1
|
Zhang C, Zhang J, Xu FP, Wang YG, Xie Z, Su J, Dong S, Nie Q, Shao Y, Zhou Q, Yang JJ, Yang XN, Zhang XC, Li Z, Wu YL, Zhong WZ. Genomic Landscape and Immune Microenvironment Features of Preinvasive and Early Invasive Lung Adenocarcinoma. J Thorac Oncol 2019; 14:1912-1923. [PMID: 31446140 DOI: 10.1016/j.jtho.2019.07.031] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Understanding the genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma may provide critical insight and facilitate development of novel strategies for early detection and intervention. METHODS A total of 80 tumor tissue samples and 30 paired histologically normal lung tissue samples from 30 patients with adenocarcinoma in situ (AIS) (n = 8), minimally invasive adenocarcinoma (MIA) (n = 8), and invasive adenocarcinoma (IAC) (n = 14) were subjected to multiregion whole exome sequencing and immunohistochemistry staining for CD8 and programmed death ligand 1 (PD-L1). RESULTS All tumors, including AIS, exhibited evidence of genomic intratumor heterogeneity. Canonical cancer gene mutations in EGFR, erb-b2 receptor tyrosine kinase 2 gene (ERBB2), NRAS, and BRAF were exclusively trunk mutations detected in all regions within each tumor, whereas genes associated with cell mobility, gap junction, and metastasis were all subclonal mutations. EGFR mutation represented the most common driver alterations across AIS, MIA, and IAC, whereas tumor protein p53 gene (TP53) was identified in MIA and IAC but not in AIS. There was no difference in PD-L1 expression among AIS, MIA, and IAC, but the CD8 positivity rate was higher in IAC. Tumors positive for both PD-L1 and CD8 had a larger proportion of subclonal mutations. CONCLUSIONS Mutations in EGFR, ERBB2, NRAS, and BRAF are early clonal genomic events during carcinogenesis of lung adenocarcinoma, whereas TP53 and cell mobility, gap junction, and metastasis-related genes may be late events associated with subclonal diversification and neoplastic progression. Genomic intratumor heterogeneity and immunoediting are common and early phenomena that may have occurred before the acquisition of invasion.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
127 |
2
|
Scarlet Fever Epidemic in China Caused by Streptococcus pyogenes Serotype M12: Epidemiologic and Molecular Analysis. EBioMedicine 2018; 28:128-135. [PMID: 29342444 PMCID: PMC5835554 DOI: 10.1016/j.ebiom.2018.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
From 2011, Hong Kong and mainland China have witnessed a sharp increase in reported cases, with subsequent reports of epidemic scarlet fever in North Asia and the United Kingdom. Here we examine epidemiological data and investigate the genomic context of the predominantly serotype M12 Streptococcus pyogenes scarlet fever isolates from mainland China. Incident case data was obtained from the Chinese Nationwide Notifiable Infectious Diseases Reporting Information System. The relative risk of scarlet fever in recent outbreak years 2011–2016 was calculated using the median age-standardised incidence rate, compared to years 2003–2010 prior this outbreak. Whole genome sequencing was performed on 32 emm12 scarlet fever isolates and 13 emm12 non-scarlet fever isolates collected from different geographic regions of China, and compared with 203 published emm12 S. pyogenes genomes predominantly from scarlet fever outbreaks in Hong Kong (n = 134) and the United Kingdom (n = 63). We found during the outbreak period (2011–2016), the median age-standardised incidence in China was 4.14/100,000 (95% confidence interval (CI) 4.11-4.18), 2.62-fold higher (95% CI 2.57-2.66) than that of 1.58/100,000 (95% CI 1.56-1.61) during the baseline period prior to the outbreak (2003 − 2010). Highest incidence was reported for children 5 years of age (80.5/100,000). Streptococcal toxin encoding prophage φHKU.vir and φHKU.ssa in addition to the macrolide and tetracycline resistant ICE-emm12 and ICE-HKU397 elements were found amongst mainland China multi-clonal emm12 isolates suggesting a role in selection and expansion of scarlet fever lineages in China. Global dissemination of toxin encoded prophage has played a role in the expansion of scarlet fever emm12 clones. These findings emphasize the role of comprehensive surveillance approaches for monitoring of epidemic human disease.
The study used all epidemiological data from 1950 to 2016, and describe increased incidence levels for the current outbreak. Using global emm12 scarlet fever isolate genome sequences, the multiclonal nature of the outbreak was confirmed. Global surveillance of GAS toxin and drug resistance mobile genes in the scarlet fever outbreak is necessary. Our study provides a detailed report of scarlet fever epidemiology and genomic analysis for mainland China since the 2011 outbreak began. We also provide a comprehensive comparison of the genomic relationship of scarlet fever outbreak emm12 isolates from China, Hong Kong and the United Kingdom, countries experiencing an unparalleled re-emergence of scarlet fever. Our observations implicate an important role for GAS toxin and drug resistance related mobile genes in the outbreak and reveal different evolutionary patterns, and identify common themes relating to the acquisition of toxin carrying prophage elements. This work emphasizes the importance of comprehensive nationwide surveillance to track scarlet fever, GAS emm types, exotoxin-encoding prophage and antibiotic resistance genes in a global context.
Collapse
|
Journal Article |
7 |
54 |
3
|
Furuki H, Yamada T, Takahashi G, Iwai T, Koizumi M, Shinji S, Yokoyama Y, Takeda K, Taniai N, Uchida E. Evaluation of liquid biopsies for detection of emerging mutated genes in metastatic colorectal cancer. Eur J Surg Oncol 2018; 44:975-982. [PMID: 29452859 DOI: 10.1016/j.ejso.2018.01.224] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Detection of gene mutations is important for planning molecular targeted therapy. Although most gene mutations are concordant between primary colon cancers and their liver metastases, new mutations can emerge in metastases. The liquid biopsy is a newly developed, gene analytic method to detect mutations in metastatic tumors. In this prospective study, we evaluated the applicability of liquid biopsies in the detection of mutations in primary and metastatic tumors. METHODS We included 22 patients with liver metastases from colorectal cancer and extracted DNA from primary colorectal tumors, metastatic liver tumors, and peripheral blood (liquid biopsy). Next-generation sequencing (NGS) and digital PCR were performed to detect mutations in these three sample types. RESULTS We found a total of 36 different mutations in samples from primary tumors, liver metastases, and liquid biopsies using NGS. Twenty-eight of these mutations were found in all three types of samples, whereas liquid biopsy did not identify four mutations that had been found in both primary tumors and liver metastases, but did identify four mutations that were found in liver tumors but not in primary tumors. The sensitivity of liquid biopsies for detecting mutations in liver metastases was 64% (23/36) using NGS and 89% (32/36, P = 0.02) using dPCR. The specificities of NGS and dPCR were 100% (23/23) and 100% (32/32), respectively. CONCLUSIONS Emerging mutations, which are not found in primary tumors, can be detected in their metastases and liquid biopsies.
Collapse
|
Observational Study |
7 |
30 |
4
|
Xu W, Wu D, Yang T, Sun C, Wang Z, Han B, Wu S, Yu A, Chapman MA, Muraguri S, Tan Q, Wang W, Bao Z, Liu A, Li DZ. Genomic insights into the origin, domestication and genetic basis of agronomic traits of castor bean. Genome Biol 2021; 22:113. [PMID: 33874982 PMCID: PMC8056531 DOI: 10.1186/s13059-021-02333-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/29/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Castor bean (Ricinus communis L.) is an important oil crop, which belongs to the Euphorbiaceae family. The seed oil of castor bean is currently the only commercial source of ricinoleic acid that can be used for producing about 2000 industrial products. However, it remains largely unknown regarding the origin, domestication, and the genetic basis of key traits of castor bean. RESULTS Here we perform a de novo chromosome-level genome assembly of the wild progenitor of castor bean. By resequencing and analyzing 505 worldwide accessions, we reveal that the accessions from East Africa are the extant wild progenitors of castor bean, and the domestication occurs ~ 3200 years ago. We demonstrate that significant genetic differentiation between wild populations in Kenya and Ethiopia is associated with past climate fluctuation in the Turkana depression ~ 7000 years ago. This dramatic change in climate may have caused the genetic bottleneck in wild castor bean populations. By a genome-wide association study, combined with quantitative trait locus analysis, we identify important candidate genes associated with plant architecture and seed size. CONCLUSIONS This study provides novel insights of domestication and genome evolution of castor bean, which facilitates genomics-based breeding of this important oilseed crop and potentially other tree-like crops in future.
Collapse
|
research-article |
4 |
28 |
5
|
Lugli GA, Milani C, Mancabelli L, Turroni F, Ferrario C, Duranti S, van Sinderen D, Ventura M. Ancient bacteria of the Ötzi's microbiome: a genomic tale from the Copper Age. MICROBIOME 2017; 5:5. [PMID: 28095919 PMCID: PMC5240250 DOI: 10.1186/s40168-016-0221-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/13/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Ancient microbiota information represents an important resource to evaluate bacterial evolution and to explore the biological spread of infectious diseases in history. The soft tissue of frozen mummified humans, such as the Tyrolean Iceman, has been shown to contain bacterial DNA that is suitable for population profiling of the prehistoric bacteria that colonized such ancient human hosts. RESULTS Here, we performed a microbial cataloging of the distal gut microbiota of the Tyrolean Iceman, which highlights a predominant abundance of Clostridium and Pseudomonas species. Furthermore, in silico analyses allowed the reconstruction of the genome sequences of five ancient bacterial genomes, including apparent pathogenic ancestor strains of Clostridium perfringens and Pseudomonas veronii species present in the gut of the Tyrolean Iceman. CONCLUSIONS Genomic analyses of the reconstructed C. perfringens chromosome clearly support the occurrence of a pathogenic profile consisting of virulence genes already existing in the ancient strain, thereby reinforcing the notion of a very early speciation of this taxon towards a pathogenic phenotype. In contrast, the evolutionary development of P. veronii appears to be characterized by the acquisition of antibiotic resistance genes in more recent times as well as an evolution towards an ecological niche outside of the (human) gastrointestinal tract.
Collapse
|
research-article |
8 |
27 |
6
|
Hu K, Xu K, Wen J, Yi B, Shen J, Ma C, Fu T, Ouyang Y, Tu J. Helitron distribution in Brassicaceae and whole Genome Helitron density as a character for distinguishing plant species. BMC Bioinformatics 2019; 20:354. [PMID: 31234777 PMCID: PMC6591975 DOI: 10.1186/s12859-019-2945-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Helitron is a rolling-circle DNA transposon; it plays an important role in plant evolution. However, Helitron distribution and contribution to evolution at the family level have not been previously investigated. RESULTS We developed the software easy-to-annotate Helitron (EAHelitron), a Unix-like command line, and used it to identify Helitrons in a wide range of 53 plant genomes (including 13 Brassicaceae species). We determined Helitron density (abundance/Mb) and visualized and examined Helitron distribution patterns. We identified more than 104,653 Helitrons, including many new Helitrons not predicted by other software. Whole genome Helitron density is independent from genome size and shows stability at the species level. Using linear discriminant analysis, de novo genomes (next-generation sequencing) were successfully classified into Arabidopsis thaliana groups. For most Brassicaceae species, Helitron density negatively correlated with gene density, and Helitron distribution patterns were similar to those of A. thaliana. They preferentially inserted into sequence around the centromere and intergenic region. We also associated 13 Helitron polymorphism loci with flowering-time phenotypes in 18 A. thaliana ecotypes. CONCLUSION EAHelitron is a fast and efficient tool to identify new Helitrons. Whole genome Helitron density can be an informative character for plant classification. Helitron insertion polymorphism could be used in association analysis.
Collapse
|
Journal Article |
6 |
26 |
7
|
Umasuthan N, Bathige SDNK, Revathy KS, Nam BH, Choi CY, Lee J. Molecular genomic- and transcriptional-aspects of a teleost TRAF6 homolog: Possible involvement in immune responses of Oplegnathus fasciatus against pathogens. FISH & SHELLFISH IMMUNOLOGY 2015; 42:66-78. [PMID: 25449707 DOI: 10.1016/j.fsi.2014.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is a crucial docking molecule for TNFR superfamily and Interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily. As an adaptor protein in pathogen-induced signaling cascades, TRAF6 modulates both adaptive- and innate-immunity. In order to understand the immune responses of teleost TRAF6, Oplegnathus fasciatus TRAF6-like gene (OfTRAF6) was identified and characterized. Genomic length of OfTRAF6 (4 kb), obtained by means of a genomic BAC library, spanned seven exons which represented a putative coding sequence of 1716 bp and encoded 571 amino acids (aa) with an estimated molecular weight of 64 kDa. This putative protein demonstrated the classical tetra-domain architecture composed of a zinc finger RING-type profile, two zinc finger TRAF-type profiles, a coiled-coil region and a MATH domain. While the sequence similarity with human TRAF6 was 66.5%, OfTRAF6 shared a higher overall similarity with teleost homologs (∼75-92%). Phylogeny of TRAF-family was examined and TRAF6-subfamily appeared to be the precursor of other subfamilies. In addition, the clustering pattern confirmed that OfTRAF6 is a novel member of TRAF6subfamily. Based on comparative genomic analysis, we found that vertebrate TRAF6 exhibits two distinct structures in teleost and tetrapod lineages. An intron-loss event has probably occurred in TRAF6 gene during the evolution of tetrapods from teleosts. Inspection of putative OfTRAF6 promoter revealed the presence of several immune responsive transcription factor binding sites. Real-time qPCR assay detected OfTRAF6 transcripts in eleven juvenile fish tissues with higher levels in peripheral blood cells followed by liver. Putative role of OfTRAF6 in response to flagellin, LPS, poly I:C, pathogenic bacteria (Edwardsiella tarda and Streptococcus iniae) and rock bream iridovirus (RBIV) was profiled in different tissues and OfTRAF6 revealed up-regulated transcript levels. Altogether, these findings implicate that OfTRAF6 is not only involved in flagellin-induced signaling cascade, but also contributes to the antibacterial- and antiviral-responses.
Collapse
|
|
10 |
17 |
8
|
Marandino A, Tomás G, Panzera Y, Greif G, Parodi-Talice A, Hernández M, Techera C, Hernández D, Pérez R. Whole-genome characterization of Uruguayan strains of avian infectious bronchitis virus reveals extensive recombination between the two major South American lineages. INFECTION GENETICS AND EVOLUTION 2017; 54:245-250. [PMID: 28705717 PMCID: PMC7106025 DOI: 10.1016/j.meegid.2017.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/28/2023]
Abstract
Infectious bronchitis virus (Gammacoronavirus, Coronaviridae) is a genetically variable RNA virus that causes one of the most persistent respiratory diseases in poultry. The virus is classified in genotypes and lineages with different epidemiological relevance. Two lineages of the GI genotype (11 and 16) have been widely circulating for decades in South America. GI-11 is an exclusive South American lineage while the GI-16 lineage is distributed in Asia, Europe and South America. Here, we obtained the whole genome of two Uruguayan strains of the GI-11 and GI-16 lineages using Illumina high-throughput sequencing. The strains here sequenced are the first obtained in South America for the infectious bronchitis virus and provide new insights into the origin, spreading and evolution of viral variants. The complete genome of the GI-11 and GI-16 strains have 27,621 and 27,638 nucleotides, respectively, and possess the same genomic organization. Phylogenetic incongruence analysis reveals that both strains have a mosaic genome that arose by recombination between Euro Asiatic strains of the GI-16 lineage and ancestral South American GI-11 viruses. The recombination occurred in South America and produced two viral variants that have retained the full-length S1 sequences of the parental lineages but are extremely similar in the rest of their genomes. These recombinant virus have been extraordinary successful, persisting in the continent for several years with a notorious wide geographic distribution. Our findings reveal a singular viral dynamics and emphasize the importance of complete genomic characterization to understand the emergence and evolutionary history of viral variants.
Genomic analysis was performed in two main lineages of Infectious bronchitis virus. Lineages differ in their S1 sequences but are similar in the rest of the genome. Genomic similarity between both lineages arise by inter-lineage recombination. Inter-lineage recombination occurred in South America between European/Asiatic and local strain. Recombinant forms have persisted in the continent for several years with wide geographic distribution.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
16 |
9
|
Umasuthan N, Bathige SDNK, Thulasitha WS, Jayasooriya RGPT, Shin Y, Lee J. Identification of a gene encoding a membrane-anchored toll-like receptor 5 (TLR5M) in Oplegnathus fasciatus that responds to flagellin challenge and activates NF-κB. FISH & SHELLFISH IMMUNOLOGY 2017; 62:276-290. [PMID: 28111358 DOI: 10.1016/j.fsi.2017.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and induces the downstream signaling through the myeloid differentiation primary response gene 88 (MyD88) protein to produce proinflammatory cytokines. In this study, we describe a TLR5 membrane form (OfTLR5M) and its adaptor protein MyD88 (OfMyD88) in rock bream, Oplegnathus fasciatus. Both Oftlr5m (6.7 kb) and Ofmyd88 (3.7 kb) genes displayed a quinquepartite structure with five exons and four introns. Protein structure of OfTLR5M revealed the conventional architecture of TLRs featured by an extracellular domain with 22 leucine rich repeats (LRR), a transmembrane domain and an endodomain with TIR motif. Primary OfTLR5M sequence shared a higher homology with teleost TLR5M. The evolutional analysis confirmed that TLR5 identified in the current study is a membrane receptor and the data further suggested the co-evolution of the membrane-anchored and soluble forms of TLR5 in teleosts. Inter-lineage comparison of gene structures in vertebrates indicated that the tlr5m gene has evolved with extensive rearrangement; whereas, the myd88 gene has maintained a stable structure throughout the evolution. Inspection of 5' flanking region of these genes disclosed the presence of several transcription factor binding sites including NF-κB. Quantitative real-time PCR (qPCR) detected Oftlr5m mRNA in eleven tissues with the highest abundance in liver. In vivo flagellin administration strongly induced the transcripts of both Oftlr5m and Ofmyd88 in gills and head kidney tissues suggesting their ligand-mediated upregulation. In a luciferase assay, HEK293T cells transiently transfected with Oftlr5m and Ofmyd88 demonstrated a higher NF-κB activity than the mock control, and the luciferase activity was intensified when cells were stimulated with flagellin. Collectively, our study represents the genomic, evolutional, expressional and functional insights into a receptor and adaptor molecules of teleost origin that are involved in flagellin sensing.
Collapse
|
|
8 |
14 |
10
|
Krause A, Roma L, Lorber T, Habicht J, Lardinois D, De Filippo MR, Prince SS, Piscuoglio S, Ng C, Bubendorf L. Deciphering the clonal relationship between glandular and squamous components in adenosquamous carcinoma of the lung using whole exome sequencing. Lung Cancer 2020; 150:132-138. [PMID: 33137577 DOI: 10.1016/j.lungcan.2020.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023]
Abstract
Adenosquamous carcinoma of the lung (ASC) is a rare subtype of non-small cell lung cancer, consisting of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) components. ASC shows morphological characteristics of classic LUAD and LUSC but behaves more aggressively. Although ASC can serve as a model of lung cancer heterogeneity and transdifferentiation, its genomic background remains poorly understood. In this study, we sought to explore the genomic landscape of macrodissected LUAD and LUSC components of three ASC using whole exome sequencing (WES). Identified truncal mutations included the pan-cancer tumor-suppressor gene TP53 but also EGFR, BRAF, and MET, which are characteristic for LUAD but uncommon in LUSC. No truncal mutation of classical LUSC driver mutations were found. Both components showed unique driver mutations that did not overlap between the three ASC. Mutational signatures of truncal mutations differed from those of the branch mutations in their descendants LUAD and LUSC. Most common signatures were related to aging (1, 5) and smoking (4). Truncal chromosomal copy number aberrations shared by all three ASC included losses of 3p, 15q and 19p, and an amplified region in 5p. Furthermore, we detected loss of STK11 and SOX2 amplification in ASC, which has previously been shown to drive transdifferentiation from LUAD to LUSC in preclinical mouse models. Conclusively, this is the first study using WES to elucidate the clonal evolution of ASC. It provides strong evidence that the LUAD and LUSC components of ASC share a common origin and that the LUAD component appears to transform to LUSC.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
13 |
11
|
Fairclough SR, Kiedrowski LA, Lin JJ, Zelichov O, Tarcic G, Stinchcombe TE, Odegaard JI, Lanman RB, Shaw AT, Nagy RJ. Identification of osimertinib-resistant EGFR L792 mutations by cfDNA sequencing: oncogenic activity assessment and prevalence in large cfDNA cohort. Exp Hematol Oncol 2019; 8:24. [PMID: 31632838 PMCID: PMC6788107 DOI: 10.1186/s40164-019-0148-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Cell-free DNA (cfDNA) next-generation sequencing has the potential to capture tumor heterogeneity and genomic evolution under treatment pressure in a non-invasive manner. Here, we report the detection of EGFR L792 mutations, a non-covalent mechanism of osimertinib resistance, using Guardant360 cfDNA testing in a patient with metastatic EGFR-mutant non-small cell lung cancer (NSCLC) whose disease progressed on osimertinib. We subsequently analyzed a large cohort of over 1800 additional patient samples harboring an EGFR T790M mutation and identified a concomitant L792 mutation in a total of 22 (1.2%) cases. In vitro functional assays demonstrated that the EGFR L858R/T790M/L792F/H mutations conferred intermediate-level resistance to osimertinib. Further understanding of potential acquired resistance mechanisms to targeted therapy may help inform treatment strategy in EGFR-mutant NSCLC.
Collapse
|
Journal Article |
6 |
12 |
12
|
The evolution of sex chromosome dosage compensation in animals. J Genet Genomics 2020; 47:681-693. [PMID: 33579636 DOI: 10.1016/j.jgg.2020.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 02/02/2023]
Abstract
The evolution of heteromorphic sex chromosomes shall lead to gene expression dosage problems, as in at least one of the sexes, the sex-linked gene dose has been reduced by half. It has been proposed that the transcriptional output of the whole X or Z chromosome should be doubled for complete dosage compensation in heterogametic sex. However, owing to the variability of the existing methods to determine the transcriptional differences between sex chromosomes and autosomes (S:A ratios) in different studies, we collected more than 500 public RNA-Seq data set from multiple tissues and species in major clades and proposed a unified computational framework for unbiased and comparable measurement of the S:A ratios of multiple species. We also tested the evolution of dosage compensation more directly by assessing changes in the expression levels of the current sex-linked genes relative to those of the ancestral sex-linked genes. We found that in mammals and birds, the S:A ratio is approximately 0.5, whereas in insects, fishes, and flatworms, the S:A ratio is approximately 1.0. Further analysis showed that the fraction of dosage-sensitive housekeeping genes on the X/Z chromosome is significantly correlated with the S:A ratio. In addition, the degree of degeneration of the Y chromosome may be responsible for the change in the S:A ratio in mammals without a dosage compensation mechanism. Our observations offer unequivocal support for the sex chromosome insensitivity hypothesis in animals and suggest that dosage sensitivity states of sex chromosomes are a major factor underlying different evolutionary strategies of dosage compensation.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
11 |
13
|
Bathige SDNK, Umasuthan N, Godahewa GI, Thulasitha WS, Jayasinghe JDHE, Wan Q, Lee J. Molecular insights of two STAT1 variants from rock bream (Oplegnathus fasciatus) and their transcriptional regulation in response to pathogenic stress, interleukin-10, and tissue injury. FISH & SHELLFISH IMMUNOLOGY 2017; 69:128-141. [PMID: 28818616 DOI: 10.1016/j.fsi.2017.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Signal transducers and activators of transcription 1 (STAT1) is critically involved in mediating cytokine-driven signaling, and triggers the transcription of target genes to activate cellular functions. Although the structural and functional aspects of STAT members have been well described in mammals, only limited information is available for the STAT genes in teleost fishes. In the present study, two variants of STAT1 genes (RbSTAT1 and RbSTAT1L) were identified from rock bream and characterized at the cDNA and genomic sequence levels. RbSTAT1 and RbSTAT1L were found to share a common domain architecture with mammalian STAT1. Phylogenetic analysis revealed that RbSTAT1 shows a common evolutionary trajectory with other STAT1 counterparts, whereas RbSTAT1L showed a separate path, implying that it could be a novel member of the STAT family. The genomic organizations of RbSTAT1 and RbSTAT1L illustrated a similar exon-intron pattern with 23 exons in the coding sequence. Transcription factor-binding sites, which are mostly involved in the regulation of immune responses, were predicted at the putative promoter regions of the RbSTAT1 and RbSTAT1L genes. SYBR Green qPCR analysis revealed the ubiquitous expression of RbSTAT1 and RbSTAT1L transcripts in different fish tissues with the highest level observed in peripheral blood cells. Significantly modulated transcripts were noted upon viral (rock bream iridovirus [RBIV]), bacterial (Edwardsiella tarda and Streptococcus iniae), and pathogen-associated molecular pattern (lipopolysaccharide and poly I:C) stimulations. The WST-1 cell viability assay affirmed the potential antiviral capacity of RbSTAT1 and RbSTAT1L against RBIV. A possible role of RbSTAT1 and RbSTAT1L in the wound healing process was revealed according to their modulated expression in injured fish. In addition, the transcriptional regulation of RbSTAT1 and RbSTAT1L was analyzed by qPCR following stimulation with rock bream interleukin-10. Taken together, these findings suggest that the STAT1-mediated Janus kinase/STAT pathway might at least in part be involved in the regulatory mechanisms underlying the immune defensive roles against microbial pathogens and the wound healing process.
Collapse
|
|
8 |
11 |
14
|
Liu QL, Zhou H, Zhou ZG, Chen HN. Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment. Cancer Metastasis Rev 2023; 42:575-587. [PMID: 37061644 DOI: 10.1007/s10555-023-10107-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Colorectal cancer (CRC) patients frequently develop liver metastases, which are the major cause of cancer-related mortality. The molecular basis and management of colorectal liver metastases (CRLMs) remain a challenging clinical issue. Recent genomic evidence has demonstrated the liver tropism of CRC and the presence of a stricter evolutionary bottleneck in the liver as a target organ compared to lymph nodes. This bottleneck challenging CRC cells in the liver is organ-specific and requires adaptation not only at the genetic level, but also at the phenotypic level to crosstalk with the hepatic microenvironment. Here, we highlight the emerging evidence on the clonal evolution of CRLM and review recent insights into the molecular mechanisms orchestrating the bidirectional interactions between metastatic CRC cells and the unique liver microenvironment.
Collapse
|
Review |
2 |
9 |
15
|
Hahn AW, Stenehjem D, Nussenzveig R, Carroll E, Bailey E, Batten J, Maughan BL, Agarwal N. Evolution of the genomic landscape of circulating tumor DNA (ctDNA) in metastatic prostate cancer over treatment and time. Cancer Treat Res Commun 2019; 19:100120. [PMID: 30743187 DOI: 10.1016/j.ctarc.2019.100120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/20/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Targeted therapies have shown promise for men with metastatic castration-resistant prostate cancer (mCRPC). Due to the difficulty with obtaining tumor tissue in bony metastases, liquid biopsies are a promising alternative to guide treatment selection. While concurrent tissue next-generation sequencing (tNGS) and liquid biopsy has high concordance, it is unknown whether the genomic landscape of metastatic prostate cancer (mPC) changes over time or treatment. Herein, we hypothesize that the genomic landscape of mPC evolves with new treatments and/or time between tests. PATIENTS AND METHODS Men with mPC from the University of Utah with matched tNGS and liquid biopsy were included. Clinical data was collected retrospectively. Exonic regions from 69 genes covered by both platforms were included for analysis. Paired t tests were used to assess number of genomic alterations (GAs) between testing platforms. Number of alterations was assessed by time and number of treatments between testing by multivariate nonparametric trend tests. RESULTS 101 men with mPC were eligible and included. In men with no new treatments and ≤ 1 year between tests, a similar number of GAs were detected in both tests (2.0 vs. 2.2). In contrast, men with ≥ 1 new treatment between tests had significantly more GAs after treatment (5.0 vs. 2.4, p = 0.005). Total number of GAs was correlated with number of new treatments between testing (p = 0.003) and not time between testing (p = 0.76). CONCLUSION The genomic landscape of mPC evolves with subsequent therapies. This finding suggests that contemporary tumor genomic profile upon disease progression may optimize guidance towards subsequent therapy selection.
Collapse
|
|
6 |
8 |
16
|
Wang CX, Zhu SL, Wang XY, Feng Y, Li B, Li YG, Johnston RN, Liu GR, Zhou J, Liu SL. Complete genome sequence of Salmonella enterica subspecies arizonae str. RKS2983. Stand Genomic Sci 2015; 10:30. [PMID: 26203341 PMCID: PMC4511000 DOI: 10.1186/s40793-015-0015-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/21/2015] [Indexed: 11/10/2022] Open
Abstract
Salmonella arizonae (also called Salmonella subgroup IIIa) is a Gram-negative, non-spore-forming, motile, rod-shaped, facultatively anaerobic bacterium. S. arizonae strain RKS2983 was isolated from a human in California, USA. S. arizonae lies somewhere between Salmonella subgroups I (human pathogens) and V (also called S. bongori; usually non-pathogenic to humans) and so is an ideal model organism for studies of bacterial evolution from non-human pathogen to human pathogens. We hence sequenced the genome of RKS2983 for clues of genomic events that might have led to the divergence and speciation of Salmonella into distinct lineages with diverse host ranges and pathogenic features. The 4,574,836 bp complete genome contains 4,203 protein-coding genes, 82 tRNA genes and 7 rRNA operons. This genome contains several characteristics not reported to date in Salmonella subgroup I or V and may provide information about the genetic divergence of Salmonella pathogens.
Collapse
|
research-article |
10 |
8 |
17
|
Du P, Li L, Liu H, Fu L, Qin L, Zhang Z, Cui C, Sun Z, Han S, Xu J, Dai X, Huang B, Dong W, Tang F, Zhuang L, Han Y, Qi Z, Zhang X. High-resolution chromosome painting with repetitive and single-copy oligonucleotides in Arachis species identifies structural rearrangements and genome differentiation. BMC PLANT BIOLOGY 2018; 18:240. [PMID: 30333010 PMCID: PMC6192370 DOI: 10.1186/s12870-018-1468-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/03/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Arachis contains 80 species that carry many beneficial genes that can be utilized in the genetic improvement of peanut (Arachis hypogaea L. 2n = 4x = 40, genome AABB). Chromosome engineering is a powerful technique by which these genes can be transferred and utilized in cultivated peanut. However, their small chromosomes and insufficient cytological markers have made chromosome identification and studies relating to genome evolution quite difficult. The development of efficient cytological markers or probes is very necessary for both chromosome engineering and genome discrimination in cultivated peanut. RESULTS A simple and efficient oligonucleotide multiplex probe to distinguish genomes, chromosomes, and chromosomal aberrations of peanut was developed based on eight single-stranded oligonucleotides (SSONs) derived from repetitive sequences. High-resolution karyotypes of 16 Arachis species, two interspecific F1 hybrids, and one radiation-induced M1 plant were then developed by fluorescence in situ hybridization (FISH) using oligonucleotide multiplex, 45S and 5S rDNAs, and genomic in situ hybridization (GISH) using total genomic DNA of A. duranensis (2n = 2x = 20, AA) and A. ipaënsis (2n = 2x = 20, BB) as probes. Genomes, chromosomes, and aberrations were clearly identifiable in the established karyotypes. All eight cultivars had similar karyotypes, whereas the eight wild species exhibited various chromosomal variations. In addition, a chromosome-specific SSON library was developed based on the single-copy sequence of chromosome 6A of A. duranensis. In combination with repetitive SSONs and rDNA FISH, the single-copy SSON library was applied to identify the corresponding A3 chromosome in the A. duranensis karyotype. CONCLUSIONS The development of repetitive and single-copy SSON probes for FISH and GISH provides useful tools for the differentiation of chromosomes and identification of structural chromosomal rearrangement. It facilitates the development of high-resolution karyotypes and detection of chromosomal variations in Arachis species. To our knowledge, the methodology presented in this study demonstrates for the first time the correlation between a sequenced chromosome region and a cytologically identified chromosome in peanut.
Collapse
|
research-article |
7 |
5 |
18
|
Umasuthan N, Bathige SDNK, Whang I, Lim BS, Choi CY, Lee J. Insights into molecular profiles and genomic evolution of an IRAK4 homolog from rock bream (Oplegnathus fasciatus): immunogen- and pathogen-induced transcriptional expression. FISH & SHELLFISH IMMUNOLOGY 2015; 43:436-448. [PMID: 25555811 DOI: 10.1016/j.fsi.2014.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
As a pivotal signaling mediator of toll-like receptor (TLR) and interleukin (IL)-1 receptor (IL-1R) signaling cascades, the IL-1R-associated kinase 4 (IRAK4) is engaged in the activation of host immunity. This study investigates the molecular and expressional profiles of an IRAK4-like homolog from Oplegnathus fasciatus (OfIRAK4). The OfIRAK4 gene (8.2 kb) was structured with eleven exons and ten introns. A putative coding sequence (1395bp) was translated to the OfIRAK protein of 464 amino acids. The deduced OfIRAK4 protein featured a bipartite domain structure composed of a death domain (DD) and a kinase domain (PKc). Teleost IRAK4 appears to be distinct and divergent from that of tetrapods in terms of its exon-intron structure and evolutionary relatedness. Analysis of the sequence upstream of translation initiation site revealed the presence of putative regulatory elements, including NF-κB-binding sites, which are possibly involved in transcriptional control of OfIRAK4. Quantitative real-time PCR (qPCR) was employed to assess the transcriptional expression of OfIRAK4 in different juvenile tissues and post-injection of different immunogens and pathogens. Ubiquitous basal mRNA expression was widely detected with highest level in liver. In vivo flagellin (FLA) challenge significantly intensified its mRNA levels in intestine, liver and head kidney indicating its role in FLA-induced signaling. Meanwhile, up-regulated expression was also determined in liver and head kidney of animals challenged with potent immunogens (LPS and poly I:C) and pathogens (Edwardsiella tarda and Streptococcus iniae and rock bream iridovirus (RBIV)). Taken together, these data implicate that OfIRAK4 might be engaged in antibacterial and antiviral immunity in rock bream.
Collapse
|
|
10 |
4 |
19
|
Liao C, Zhao J, Kumar S, Chakraborty C, Talluri S, Munshi NC, Shammas MA. RAD51 Inhibitor Reverses Etoposide-Induced Genomic Toxicity and Instability in Esophageal Adenocarcinoma Cells. ARCHIVES OF CLINICAL TOXICOLOGY 2020; 2:3-9. [PMID: 32968740 PMCID: PMC7508453 DOI: 10.46439/toxicology.2.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aim: In normal cells, homologous recombination (HR) is strictly regulated and precise and plays an important role in preserving genomic integrity by accurately repairing DNA damage. RAD51 is the recombinase which mediates homologous base pairing and strand exchange during DNA repair by HR. We have previously reported that HR is spontaneously elevated (or dysregulated) in esophageal adenocarcinoma (EAC) and contributes to ongoing genomic changes and instability. The purpose of this study was to evaluate the impact of RAD51 inhibitor on genomic toxicity caused by etoposide, a chemotherapeutic agent. Methods: EAC cell lines (FLO-1 and OE19) were cultured in the presence of RAD51 inhibitor and/or etoposide, and impact on cell viability, apoptosis and genomic integrity/stability investigated. Genomic integrity/stability was monitored by evaluating cells for γ-H2AX (a marker for DNA breaks), phosphorylated RPA32 (a marker of DNA end resection which is a distinct step in the initiation of HR) and micronuclei (a marker of genomic instability). Results: Treatment with etoposide, a chemotherapeutic agent, was associated with marked genomic toxicity (as evident from increase in DNA breaks) and genomic instability in both EAC cell lines. Consistently, the treatment was also associated with apoptotic cell death. A small molecule inhibitor of RAD51 increased cytotoxicity while reducing genomic toxicity and instability caused by etoposide, in both EAC cell lines. Conclusion: RAD51 inhibitors have potential to increase cytotoxicity while reducing harmful genomic impact of chemotherapy.
Collapse
|
Journal Article |
5 |
3 |
20
|
Coussy F, Bonin F, Azorin P, Tariq Z, Driouch K. [Biology of metastases and molecular mechanisms of their formation]. Bull Cancer 2018; 106:24-36. [PMID: 30554635 DOI: 10.1016/j.bulcan.2018.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 02/05/2023]
Abstract
Metastasis in cancer patients is often associated with a poor prognosis. However, we still have limited knowledge of the underlying molecular mechanisms, due to the great complexity of the biological processes involved in the formation of metastases. During tumor progression, the metastatic cells acquire genetic and epigenetic modifications allowing them to adapt to the various environments they will encounter (in the circulation and the host microenvironment) and to resist to the antitumor therapeutic agents. In this review, we expose the current knowledge on the biology of metastases. We summarize the different signaling pathways involved in the successive steps of the metastatic cascade, highlighting recent advances in the field to better understand the molecular mechanisms leading to metastasis formation. In addition, our understanding of metastatic progression has made great progress with the recent advances in high throughput sequencing techniques. We expose data from genomic analyzes of metastases. These studies allowed the identification of alterations acquired exclusively in distant metastases. They highlight the emergence of alterations offering new targeted therapeutic options for cancer patients and they provide new insight into the mechanisms of treatment resistance at the origin of metastatic relapses. Finally, we present latest clinical trials based on the genomic profiles of metastases, initiated in recent years, and we discuss their potential impact in personalized medicine.
Collapse
|
Review |
7 |
2 |
21
|
The complete mitochondrial genome of carnivorous Genlisea tuberosa (Lentibulariaceae): Structure and evolutionary aspects. Gene 2022; 824:146391. [PMID: 35259463 DOI: 10.1016/j.gene.2022.146391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
Abstract
Sequenced genomic data for carnivorous plants are scarce, especially regarding the mitogenomes (MTs) and further studies are crucial to obtain a better understanding of the topic. In this study, we sequenced and characterized the mitochondrial genome of the tuberous carnivorous plant Genlisea tuberosa, being the first of its genus to be sequenced. The genome comprises 729,765 bp, encoding 80 identified genes of which 36 are protein-coding, 40 tRNA, four rRNA genes, and three pseudogenes. An intronic region from the cox1 gene was identified that encodes an endonuclease enzyme that is present in the other sequenced species of Lentibulariaceae. Chloroplast genes (pseudogene and complete) inserted in the MT genome were identified, showing possible horizontal transfer between organelles. In addition, 50 pairs of long repeats from 94 to 274 bp are present, possibly playing an important role in the maintenance of the MT genome. Phylogenetic analysis carried out with 34 coding mitochondrial genes corroborated the positioning of the species listed here within the family. The molecular dynamism in the mitogenome (e.g. the loss or pseudogenization of genes, insertion of foreign genes, the long repeats as well as accumulated mutations) may be reflections of the carnivorous lifestyle where a significant part of cellular energy was shifted for the adaptation of leaves into traps molding the mitochondrial DNA. The sequence and annotation of G. tuberosa's MT will be useful for further studies and serve as a model for evolutionary and taxonomic clarifications of the group as well as improving our comprehension of MT evolution.
Collapse
|
|
3 |
1 |
22
|
Jones LR. Intra-host variability of SARS-CoV-2: Patterns, causes and impact on COVID-19. Virology 2025; 603:110366. [PMID: 39724740 DOI: 10.1016/j.virol.2024.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Intra-host viral variability is related to pathogenicity, persistence, drug resistance, and the emergence of new clades. This work reviews the large amount of data on SARS-CoV-2 intra-host variability accumulated to date, addressing known and potential implications in COVID-19 and the emergence of VOCs and lineage-defining mutations. Topics covered include the distribution of intra-host polymorphisms across the genome, the corresponding mutational signatures, their patterns of emergence and extinction throughout infection, and the processes governing their abundance, frequency, and type (synonymous, nonsynonymous, indels, nonsense). Besides, evidence is reviewed that the virus can replicate and mutate in isolation at different anatomical compartments, which may imply that what we have learned from respiratory samples could be part of a broader picture.
Collapse
|
Review |
1 |
|
23
|
Li Y, Chen J, Lin Y, Zhong C, Jing H, Liu H. Thaumarchaeota from deep-sea methane seeps provide novel insights into their evolutionary history and ecological implications. MICROBIOME 2024; 12:197. [PMID: 39385283 PMCID: PMC11463064 DOI: 10.1186/s40168-024-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota mediate the rate-limiting step of nitrification and remove the ammonia that inhibits the aerobic metabolism of methanotrophs. However, the AOA that inhabit deep-sea methane-seep surface sediments (DMS) are rarely studied. Here, we used global DMS metagenomics and metagenome-assembled genomes (MAGs) to investigate the metabolic activity, evolutionary history, and ecological contributions of AOA. Expression of AOA-specific ammonia-oxidizing gene (amoA) was examined in the sediments collected from the South China Sea (SCS) to identify their active ammonia metabolism in the DMS. RESULTS Our analysis indicated that AOA contribute > 75% to the composition of ammonia-utilization genes within the surface layers (above 30 cm) of global DMS. The AOA-specific ammonia-oxidizing gene was actively expressed in the DMS collected from the SCS. Phylogenomic analysis of medium-/high-quality MAGs from 18 DMS-AOA indicated that they evolved from ancestors in the barren deep-sea sediment and then expanded from the DMS to shallow water forming an amoA-NP-gamma clade-affiliated lineage. Molecular dating suggests that the DMS-AOA origination coincided with the Neoproterozoic oxidation event (NOE), which occurred ~ 800 million years ago (mya), and their expansion to shallow water coincided with the Sturtian glaciation (~ 713 mya). Comparative genomic analysis suggests that DMS-AOA exhibit higher requirement of carbon source for protein synthesis with enhanced genomic capability for osmotic regulation, motility, chemotaxis, and utilization of exogenous organic compounds, suggesting it could be more heterotrophic compared with other lineages. CONCLUSION Our findings provide new insights into the evolutionary history of AOA within the Thaumarchaeota, highlighting their critical roles in nitrogen cycling in the global DMS ecosystems. Video Abstract.
Collapse
|
research-article |
1 |
|
24
|
Roma L, Ercan C, Conticelli F, Akyürek N, Savic Prince S, Mertz KD, Diebold J, Lardinois D, Piscuoglio S, Ng CK, Bubendorf L. Tracing Tumor Heterogeneity of Pleomorphic Carcinoma of the Lung. J Thorac Oncol 2024; 19:1284-1296. [PMID: 38723776 DOI: 10.1016/j.jtho.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Pulmonary pleomorphic carcinoma (PPC) is an aggressive and highly heterogeneous NSCLC whose underlying biology is still poorly understood. METHODS A total of 42 tumor areas from 20 patients with PPC were microdissected, including 39 primary tumors and three metastases, and the histologically distinct components were subjected to whole exome sequencing separately. We further performed in silico analysis of microdissected bulk RNA sequencing and methylation data of 28 samples from 14 patients with PPC. We validated our findings using immunohistochemistry. RESULTS The epithelial and the sarcomatoid components of PPCs shared a large number of genomic alterations. Most mutations in cancer driver genes were clonal and truncal between the two components of PPCs suggesting a common ancestor. The high number of alterations in the RTK-RAS pathway suggests that it plays an important role in the evolution of PPC. The metastases morphologically and genetically resembled the epithelial or the sarcomatoid components of the tumor. The transcriptomic and epigenetic profiles of the sarcomatoid components of PPCs with matched squamous-like or adenocarcinoma-like components differed from each other, and they shared more similarities to their matched epithelial components. NCAM1/CD56 was preferentially expressed in the sarcomatoid component of squamous-like PPCs, whereas CDH1/E-Cadherin expression was down-regulated in the sarcomatoid component of most PPCs. CONCLUSION Lung adenocarcinoma-like PPCs are mainly driven by RTK-RAS signaling, whereas epithelial-mesenchymal transition programs as highlighted by increased NCAM1 and decreased CDH1 expression govern the epithelial-sarcomatoid transition between the clonally related tumor components. Several alterations in PPCs pinpoint therapeutic opportunities.
Collapse
|
|
1 |
|
25
|
Larsen TG, Samaniego Castruita JA, Worning P, Westh H, Bartels MD. Within-host genomic evolution of methicillin-resistant Staphylococcus aureus in long-term carriers. Appl Microbiol Biotechnol 2024; 108:95. [PMID: 38212970 PMCID: PMC10784349 DOI: 10.1007/s00253-023-12932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Assessing the genomic evolution of Staphylococcus aureus can help us understand how the bacteria adapt to its environment. In this study, we aimed to assess the mutation rate within 144 methicillin-resistant Staphylococcus aureus (MRSA) carriers with a carriage time from 4 to 11 years, including some carriers who belonged to the same households. We found that 23 of the 144 individuals had completely different MRSA types over time and were therefore not long-term carriers of the same MRSA. From the remaining 121 individuals, we performed whole-genome sequencing (WGS) on 424 isolates and then compared these pairwise using core genome multilocus sequence typing (cgMLST) and single-nucleotide polymorphism (SNP) analyses. We found a median within-host mutation rate in long-term MRSA carriers of 4.9 (3.4-6.9) SNPs/genome/year and 2.7 (1.8-4.2) allelic differences/genome/year, when excluding presumed recombination. Furthermore, we stratified the cohort into subgroups and found no significant difference between the median mutation rate of members of households, individuals with presumed continued exposure, e.g., from travel and persons without known continued exposure. Finally, we found that SNPs occurred at random within the genes in our cohort. KEY POINTS: • Median mutation rate within long-term MRSA carriers of 4.9 (3.4-6.9) SNPs/genome/year • Similar median mutation rates in subgroups (households, travelers) • No hotspots for SNPs within the genome.
Collapse
|
research-article |
1 |
|