1
|
Jégouzo SAF, Quintero-Martínez A, Ouyang X, dos Santos Á, Taylor ME, Drickamer K. Organization of the extracellular portion of the macrophage galactose receptor: a trimeric cluster of simple binding sites for N-acetylgalactosamine. Glycobiology 2013; 23:853-64. [PMID: 23507965 PMCID: PMC3671775 DOI: 10.1093/glycob/cwt022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 01/26/2023] Open
Abstract
The properties of the human macrophage galactose receptor have been investigated. Specificity for N-acetylgalactosamine (GalNAc) residues with exposed 3- and 4-hydroxyl groups explains virtually all of the results obtained from a recently expanded array of synthetic glycans and is consistent with a model for the structure of the binding site. This simple interaction is sufficient to explain the ability of the receptor to bind to tumor-cell glycans bearing Tn and sialyl-Tn antigens, but not to more elaborate O-linked glycans that predominate on normal cells. This specificity also allows for binding of parasite glycans and screening of an array of bacterial outer membrane oligosaccharides confirms that the receptor binds to a subset of these structures with appropriately exposed GalNAc residues. A key feature of the receptor is the clustering of binding sites in the extracellular portion of the protein, which retains the trimeric structure observed in the cell membrane. Chemical crosslinking, gel filtration, circular dichroism analysis and differential scanning calorimetry demonstrate that this trimeric structure of the receptor is stabilized by an α-helical coiled coil that extends from the surface of the membrane to the globular carbohydrate-recognition domains. The helical neck domains form independent trimerization domains. Taken together, these results indicate that the macrophage galactose receptor shares many of the features of serum mannose-binding protein, in which clusters of monosaccharide-binding sites serve as detectors for a simple epitope that is not common on endogenous cell surface glycans but that is abundant on the surfaces of tumor cells and certain pathogens.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
48 |
2
|
Hokke CH, van Diepen A. Helminth glycomics - glycan repertoires and host-parasite interactions. Mol Biochem Parasitol 2016; 215:47-57. [PMID: 27939587 DOI: 10.1016/j.molbiopara.2016.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 01/12/2023]
Abstract
Glycoproteins and glycolipids of parasitic helminths play important roles in biology and host-parasite interaction. This review discusses recent helminth glycomics studies that have been expanding our insights into the glycan repertoire of helminths. Structural data are integrated with biological and immunological observations to highlight how glycomics advances our understanding of the critical roles that glycans and glycan motifs play in helminth infection biology. Prospects and challenges in helminth glycomics and glycobiology are discussed.
Collapse
|
Review |
9 |
47 |
3
|
Gulati S, Lasanajak Y, Smith DF, Cummings RD, Air GM. Glycan array analysis of influenza H1N1 binding and release. Cancer Biomark 2015; 14:43-53. [PMID: 24643041 DOI: 10.3233/cbm-130376] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Influenza viruses initiate infection by attaching to sialic acid receptors on the surface of host cells. It has been recognized for some time that avian influenza viruses usually bind to terminal sialic acid that is linked in the α2-3 configuration to the next sugar while human viruses show preference for α2-6 linked sialic acid. With developments in synthetic chemistry and chemo-enzymatic methods of synthesizing quite complex glycans, it has become clear that the binding specificity extends beyond the sialic acid, and this has led to considerable interest in developing glycan reagents that could be used either as a diagnostic tool for particular influenza viruses, or to identify cells that are susceptible to infection by certain influenza viruses. Here we describe the use of the Consortium for Functional Glycomics Glycan Array to investigate binding specificity of influenza hemagglutinin and cleavage by neuraminidase, using seasonal and pandemic H1N1 influenza viruses as examples, and compare the results with published data using other array methods.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
27 |
4
|
Stefanowicz K, Lannoo N, Proost P, Van Damme EJM. Arabidopsis F-box protein containing a Nictaba-related lectin domain interacts with N-acetyllactosamine structures. FEBS Open Bio 2012; 2:151-8. [PMID: 23650594 PMCID: PMC3642139 DOI: 10.1016/j.fob.2012.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022] Open
Abstract
The Arabidopsis thaliana genome contains a small group of bipartite F-box proteins, consisting of an N-terminal F-box domain and a C-terminal domain sharing sequence similarity with Nictaba, the jasmonate-induced glycan-binding protein (lectin) from tobacco. Based on the high sequence similarity between the C-terminal domain of these proteins and Nictaba, the hypothesis was put forward that the so-called F-box-Nictaba proteins possess carbohydrate-binding activity and accordingly can be considered functional homologs of the mammalian sugar-binding F-box or Fbs proteins which are involved in proteasomal degradation of glycoproteins. To obtain experimental evidence for the carbohydrate-binding activity and specificity of the A. thaliana F-box-Nictaba proteins, both the complete F-box-Nictaba sequence of one selected Arabidopsis F-box protein (in casu At2g02360) as well as the Nictaba-like domain only were expressed in Pichia pastoris and analyzed by affinity chromatography, agglutination assays and glycan micro-array binding assays. These results demonstrated that the C-terminal Nictaba-like domain provides the F-box-protein with a carbohydrate-binding activity that is specifically directed against N- and O-glycans containing N-acetyllactosamine (Galβ1-3GlcNAc and Galβ1-4GlcNAc) and poly-N-acetyllactosamine ([Galβ1-4GlcNAc]n) as well as Lewis A (Galβ1-3(Fucα1-4)GlcNAc), Lewis X (Galβ1-4(Fucα1-3)GlcNAc, Lewis Y (Fucα1-2Galβ1-4(Fucα1-3)GlcNAc) and blood type B (Galα1-3(Fucα1-2)Galβ1-3GlcNAc) motifs. Based on these findings one can reasonably conclude that at least the A. thaliana F-box-Nictaba protein encoded by At2g02360 can act as a carbohydrate-binding protein. The results from the glycan array assays revealed differences in sugar-binding specificity between the F-box protein and Nictaba, indicating that the same carbohydrate-binding motif can accommodate unrelated oligosaccharides.
Collapse
|
Journal Article |
13 |
22 |
5
|
Cohen M, Fisher CJ, Huang ML, Lindsay LL, Plancarte M, Boyce WM, Godula K, Gagneux P. Capture and characterization of influenza A virus from primary samples using glycan bead arrays. Virology 2016; 493:128-35. [PMID: 27031581 PMCID: PMC4860064 DOI: 10.1016/j.virol.2016.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 12/22/2022]
Abstract
Influenza A viruses (IAVs) utilize sialylated host glycans as ligands for binding and infection. The glycan-binding preference of IAV hemagglutinin (HA) is an important determinant of host specificity. Propagation of IAV in embryonated chicken eggs and cultured mammalian cells yields viruses with amino acid substitutions in the HA that can alter the binding specificity. Therefore, it is important to determine the binding specificity of IAV directly in primary samples since it reflects the actual tropism of virus in nature. We developed a novel platform for analysis of IAV binding specificity in samples that contain very low virus titers. This platform consists of a high-density flexible glycan display on magnetic beads, which promotes multivalent interactions with the viral HA. Glycan-bound virus is detected by quantifying the viral neuraminidase activity via a fluorogenic reporter, 2'-(4-methylumbelliferyl)-α-d-N-acetylneuraminic acid. This method eliminates the need for labeling the virus and significantly enhances the sensitivity of detection.
Collapse
|
Validation Study |
9 |
11 |
6
|
Abstract
We describe the method to prepare neoglycoproteins from the conjugation of bovine serum albumin and pyridylaminated glycans. Large quantities of glycans (>1 mg) can be pyridylaminated and then converted to their 1-amino-1-deoxy derivatives by reaction with hydrogen followed by hydrazine. These pyridylaminated glycans can then be conjugated to bovine serum albumin via esterification with N-( m-maleimidobenzoyloxy)succinimide to form a neoglycoprotein, e.g., glycosylated bovine serum albumin. As a demonstration, we prepared High-mannose bovine serum albumin, which was immobilized on an activated glass slide. Then, we showed that the neoglycoprotein bind to Cy3-labeled Lens culinaris agglutinin, a mannose-specific plant lectin, as detected using an evanescent-field-activated fluorescence scanner system.
Collapse
|
|
9 |
7 |
7
|
Sugihara K, Shibata TK, Takata K, Kimura T, Kanayama N, Williams R, Hatakeyama S, Akama TO, Kuo CW, Khoo KH, Fukuda MN. Attenuation of fibroblast growth factor signaling by poly-N-acetyllactosamine type glycans. FEBS Lett 2013; 587:3195-201. [PMID: 23968720 DOI: 10.1016/j.febslet.2013.07.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 11/25/2022]
Abstract
Fibroblast growth factors (FGFs) and their receptors are expressed in a variety of mammalian tissues, playing a role in development and cell proliferation. While analyzing human sperm motility, we found that sperm treated with endo-β-galactosidase (EBG), which specifically hydrolyzes poly-N-acetyllactosamine type glycans (polyLacs), enhanced motility. Mass spectrometry analysis revealed that sperm-associated polyLacs are heavily fucosylated, consistent with Lewis Y antigen. Immunohistochemistry of epididymis using an anti-Lewis Y antibody before and after EBG treatment suggested that polyLacs carrying the Lewis Y epitope are synthesized in epididymal epithelia and secreted to seminal fluid. EBG-treated sperm elevated cAMP levels and calcium influx, indicating activation of fibroblast growth factor signaling. Seminal fluid polyLacs bound to FGFs in vitro, and impaired FGF-mediated signaling in HEK293T cells.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
6 |
8
|
Thakur K, Kaur T, Kaur M, Hora R, Singh J. Exploration of carbohydrate binding behavior and anti-proliferative activities of Arisaema tortuosum lectin. BMC Mol Biol 2019; 20:15. [PMID: 31064325 PMCID: PMC6505227 DOI: 10.1186/s12867-019-0132-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lectins have come a long way from being identified as proteins that agglutinate cells to promising therapeutic agents in modern medicine. Through their specific binding property, they have proven to be anti-cancer, anti-insect, anti-viral agents without affecting the non-target cells. The Arisaema tortuosum lectin (ATL) is a known anti-insect and anti-cancer candidate, also has interesting physical properties. In the present work, its carbohydrate binding behavior is investigated in detail, along with its anti-proliferative property. RESULTS The microcalorimetry of ATL with a complex glycoprotein asialofetuin demonstrated trivalency contributed by multiple binding sites and enthalpically driven spontaneous association. The complex sugar specificity of ATL towards multiple sugars was also demonstrated in glycan array analysis in which the trimannosyl pentasaccharide core N-glycan [Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ] was the highest binding motif. The high binding glycans for ATL were high mannans, complex N-glycans, core fucosylated N-glycans and glycans with terminal lactosamine units attached to pentasaccharide core. ATL induced cell death in IMR-32 cells was observed as time dependent loss in cell number, formation of apoptotic bodies and DNA damage. As a first report of molecular cloning of ATL, the in silico analysis of its cDNA revealed ATL to be a β-sheet rich heterotetramer. A homology model of ATL showed beta prism architecture in each monomer with 85% residues in favoured region of Ramachandran plot. CONCLUSIONS Detailed exploration of carbohydrate binding behavior indicated ATL specificity towards complex glycans, while no binding to simple sugars, including mannose. Sequence analysis of ATL cDNA revealed that during the tandem evolutionary events, domain duplication and mutations lead to the loss of mannose specificity, acquiring of new sugar specificity towards complex sugars. It also resulted in the formation of a two-domain single chain polypeptide with both domains having different binding sites due to mutations within the consensus carbohydrate recognition sites [QXDXNXVXY]. This unique sugar specificity can account for its significant biological properties. Overall finding of present work signifies anti-cancer, anti-insect and anti-viral potential of ATL making it an interesting molecule for future research and/or theragnostic applications.
Collapse
|
research-article |
6 |
3 |
9
|
Brola TR, Dreon MS, Qiu JW, Heras H. A highly stable, non-digestible lectin from Pomacea diffusa unveils clade-related protection systems in apple snail eggs. ACTA ACUST UNITED AC 2020; 223:jeb.231878. [PMID: 32719049 DOI: 10.1242/jeb.231878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
The acquisition of egg protection is vital for species survival. Poisonous eggs from Pomacea apple snails have defensive macromolecules for protection. Here we isolated and characterized a novel lectin called PdPV1 that is massively accumulated in the eggs of Pomacea diffusa and seems part of its protective cocktail. The native protein, an oligomer of ca 256 kDa, has high structural stability, withstanding 15 min boiling and denaturing by SDS. It resists in vitro proteinase digestion and displays structural stability between pH 2.0 and pH 12.0, and up to 85°C. These properties, as well as its subunit sequences, glycosylation pattern, presence of carotenoids, size and global shape resemble those of its orthologs from other Pomacea. Furthermore, like members of the canaliculata clade, PdPV1 is recovered unchanged in feces of mice ingesting it, supporting an anti-nutritive defensive function. PdPV1 also displays a strong hemagglutinating activity, specifically recognizing selected ganglioside motifs with high affinity. This activity is only shared with PsSC, a perivitelline from the same clade (bridgesii clade). As a whole, these results indicate that species in the genus Pomacea have diversified their egg defenses: those from the bridgesii clade are protected mostly by non-digestible lectins that lower the nutritional value of eggs, in contrast with protection by neurotoxins of other Pomacea clades, indicating that apple snail egg defensive strategies are clade specific. The harsh gastrointestinal environment of predators would have favored their appearance, extending by convergent evolution the presence of plant-like highly stable lectins, a strategy not reported in other animals.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
3 |
10
|
Abstract
We describe a method to detect influenza virus using an evanescent-field-activated fluorescence scanner type glycan array and ELISA system. Neoglycoprotein was prepared by combination of organic chemistry and biomaterial preparation. These ligands were spotted on a glass plate or plastic well to make a glycan array and ELISA plate. We detected cultured influenza virus using glycan array and ELISA. Then, we showed that the neoglycoprotein binds to Cy3-labeled hemagglutinins (H1 and H5), a NeuAcα2,6LacNAc or NeuAcα2,3LacNAc recognized protein, as detected.
Collapse
|
|
5 |
3 |
11
|
Lin TW, Chang JK, Wu YR, Sun TH, Cheng YY, Ren CT, Pan MH, Wu JL, Chang KH, Yang HI, Chen CM, Wu CY, Chen YR. Ganglioside-focused Glycan Array Reveals Abnormal Anti-GD1b Auto-antibody in Plasma of Preclinical Huntington's Disease. Mol Neurobiol 2023; 60:3873-3882. [PMID: 36976478 DOI: 10.1007/s12035-023-03307-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
Huntington's disease (HD) is a progressive and devastating neurodegenerative disease marked by inheritable CAG nucleotide expansion. For offspring of HD patients carrying abnormal CAG expansion, biomarkers that predict disease onset are crucially important but still lacking. Alteration of brain ganglioside patterns has been observed in the pathology of patients carrying HD. Here, by using a novel and sensitive ganglioside-focused glycan array, we examined the potential of anti-glycan auto-antibodies for HD. In this study, we collected plasma from 97 participants including 42 control (NC), 16 pre-manifest HD (pre-HD), and 39 HD cases and measured the anti-glycan auto-antibodies by a novel ganglioside-focused glycan array. The association between plasma anti-glycan auto-antibodies and disease progression was analyzed using univariate and multivariate logistic regression. The disease-predictive capacity of anti-glycan auto-antibodies was further investigated by receiver operating characteristic (ROC) analysis. We found that anti-glycan auto-antibodies were generally higher in the pre-HD group when compared to the NC and HD groups. Specifically, anti-GD1b auto-antibody demonstrated the potential for distinguishing between pre-HD and control groups. Moreover, in combination with age and the number of CAG repeat, the level of anti-GD1b antibody showed excellent predictability with an area under the ROC curve (AUC) of 0.95 to discriminate between pre-HD carriers and HD patients. With glycan array technology, this study demonstrated abnormal auto-antibody responses that showed temporal changes from pre-HD to HD.
Collapse
|
|
2 |
1 |
12
|
Bennett A, Hull J, Jolinon N, Tordo J, Moss K, Binns E, Mietzsch M, Hagemann C, Linden RM, Serio A, Chipman P, Sousa D, Broecker F, Seeberger P, Henckaerts E, McKenna R, Agbandje-McKenna M. Comparative structural, biophysical, and receptor binding study of true type and wild type AAV2. J Struct Biol 2021; 213:107795. [PMID: 34509611 PMCID: PMC9918372 DOI: 10.1016/j.jsb.2021.107795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 01/25/2023]
Abstract
Adeno-associated viruses (AAV) are utilized as gene transfer vectors in the treatment of monogenic disorders. A variant, rationally engineered based on natural AAV2 isolates, designated AAV-True Type (AAV-TT), is highly neurotropic compared to wild type AAV2 in vivo, and vectors based on it, are currently being evaluated for central nervous system applications. AAV-TT differs from AAV2 by 14 amino acids, including R585S and R588T, two residues previously shown to be essential for heparan sulfate binding of AAV2. The capsid structures of AAV-TT and AAV2 visualized by cryo-electron microscopy at 3.4 and 3.0 Å resolution, respectively, highlighted structural perturbations at specific amino acid differences. Differential scanning fluorimetry (DSF) performed at different pH conditions demonstrated that the melting temperature (Tm) of AAV2 was consistently ∼5 °C lower than AAV-TT, but both showed maximal stability at pH 5.5, corresponding to the pH in the late endosome, proposed as required for VP1u externalization to facilitate endosomal escape. Reintroduction of arginines at positions 585 and 588 in AAV-TT caused a reduction in Tm, demonstrating that the lack of basic amino acids at these positions are associated with capsid stability. These results provide structural and thermal annotation of AAV2/AAV-TT residue differences, that account for divergent cell binding, transduction, antigenic reactivity, and transduction of permissive tissues between the two viruses. Specifically, these data indicate that AAV-TT may not utilize a glycan receptor mediated pathway to enter cells and may have lower antigenic properties as compared to AAV2.
Collapse
|
Comparative Study |
4 |
1 |
13
|
Narla SN, Sun XL. Oriented Immobilized Sialyloligo-macroligand Microarray. Methods Mol Biol 2015; 1367:195-206. [PMID: 26537475 DOI: 10.1007/978-1-4939-3130-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Silaic acid is the most common terminal glycan on cell surface glycoproteins and glycolipids, involving in many biological processes. Studying interactions between multivalent sialic acid scaffolds and proteins binding to it will give incredible information in understanding the biological process the sialic acid is involved in. Here we describe chemoenzymatic synthesis of chain-end functionalized sialyllactose-containing glycopolymers with different linkages and their oriented immobilization for glycoarray and SPR-based glyco-biosensor applications.
Collapse
|
|
10 |
0 |
14
|
Wu HJ, Singla A, Weatherston JD. Nanocube-Based Fluidic Glycan Array. Methods Mol Biol 2022; 2460:45-63. [PMID: 34972930 DOI: 10.1007/978-1-0716-2148-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nature of cell membrane fluidity permits glycans, which are attached to membrane proteins and lipids, to freely diffuse on cell surfaces. Through such two-dimensional motion, some weakly binding glycans can participate in lectin binding processes, eventually changing lectin binding behaviors. This chapter discusses a plasmonic nanocube sensor that allows users to detect lectin binding kinetics in a cell membrane mimicking environment. This assay only requires standard laboratory spectrometers, including microplate readers. We describe the basics of the technology in detail, including sensor fabrication, sensor calibration, data processing, a general protocol for detecting lectin-glycan interactions, and a troubleshooting guide.
Collapse
|
|
3 |
|
15
|
Pokrovsky VS, Qoura LA, Tikhonov AA, Rubina AY, Kushlinskii NE. Multiplex analysis of ovarian cancer patients using glycan microarray. Anal Biochem 2025; 701:115806. [PMID: 39947417 DOI: 10.1016/j.ab.2025.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/22/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Investigation of tumor-associated glycan antigens (TAGs) could be helpful for the development of sensitive cancer diagnostics and novel therapies. Glycan microarrays are effective methods for analyzing glycans and anti-glycan antibodies, which are immobilized arrays of oligo- or poly-saccharides on different substrates, making them a promising class of oncological biomarkers. Blood serum samples from patients (n = 203) with ovarian cancer (OvaCan) and healthy volunteers were analyzed using a glycan microarray containing 63 immobilized glycans to determine changes in anti-glycan IgG and IgM antibody profiles in OvaCan. Levels of anti-glycan IgG and IgM antibodies in OvaCan statistically differed from levels in healthy donors: the most prominent statistically significant difference for anti-glycan IgG antibodies was found for 6-O-su-Lec (AUC = 0.657, Se = 48.0 %, and Sp = 73.3 %). The AUC values for certain glycans investigated in diagnosing OvaCan indicated a fingerprint consisting of IgM antibodies to specific glycans, and the most specific anti-glycan IgM antibodies were Ley (AUC = 0.625, Se = 98.0 % and Sp = 45.0 %). The potential of these serological biomarkers to distinguish between OvaCan and other malignancies is still an unresolved issue that requires more large-scale studies to confirm and validate the use of these biomarkers in the diagnosis of different types of cancer.
Collapse
|
|
1 |
|
16
|
Nakakita SI, Nakakita Y, Kurihara R, Hirabayashi J. Preparation of Glycan Arrays Using Glycopeptides Derived From Biomaterials. Methods Mol Biol 2022; 2556:45-58. [PMID: 36175626 DOI: 10.1007/978-1-0716-2635-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In general, viruses recognize host cell surface glycans, but the measurement of virus-host cell glycan interaction is not widely operated. This is not only because commercially available, structure-defined glycans are limited, but also because such interactions, if any, between viruses and isolated glycans are relatively weak, and thus, difficult to detect by conventional methods, e.g., enzyme-linked immune-sorbent assay. We describe a practical method to detect virus binding to glycans; for this, preparation of glycan arrays using glycopeptides derived from biomaterials is necessary. In this context, neoglycoprotein is produced using bovine serum albumin (BSA) and commercially available glycopeptides, with which influenza viruses are detected using an evanescent-field-activated fluorescence scanner. It is clearly shown that H1N1 strains of influenza virus recognize BSA, to which DiNeuα2-6bianntena-peptide (SGP) is covalently linked, while on the other hand H5N1 strains recognize BSA linked to DiNeuα2-3bianntena-peptide (α2,3SGP).
Collapse
|
|
3 |
|
17
|
Li Y, Li Y, Guo Y, Chen C, Yang L, Jiang Q, Ling P, Wang S, Li L, Fang J. Enzymatic modular synthesis of asymmetrically branched human milk oligosaccharides. Carbohydr Polym 2024; 333:121908. [PMID: 38494200 DOI: 10.1016/j.carbpol.2024.121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/07/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024]
Abstract
Human milk oligosaccharides (HMOs) are intricate glycans that promote healthy growth of infants and have been incorporated into infant formula as food additives. Despite their importance, the limited availability of asymmetrically branched HMOs hinders the exploration of their structure and function relationships. Herein, we report an enzymatic modular strategy for the efficient synthesis of these HMOs. The key branching enzyme for the assembly of branched HMOs, human β1,6-N-acetylglucosaminyltransferase 2 (GCNT2), was successfully expressed in Pichia pastoris for the first time. Then, it was integrated with six other bacterial glycosyltransferases to establish seven glycosylation modules. Each module comprises a one-pot multi-enzyme (OPME) system for in-situ generation of costly sugar nucleotide donors, combined with a glycosyltransferase for specific glycosylation. This approach enabled the synthesis of 31 branched HMOs and 13 linear HMOs in a stepwise manner with well-programmed synthetic routes. The binding details of these HMOs with related glycan-binding proteins were subsequently elucidated using glycan microarray assays to provide insights into their biological functions. This comprehensive collection of synthetic HMOs not only serves as standards for HMOs structure identification in complex biological samples but also significantly enhances the fields of HMOs glycomics, opening new avenues for biomedical applications.
Collapse
|
|
1 |
|
18
|
Yamada K. 9-Fluorenylmethyl Chloroformate Labeling for O-Glycan Analysis. Methods Mol Biol 2024; 2763:159-169. [PMID: 38347409 DOI: 10.1007/978-1-0716-3670-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Structural analysis of O-glycans from mucins and characterization of the interaction of these glycans with other biomolecules are essential for a full understanding of mucins. Various techniques have been developed for the structural and functional analysis of glycans. While 9-fluorenylmethyl chloroformate (Fmoc-Cl) is generally used to protect amino groups in peptide synthesis, it can also be used as a glycan-labeling reagent for structural analysis. Fmoc-labeled glycans are strongly fluorescent and can be analyzed with high sensitivity using liquid chromatography-fluorescence detection (LC-FD) analysis as well as being analyzed with high sensitivity by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Fmoc-labeled glycans can be easily delabeled and converted to glycosylamine-form or free (hemiacetal or aldehyde)-form glycans that can be used to fabricate glycan arrays or synthesize glycosyl dendrimers. This derivatization allows for the isolation from biological samples of glycans that are difficult to synthesize chemically, as well as the fabrication of immobilized-glycan devices. The Fmoc labeling method promises to be a tool for accelerating O-glycan structural analysis and an understanding of molecular interactions. In this chapter, we introduce the Fmoc labeling method for analysis of O-glycans and fabrication of O-glycan arrays.
Collapse
|
|
1 |
|