therapy for pancreatic cancer.
Collapse
|
research-article |
3 |
2 |
14
|
Maczewsky J, Kaiser J, Krippeit-Drews P, Drews G. Approved LXR agonists exert unspecific effects on pancreatic β-cell function. Endocrine 2020; 68:526-535. [PMID: 32146655 PMCID: PMC7308254 DOI: 10.1007/s12020-020-02241-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
Novel agonists of the nuclear liver-X-receptor (LXR) are designed to treat metabolic disorders or cancer. The rationale to develop these new drugs is based on promising results with established LXR agonist like T0901317 and GW3965. LXRα and LXRβ are expressed in β-cells, and expression is increased by T0901317. The aim of the present study was to evaluate whether effects of these drugs on β-cell function are specific and reliably linked to LXR activation. T0901317 and GW3965, widely used as specific LXR agonists, show rapid, non-genomic effects on stimulus-secretion coupling of mouse pancreatic β-cells at low µM concentrations. T0901317 lowered the cytosolic Ca2+ concentration, reduced or completely inhibited action potentials, and decreased insulin secretion. GW3965 exerted similar effects on insulin secretion. T0901317 affected the production of reactive oxygen species and ATP. The involvement of the classical nuclear LXRs in T0901317- and GW3965-mediated effects in β-cells could be ruled out using LXRα, LXRβ and double knockout mice. Our results strongly suggest that LXR agonists, that are considered to be specific for this receptor, interfere with mitochondrial metabolism and metabolism-independent processes in β-cells. Thus, it is indispensable to test novel LXR agonists accompanying to ongoing clinical trials for acute and chronic effects on cell function in cellular systems and/or animal models lacking classical LXRs.
Collapse
|
research-article |
5 |
2 |
15
|
Tsai YJ, Shen PH, Luo SD, Wu WB. Liver X Receptor Expression and Pentraxin 3 Production in Chronic Rhinosinusitis and Sinonasal Mucosal Fibroblast Cells. J Clin Med 2021; 10:452. [PMID: 33503887 PMCID: PMC7865759 DOI: 10.3390/jcm10030452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
The long pentraxin 3 (PTX3) is a prototypic molecule for recognizing pathogens. Liver X receptors (LXRs), belonging to nuclear receptors (NRs) for cholesterol metabolism through heterodimerizing with other NRs, were recently reported to participate in inflammation. However, their roles in chronic rhinosinusitis without nasal polyps (CRSsNP) are unclear. Therefore, this study was sought to explore roles of LXRs in chronic rhinosinusitis (CRS) sinonasal tissues and derived fibroblasts. Immunohistochemistry indicated that LXRα and β expression and lipid/fat deposition were differentially expressed in the control and CRSsNP nasal mucosa. GW7647 (a peroxisome proliferator activated receptor α (PPARα) agonist) and GW3965 (a dual agonist for LXRα and β) significantly caused PTX3 induction in the fibroblast cells. GW3965 induced PTX3 mRNA and protein expression, and the induction substantially led to PTX3 secretion. Meanwhile, an endogenous agonist-cholesterol had a similar enhancing effect on the induction of PTX3 protein. LXR siRNA knockdown to lower LXRα or β expression significantly compromised PTX3 induction. Interestingly, GW3965 also induced phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) activation and its inhibition reduced PTX3 expression. Collectively, we demonstrated here for the first time that CRSsNP nasal mucosa differentially expresses LXRα and β and deposits lipids/fats that may contain cholesterol metabolites to activate LXRs. Activation of LXRs leads to PTX3 production in sinonasal mucosa-derived fibroblasts. Our previous study showed PTX3 overexpression in the nasal cavity of CRSsNP, whereas this study highlights that cholesterol metabolites and LXR activation regulate PTX3 production and may contribute to antimicrobial activity and tissue repair during CRSsNP progression.
Collapse
|
research-article |
4 |
1 |
16
|
Zhong Y, Li S, Chen Y, Tang Y, Xiao X, Nie T. Combining PLGA microspheres loaded with Liver X receptor agonist GW3965 with a chitosan nerve conduit can promote the healing and regeneration of the wounded sciatic nerve. J Biomed Mater Res B Appl Biomater 2024; 112:e35378. [PMID: 38356051 DOI: 10.1002/jbm.b.35378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024]
Abstract
Globally, peripheral nerve injury (PNI) is a common clinical issue. Successfully repairing severe PNIs has posed a major challenge for clinicians. GW3965 is a highly selective LXR agonist, and previous studies have demonstrated its positive protective effects in both central and peripheral nerve diseases. In this work, we examined the potential reparative effects of GW3965-loaded polylactic acid co-glycolic acid microspheres in conjunction with a chitosan nerve conduit for peripheral nerve damage. The experiment revealed that GW3965 promoted Schwann cell proliferation and neurotrophic factor release in vitro. In vivo experiments conducted on rats showed that GW3965 facilitated the restoration of motor function, promoted axon and myelin regeneration in the sciatic nerve, and enhanced the microenvironment of nerve regeneration. These results offer a novel therapeutic approach for the healing of nerve damage. Overall, this work provides valuable insights and presents a promising therapeutic strategy for addressing PNI.
Collapse
|
|
1 |
|