1
|
Thomson RM, Furuya-Kanamori L, Coffey C, Bell SC, Knibbs LD, Lau CL. Influence of climate variables on the rising incidence of nontuberculous mycobacterial (NTM) infections in Queensland, Australia 2001-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139796. [PMID: 32563864 DOI: 10.1016/j.scitotenv.2020.139796] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
UNLABELLED International reports indicate a rising incidence of nontuberculous mycobacterial (NTM) disease. Many infectious diseases have seasonal variation in incidence, and major weather events and climate change have been implicated. The aim of this study was to explore the relationship between climate variables and NTM incident cases in Queensland, Australia. METHODS NTM data were obtained from the Queensland notifiable conditions database for the period 2001-2016. Rainfall and temperature data were obtained from the Australian Bureau of Meteorology. Poisson regression models were used to assess notification rates (incidence cases per 100,000 population) over time and to estimate incidence rate ratios (IRR). Cross correlation coefficients were used to examine the relationship between rainfall and temperature data and NTM incidence over time in each Hospital and Health Service (HHS). RESULTS 12,219 NTM cases were reported. The most common species was M. intracellulare (39.1%), followed by M. avium (9.8%), M abscessus (8.5%), M. fortuitum (8.3%), M. chelonae (3.3%), and M. kansasii (2.4%). The estimated incidence rate increased from 11.10 (95% CI 8.10-15.22) in 2001 to 25.88 (95%CI 21.78-30.73) per 100,000 in 2016. The estimated IRR increased for all common species, except M. kansasii. Although increased IRRs were observed for most NTM species, geospatial heterogeneity was observed. The effect of rainfall and temperature on NTM incidence differed between species and geographic regions. CONCLUSIONS The incidence of NTM infections increased between 2001 and 2016. Variations in temperature and rainfall may play a role in environmental exposure to some species of NTM. Spatial variation in IRR suggests that there may also be other environmental factors that influence transmission.
Collapse
|
|
5 |
40 |
2
|
Gu X, Tay QXM, Te SH, Saeidi N, Goh SG, Kushmaro A, Thompson JR, Gin KYH. Geospatial distribution of viromes in tropical freshwater ecosystems. WATER RESEARCH 2018; 137:220-232. [PMID: 29550725 PMCID: PMC7112100 DOI: 10.1016/j.watres.2018.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/02/2018] [Accepted: 03/07/2018] [Indexed: 05/05/2023]
Abstract
This study seeks to understand the general distribution of virome abundance and diversity in tropical freshwater ecosystems in Singapore and the geospatial distribution of the virome under different landuse patterns. Correlations between diversity, environmental parameters and land use patterns were analyzed and significant correlations were highlighted. Overall, the majority (65.5%) of the annotated virome belonged to bacteriophages. The percentage of Caudovirales was higher in reservoirs whereas the percentages of Dicistroviridae, Microviridae and Circoviridae were higher in tributaries. Reservoirs showed a higher Shannon-index virome diversity compared to upstream tributaries. Land use (urbanized, agriculture and parkland areas) influenced the characteristics of the virome distribution pattern. Dicistroviridae and Microviridae were enriched in urbanized tributaries while Mimiviridae, Phycodnaviridae, Siphoviridae and Podoviridae were enriched in parkland reservoirs. Several sequences closely related to the emerging zoonotic virus, cyclovirus, and the human-related virus (human picobirnavirus), were also detected. In addition, the relative abundance of PMMoV (pepper mild mottle virus) sequences was significantly correlated with RT-qPCR measurements (0.588 < r < 0.879, p < 0.05). This study shows that spatial factors (e.g., reservoirs/tributaries, land use) are the main drivers of the viral community structure in tropical freshwater ecosystems.
Collapse
|
research-article |
7 |
29 |
3
|
Romha G, Gebru G, Asefa A, Mamo G. Epidemiology of Mycobacterium bovis and Mycobacterium tuberculosis in animals: Transmission dynamics and control challenges of zoonotic TB in Ethiopia. Prev Vet Med 2018; 158:1-17. [PMID: 30220382 DOI: 10.1016/j.prevetmed.2018.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/17/2022]
Abstract
Mycobacterium tuberculosis complex is the cause of tuberculosis (TB) in humans and other animals. Specifically, Mycobacterium bovis (M. bovis) and Mycobacterium tuberculosis (M. tuberculosis) are highly pathogenic mycobacteria that may infect different animal species and are the sources of TB in humans. The objective of this paper was to review the epidemiology of M. bovis and M. tuberculosis in animals. The review also highlighted the transmission dynamics of M. bovis and M. tuberculosis in humans and animals and control challenges of zoonotic TB in Ethiopia. The literature review focused on scientific peer-reviewed articles from studies exclusively conducted in Ethiopia that were published from 1998 to 2017. Husbandry system, breed and herd size have significant role in the epidemiology of bovine tuberculosis (BTB) in Ethiopia. The information presented reveals that different strains of M. bovis are widely distributed in domestic animals predominantly in the Ethiopian cattle and the main strain was found to be SB1176. In addition, the isolation of M. tuberculosis from domestic animals in different settings signifies the circulation of the agent between humans and animals in Ethiopia. The life styles of the Ethiopian communities, close contact with domestic animals and/or the habit of consuming raw animal products, are suggested as the main factors for transmission of M. bovis and M. tuberculosis between human and animal which may have impact on the TB control program in human. In Ethiopia, a human TB control program has been widely implemented, however, the role of animal in the transmission of the causative agent has been neglected which could be one of the challenges for an effective control program. This warrants the need for incorporating animal TB control programs using "One Health" approach for effective TB control for both human and animal.
Collapse
|
Review |
7 |
13 |
4
|
Geospatial epidemiology of Toxoplasma gondii infection in livestock, pets, and humans in China, 1984-2020. Parasitol Res 2022; 121:743-750. [PMID: 34988670 DOI: 10.1007/s00436-021-07415-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/19/2021] [Indexed: 12/22/2022]
Abstract
Undercooked or raw meat containing cyst-stage bradyzoites and oocyst-contaminated pets are presumed to constitute a major source of human toxoplasmosis. As the geospatial epidemiology of Toxoplasma gondii (T. gondii) infection in livestock, pets, and humans is rarely studied in China, we undertook a geospatial analysis using GIS visualization techniques. The present study retrieved information from the PubMed, China National Knowledge Infrastructure, and Baidu Scholar databases from 1984 up to 2020. All the data about the seroprevalence of T. gondii in livestock (sheep and goats, pigs, cattle and yaks), pets (cats, dogs), and humans in China were collected. Geospatial epidemiology of T. gondii infection in these hosts was performed using GIS. Results revealed that the estimated pooled seroprevalence of T. gondii was ranged from 3.98 to 43.02% in sheep and goats in China, 0.75 to 30.34% in cattle and yaks, 10.45 to 66.47% in pigs, 2.50 to 60.00% in cats, 0.56 to 27.65% in dogs, and 0.72 to 23.41% in humans. The higher seroprevalences of T. gondii were observed in sheep and goats in the districts of Chongqing, Zhejiang, and Beijing. The infection rates of T. gondii in cattle and yaks were higher in Guizhou, Zhejiang, and Chongqing. Also, the pigs from Chongqing and Guizhou were most severely infected with T. gondii. For cats, the districts of Shanxi, Hebei, and Yunnan had higher seroprevalences of T. gondii and, the infections among dogs were higher in Yunnan and Hebei as well. Furthermore, higher infection pressure of T. gondii exists in the districts of Taiwan and Tibet in humans. The geographical and spatial distribution of toxoplasmosis indicated that infection with T. gondii was widely spread in China, with a wide range of variations among the different hosts and regions in the country. Our results suggested that livestock and pets are not only a reservoir for the parasite but also a direct source of T. gondii infection for humans. It is important to control T. gondii infections in these animals that would reduce the risk of toxoplasmosis in humans.
Collapse
|
|
3 |
8 |
5
|
Habeeb IF, Chechet GD, Kwaga JKP. Molecular identification and prevalence of trypanosomes in cattle distributed within the Jebba axis of the River Niger, Kwara state, Nigeria. Parasit Vectors 2021; 14:560. [PMID: 34715895 PMCID: PMC8557008 DOI: 10.1186/s13071-021-05054-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background Trypanosomiasis is a fatal disease that threatens the economy of at least 37 countries in sub-Saharan Africa, particularly with regard to livestock farming. In this study, we investigated the prevalence of trypanosome infection in cattle, and molecularly identified the species of trypanosomes in infected cattle and the spatial distribution of trypanosome-infected herds along the Jebba axis of the River Niger. Methods A randomized cross-sectional study was conducted along the Jebba axis of the River Niger by screening cattle from 36 herd clusters by nested PCR using ITS-1 generic primers. Data generated were analysed using the Chi-square test at a 95% confidence interval. Results Microscopic examination revealed three infected cattle out of 398 examined, representing 0.8% prevalence. Twelve animals (3.0%) were positive by PCR. Our results showed a decline in the packed cell volume of infected animals (24.7%). The infection rates were categorized as single infection in 11/12 (91.7%) and mixed infection in 1/12 (8.3%). Animals were most frequently infected by Trypanosoma congolense (50.0%), with T. congolense Savannah being the most prevalent subspecies (71.4%). Aside from the infection rate by age (10.0%) and relative distance of animals from the River Niger (56.2%), statistical differences in every other parameter tested were based on mere probabilistic chance. Spatial data showed that the disease was prevalent among herds located less than 3 km from the River Niger. Conclusions Six species of trypanosomes were identified in cattle herds along the Jebba axis of the River Niger, with T. congolense being the most prevalent. Age and relative distance of herds from the River Niger may be risk factors for trypanosome infection in cattle herds in this area. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05054-0.
Collapse
|
|
4 |
7 |
6
|
Khine SK, Kyaw NTT, Thekkur P, Lin Z, Thi A. Malaria hot spot along the foothills of Rakhine state, Myanmar: geospatial distribution of malaria cases in townships targeted for malaria elimination. Trop Med Health 2019; 47:60. [PMID: 31889888 PMCID: PMC6921393 DOI: 10.1186/s41182-019-0184-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Myanmar has targeted elimination of malaria by 2030. In three targeted townships of Rakhine state of Myanmar, a project is being piloted to eliminate malaria by 2025. The comprehensive case investigation (CCI) and geotagging of cases by health workers is a core activity under the project. However, the CCI data is not analyzed for obtaining information on geospatial distribution of cases and timeliness of diagnosis. In this regard, we aimed to depict geospatial distribution and assess the proportion with delayed diagnosis among diagnosed malaria cases residing in three targeted townships during April 2018 to March 2019. Methods This was a cross sectional analysis of CCI data routinely collected by national malaria control programme. The geocode (latitude and longitude) of the address was analysed using Quantum Geographic Information System software to deduce spot maps and hotspots of cases. The EpiData analysis software was used to summarize the proportion with delay in diagnosis (diagnosed ≥24 hours after the fever onset). Results Of the 171 malaria cases diagnosed during study period, the CCI was conducted in 157 (92%) cases. Of them, 127 (81%) cases reported delay in diagnosis, 138 (88%) cases were indigenous who got infection within the township and 13 (8%) were imported from outside the township. Malaria hotspots were found along the foothills with increase in cases during the rainy season. The indigenous cases were concentrated over the foothills in the northern and southern borders of Toungup township. Conclusion In the targeted townships for malaria elimination, the high proportion of the cases was indigenous and clustered at the foothill areas during rainy season. The programme should strengthen case surveillance and healthcare services in the areas with aggregation of cases to eliminate the malaria in the township. As high majority of patients have delayed diagnosis, the reasons for delay has to be explored and corrective measures needs to be taken.
Collapse
|
Journal Article |
6 |
6 |
7
|
Li G, Zhang D, Chen Z, Feng D, Chen X, Tang S, Son H, Wang Z, Xi Y, Feng Z. Distribution of malaria patients seeking care in different types of health facilities during the implementation of National Malaria Elimination Programme. Malar J 2020; 19:131. [PMID: 32228594 PMCID: PMC7106820 DOI: 10.1186/s12936-020-03205-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND China launched the National Malaria Elimination Programme (NMEP) in 2010 and set the goal that all health facilities should be able to diagnose malaria. Additionally, hospitals at all levels could treat malaria by 2015. To provide a reference for the control of imported malaria, a study was conducted on the distribution of malaria patients seeking care in different types of health facilities. METHODS There were two data sources. One was obtained through the Infectious Diseases Information Reporting Management System (IDIRMS), which only contained the name of health facilities and the number of cases. The other was obtained through multistage stratified cluster sampling. Descriptive statistical analysis was used to investigate the distribution of malaria patients attending different types of health facilities (hospitals, township hospitals, and Centers for Disease Control and Prevention), hospital tiers (county-level, prefecture-level, and provincial-level), and hospital levels (primary, secondary, and tertiary). Chi-square test was also used to compare the proportions of patients seeking care outside their current residence region between different types of hospitals. Point maps were drawn to visualize the spatial distribution of hospitals reporting malaria cases, and flow maps were created to show the spatial flow of malaria patients by using the ArcGIS software. RESULTS The proportions of malaria patients who sought care in hospitals, township hospitals, and Centers for Disease Control and Prevention were 81.7%, 14.7%, and 3.6%, respectively. For those who sought care in hospitals, the percentages of patients who sought care in provincial-level, prefecture-level and county-level hospitals were 17.4%, 60.5% and 22.1%, correspondingly; the proportions of patients who sought care in tertiary hospitals, secondary hospitals, and primary hospitals were 59.8%, 39.9%, and 0.3%, respectively. Moreover, the proportions of patients seeking care in hospitals within county and prefectural administrative areas were 18.2%, 63.4%, respectively. CONCLUSION During the implementation of NMEP, malaria patients tended to seek care in tertiary hospitals and prefecture-level hospitals, and more than half of patients could be treated in hospitals in prefecture-level areas. In the current phase, it is necessary to establish referral system from county-level hospitals to higher-level hospitals for malaria treatment.
Collapse
|
Journal Article |
5 |
1 |
8
|
Herath PL, Jayawardana DT, Bandara NJGJ. Surface emission determination of selected trace gases from an active municipal solid waste dumpsite under the surface physicochemical heterogeneity. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 160:51-58. [PMID: 36787656 DOI: 10.1016/j.wasman.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Karadiyana municipal solid waste (MSW) dumpsite in Colombo, Sri Lanka, has been in operation for over 30 years and was evaluated for its surface Volatile Organic Compounds (VOCs), Ammonia (NH3), and Hydrogen sulfide (H2S) emissions. Based on the surface conditions and waste characters, the dump surface was divided into eight cells, and multiple samplings were done using static flux chamber methods. The study observed that the average flux rates of VOCs, H2S, and NH3 were 137.2 ± 243.8, 6.63 ± 15.9, and 14.2 ± 16.2 mg m-2h-1 throughout the dump site. The highest average VOCs and H2S flux rates (828.6, 24.3 mg m-2h-1) were reported from new organic waste with a considerable fraction (62.5, 35.6 %) from the total emission (61.0, 3.1 Kg d-1). Leachate-flowing trenches produced the highest NH3 flux rate (36.0 mg m-2h-1), while the highest emission fraction (47.5 %) from the total (12.0 Kg d-1) was reported on old mixed waste with vegetation. The moisture content of the organic waste layers is positively correlated with these trace gas flux rates, and the NH3 flux rates depend on the pH of the surface. Results showed that the age of the waste determines the trace gas emission rate, and leachate provides an ideal pathway for landfill trace gas migration to the atmosphere. Gas collection and purification systems are essential for the initial waste dumping area and leachate treatment system. The arrangement of a proper drainage system on the dump would reduce trace gas emissions.
Collapse
|
|
2 |
|
9
|
Ahmad T, Muhammad S, Umar M, Azhar MU, Ahmed A, Ahmad A, Ullah R. Spatial distribution of physicochemical parameters and drinking and irrigation water quality indices in the Jhelum River, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:263. [PMID: 38954066 DOI: 10.1007/s10653-024-02026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/05/2024] [Indexed: 07/04/2024]
Abstract
Sustainable management of river systems is a serious concern, requiring vigilant monitoring of water contamination levels that could potentially threaten the ecological community. This study focused on the evaluation of water quality in the Jhelum River (JR), Azad Jammu and Kashmir, and northern Punjab, Pakistan. To achieve this, 60 water samples were collected from various points within the JR Basin (JRB) and subjected to a comprehensive analysis of their physicochemical parameters. The study findings indicated that the concentrations of physicochemical parameters in the JRB water remained within safety thresholds for both drinking and irrigation water, as established by the World Health Organization and Pakistan Environmental Protection Agency. These physicochemical parameters refer to various chemical and physical characteristics of the water that can have implications for both human health (drinking water) and agricultural practices (irrigation water). The spatial variations throughout the river course distinguished between the upstream, midstream, and downstream sections. Specifically, the downstream section exhibited significantly higher values for physicochemical parameters and a broader range, highlighting a substantial decline in its quality. Significant disparities in mean values and ranges were evident, particularly in the case of nitrates and total dissolved solids, when the downstream section was compared with its upstream and midstream counterparts. These variations indicated a deteriorating downstream water quality profile, which is likely attributable to a combination of geological and anthropogenic influences. Despite the observed deterioration in the downstream water quality, this study underscores that the JRB within the upper Indus Basin remains safe and suitable for domestic and agricultural purposes. The JRB was evaluated for various irrigation water quality indices. The principal component analysis conducted in this study revealed distinct covariance patterns among water quality variables, with the first five components explaining approximately 79% of the total variance. Recommending the continued utilization of the JRB for irrigation, we advocate for the preservation and enhancement of water quality in the downstream regions.
Collapse
|
|
1 |
|
10
|
Ferraro G, Ericson B, Simons AM, Nash E, Kabir M. Bovine lead exposure from informal battery recycling in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86122-86137. [PMID: 37400703 DOI: 10.1007/s11356-023-27811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/17/2023] [Indexed: 07/05/2023]
Abstract
We provide an estimate of annual bovine lead exposure and attributable mortality at informal lead acid battery recycling sites in India. We use Pure Earth's Toxic Sites Identification Program database, the FAO's Gridded Livestock dataset, and a Poisson plume model of lead particle air dispersion to estimate site-level mortality. We calculate that India suffers 2370 excess bovine fatalities each year, resulting in more than USD $2.1 million of economic damage. The distribution of damages by location is highly skewed. While we find most sites (86.3%) induce no mortalities, 6.2% of sites induce minor damage (1 to 5 fatalities), 4.1% induce moderate damage (6 to 20 fatalities), and 3.4% induce severe damage (21 + fatalities). These findings highlight the importance of geospatial data to prioritize mitigation efforts and identify a previously unquantified burden on the rural poor.
Collapse
|
|
2 |
|
11
|
Soleimani M, Jalilvand A. Spatial analysis of COVID-19 incidence and mortality rates in northwest iran for future epidemic preparedness. Sci Rep 2025; 15:7450. [PMID: 40032988 DOI: 10.1038/s41598-025-91246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
The COVID-19 pandemic has underscored the critical need for effective public health strategies to combat infectious diseases. This study examines the epidemiological characteristics and spatial distribution of COVID-19 incidence and mortality in Zanjan Province, northwest Iran, to inform future epidemic preparedness. Using data from 39,739 hospitalized COVID-19 cases recorded between February 2020 and September 2021, sourced from the Medical Care Monitoring Center, we conducted descriptive and geospatial analyses. Demographic, clinical, and spatial variables were analyzed using logistic regression and advanced spatial techniques, including Kernel Density Estimation and Local Moran's I, to identify risk factors and disease hotspots. Results revealed that women accounted for 52% of cases, with higher incidence rates, while men exhibited higher mortality rates (7.86% vs. 7.80%). Urban areas, particularly the provincial capital, were identified as hotspots, with the highest patient density (20,384 cases per 10 km²). Comorbidities such as HIV/AIDS (OR: 4.85), chronic liver disease (OR: 3.6), chronic blood diseases (OR: 2.8), and cancer (OR: 2.5) significantly increased mortality risk, with ventilator use showing the highest odds ratio for death (OR = 91). Vaccination significantly reduced mortality, with fully vaccinated individuals experiencing a 6.3% mortality rate compared to 8.1% in unvaccinated individuals. Spatial analysis highlighted population density and mobility as key drivers of disease spread. These findings emphasize the importance of integrating spatial and epidemiological data to enhance pandemic preparedness. Targeted interventions in urban hotspots, early detection systems, and prioritizing vaccination for high-risk populations are critical for mitigating future outbreaks. This study provides a foundation for evidence-based public health strategies to strengthen global epidemic response and improve preparedness for future health crises.
Collapse
|
|
1 |
|