Philips SJ, Danda A, Ansari AZ. Using synthetic genome readers/regulators to interrogate chromatin processes: A brief review.
Methods 2024;
225:20-27. [PMID:
38471600 PMCID:
PMC11055675 DOI:
10.1016/j.ymeth.2024.03.001]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Aberrant gene expression underlies numerous human ailments. Hence, developing small molecules to target and remedy dysfunctional gene regulation has been a long-standing goal at the interface of chemistry and medicine. A major challenge for designing small molecule therapeutics aimed at targeting desired genomic loci is the minimization of widescale disruption of genomic functions. To address this challenge, we rationally design polyamide-based multi-functional molecules, i.e., Synthetic Genome Readers/Regulators (SynGRs), which, by design, target distinct sequences in the genome. Herein, we briefly review how SynGRs access chromatin-bound and chromatin-free genomic sites, then highlight the methods for the study of chromatin processes using SynGRs on positioned nucleosomes in vitro or disease-causing repressive genomic loci in vivo.
Collapse