1
|
Wang Q, He J. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5. WATER RESEARCH 2020; 185:116300. [PMID: 32823196 DOI: 10.1016/j.watres.2020.116300] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Bacteria capable of simultaneous nitrification and denitrification (SND) and phosphate removal could eliminate the need for separate reactors to remove nutrients from wastewater and alleviate competition for carbon sources between different heterotrophs in wastewater treatment plants (WWTPs). Here we report a newly isolated Thauera sp. strain SND5, that removes nitrogen and phosphorus from wastewater via SND and denitrifying-phosphate accumulation, respectively, without accumulation of metabolic intermediates. Strain SND5 simultaneously removes ammonium, nitrite, and nitrate at an average rate of 2.85, 1.98, and 2.42 mg-N/L/h, respectively. Batch testing, detection of functional genes, nitrogenous gas detection and thermodynamic analysis suggested that nitrogen gas, with hydroxylamine produced as an intermediate, was the most likely end products of heterotrophic ammonium oxidation by strain SND5. The generated end products and intermediates suggest a novel nitrogen removal mechanism for heterotrophic ammonium oxidation in strain SND5 (NH4+→NH2OH→N2). Strain SND5 was also found to be a denitrifying phosphate-accumulating organism, capable of accumulating phosphate, producing and storing polyhydroxybutyrate (PHB) as an intracellular source of carbon while using nitrate/nitrite or oxygen as an electron acceptor during PHB catabolism. This study identifies a novel pathway by which simultaneous nitrogen and phosphorus removal occurs in WWTPs via a single microbe.
Collapse
|
|
5 |
145 |
2
|
Ashrafi O, Yerushalmi L, Haghighat F. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 158:146-57. [PMID: 25982876 DOI: 10.1016/j.jenvman.2015.05.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 05/10/2023]
Abstract
Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs.
Collapse
|
Review |
10 |
87 |
3
|
Yu Y, Li X, Feng Z, Xiao M, Ge T, Li Y, Yao H. Polyethylene microplastics alter the microbial functional gene abundances and increase nitrous oxide emissions from paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128721. [PMID: 35334262 DOI: 10.1016/j.jhazmat.2022.128721] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of microplastics (MPs) in terrestrial ecosystems can affect greenhouse gases (GHGs) production by changing soil structure and microbial functions. In this study, microcosm experiments were conducted to investigate the impact of polyethylene (PE) MP addition on soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions from paddy soils and their associated microbial functional genes. Methane was not considered due to the negligible emissions throughout the incubation. The amendment of both virgin and aged PE MPs did not significantly (p > 0.05) affect soil CO2 emissions, but significantly (p < 0.05) increased the abundances of microbial functional genes encoding enzymes involved in hemicellulose (abfA) and lignin (mnp) decomposition, indicating plastic particle has potential to stimulate soil organic carbon decomposition. The presence of PE MP significantly increased N2O emissions by 3.7-fold, which was probably due to PE MP increased the abundances of nirS gene involved in nitrite reductase. In addition, compared with virgin PE MP treatment, artificially aged PE MP did not significantly (p > 0.05) influence soil CO2 and N2O emissions. Our results provide evidence that PE MP likely cause a high risk of N2O emission from paddy soils, this factor should be considered in future estimates of GHGs emissions from rice fields.
Collapse
|
|
3 |
85 |
4
|
Wang D, Jiang P, Zhang H, Yuan W. Biochar production and applications in agro and forestry systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137775. [PMID: 32213399 DOI: 10.1016/j.scitotenv.2020.137775] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 05/12/2023]
Abstract
Biochar is a product of biomass thermochemical conversion. Its yield and quality vary significantly with the production technology and process parameters, which also affect its performance in agro and forestry systems. In this review, biochar production technologies including slow pyrolysis, fast pyrolysis, gasification, and torrefaction were compared. The yield of biochar was found to decrease with faster heating rate or more oxygen available. The benefits of biochar application to agro and forestry systems were discussed. Improvements in soil health, plant growth, carbon sequestration, and greenhouse gas mitigation are apparent in many cases, but opposite results do exist, indicating that the beneficial aspect of biochar are limited to particular conditions such as the type of biochar used, the rate of application, soil type, climate, and crop species. Limitations of current studies and future research needed on biochar are also discussed. Specifically, the relationships among biochar production technologies, biochar properties, and biochar performance in agro and forestry systems must be better understood.
Collapse
|
Review |
5 |
62 |
5
|
Kong Q, Wang ZB, Niu PF, Miao MS. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process. BIORESOURCE TECHNOLOGY 2016; 210:94-100. [PMID: 26935325 DOI: 10.1016/j.biortech.2016.02.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/13/2016] [Accepted: 02/16/2016] [Indexed: 05/20/2023]
Abstract
This study evaluates greenhouse gas emission and the microbial community dynamics during simultaneous nitrification and denitrification (SND) process. Based on CO2 equivalents, the SND reactor released 4.28g of greenhouse gases each cycle. 2.91% of the incoming nitrogen load was emitted as N2O. The CO2 and N2O emissions mainly occurred in the aerobic stage and CH4 emissions were consistently near zero. Extracellular polymeric substance (EPS) contents in activated sludge increased during start-up the SND process. High-throughput sequencing showed increases in bacterial species richness, leading to changes in EPS content and composition observed using 3D-EEM fluorescence spectra. For denitrifying bacteria, the relative abundance of Pseudomonas significantly increased during the SND process, while Paracoccus decreased significantly. For phosphorus-accumulating bacteria, the relative abundance of Rhodocyclaceae also significantly increased. The relative abundance of other functional microbes, such as Nitrosomonadaceae (ammonia oxidizer), Nitrospirales (nitrite oxidizer) and Planctomyces (anammox) decreased significantly during the SND process.
Collapse
|
|
9 |
61 |
6
|
Zhou J, Jia R, Brown RW, Yang Y, Zeng Z, Jones DL, Zang H. The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130055. [PMID: 36303333 DOI: 10.1016/j.jhazmat.2022.130055] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Biodegradable mulch film potentially offers an encouraging alternative to conventional (petroleum-based) plastic films. Since biodegradable films are more susceptible to rapid degradation, more microplastics (MPs) are likely to be generated than conventional films within the same time frame, probably leading to more severe MPs pollution and associated effects. However, the effect of biodegradable mulch film residues and associated MPs pollution on plant-soil health remains uncertainty. Here, we evaluated the potential effect of bio-MPs pollution on soil carbon (C) and nutrient (i.e., N and P) cycling, soil biology (microorganisms and mesofauna), and plant health, as these are crucial to agroecosystem functioning and the delivery of key ecosystem services. Unlike the inert (and therefore recalcitrant) C contained within petroleum-based MPs, at least 80% of the C from bio-MPs is converted to CO2, with up to 20% immobilized in living microbial biomass (i.e., < 0.05 t C ha-1). Although biodegradable films are unlikely to be important in promoting soil C storage, they may accelerate microbial biomass turnover in the short term, as well as CO2 production. Compared to conventional MPs, bio-MPs degradation is more pronounced, thereby inducing greater alterations in microbial diversity and community composition. This may further alter N2O and CH4 emissions, and ultimately resulting in unpredictable consequences for global climate warming. The extent to which this may occur, however, has yet to be shown in either laboratory or field studies. In addition, bio-MPs have a large chance of forming nanoplastics, potentially causing a stronger toxic effect on plants relative to conventional MPs. Consequently, this would influence plant health, crop productivity, and food safety, leading to potential health risks. It is unclear, however, if these are direct effects on key plant processes (e.g. signaling, cell expansion) or indirect effects (e.g. nutrient deficiency or acidification). Overall, the question as to whether biodegradable mulch films offer a promising alternative to solve the conventional plastic legacy in soil over the long term remains unclear.
Collapse
|
Review |
2 |
61 |
7
|
Morales N, Val Del Río Á, Vázquez-Padín JR, Méndez R, Mosquera-Corral A, Campos JL. Integration of the Anammox process to the rejection water and main stream lines of WWTPs. CHEMOSPHERE 2015; 140:99-105. [PMID: 25890586 DOI: 10.1016/j.chemosphere.2015.03.058] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 08/12/2014] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
Nowadays the application of Anammox based processes in the wastewater treatment plants has given a step forward. The new goal consists of removing the nitrogen present in the main stream of the WWTPs to improve their energetic efficiencies. This new approach aims to remove not only the nitrogen but also to provide a better use of the energy contained in the organic matter. The organic matter will be removed either by an anaerobic psychrophilic membrane reactor or an aerobic stage operated at low solids retention time followed by an anaerobic digestion of the generated sludge. Then ammonia coming from these units will be removed in an Anammox based process in a single unit system. The second strategy provides the best results in terms of operational costs and would allow reductions of about 28%. Recent research works performed on Anammox based processes and operated at relatively low temperatures and/or low ammonia concentrations were carried out in single-stage systems using biofilms, granules or a mixture of flocculent nitrifying and granular Anammox biomasses. These systems allowed the appropriated retention of Anammox and ammonia oxidizing bacteria but also the proliferation of nitrite oxidizing bacteria which seems to be the main drawback to achieve the required effluent quality for disposal. Therefore, prior to the implementation of the Anammox based processes at full scale to the water line, a reliable strategy to avoid nitrite oxidation should be defined in order to maintain the process stability and to obtain the desired effluent quality. If not, the application of a post-denitrification step should be necessary.
Collapse
|
|
10 |
58 |
8
|
Chen D, Gu X, Zhu W, He S, Huang J, Zhou W. Electrons transfer determined greenhouse gas emissions in enhanced nitrogen-removal constructed wetlands with different carbon sources and carbon-to-nitrogen ratios. BIORESOURCE TECHNOLOGY 2019; 285:121313. [PMID: 30959388 DOI: 10.1016/j.biortech.2019.121313] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
A constructed wetland (CW) was established to explore the influence of carbon addition (glucose or sodium acetate) on nitrogen removal and greenhouse gas (GHG) emissions at chemical oxygen demand to nitrogen ratios (COD/Ns) of 0, 4, 7. Results showed that the type of carbon source and COD/N significantly influenced the CW performance, in which the electrons transfer determined the regulation of denitrification, methanogenesis and respiration. Higher N2O emissions were consistent with higher nitrite accumulation at low COD/N because of electrons competition. The residual carbon source after near-complete denitrification could be further utilized by methanogenesis. Sodium acetate was superior to glucose in promoting denitrification and reducing global warming potential (GWP). In addition, bacteria sequencing and functional genes confirmed the important role of the type of carbon source on controlling nitrogen removal, carbon consumption and GHG emissions in microbial communities.
Collapse
|
|
6 |
54 |
9
|
The Mediterranean diet, an environmentally friendly option: evidence from the Seguimiento Universidad de Navarra (SUN) cohort. Public Health Nutr 2018; 21:1573-1582. [PMID: 29380717 DOI: 10.1017/s1368980017003986] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE How food is produced and consumed has consequences for ecosystems, such as resource use and greenhouse gas (GHG) emission among others. The Mediterranean diet (MedDiet) was proposed as a sustainable dietary model, due to its nutritional, environmental, economic and sociocultural dimensions. However, further evidence is needed. Thus, our objective was to evaluate the impact on resource (land, water and energy) use and GHG emission of better adherence to the MedDiet in a Mediterranean Spanish cohort. DESIGN We analysed the dietary pattern of participants through a validated FFQ. The outcomes were land use, water and energy consumption and GHG emission according to MedDiet adherence. The specific environmental footprints of food item production and processing were obtained from different available life-cycle assessments. SETTING Spanish university graduates. SUBJECTS Participants (n 20 363) in the Seguimiento Universidad de Navarra (SUN) cohort. RESULTS Better adherence to the MedDiet was associated with lower land use (-0·71 (95 % CI -0·76, -0·66) m2/d), water consumption (-58·88 (95 % CI -90·12, -27·64) litres/d), energy consumption (-0·86 (95 % CI -1·01, -0·70) MJ/d) and GHG emission (-0·73 (95 % CI -0·78, -0·69) kg CO2e/d). A statistically significant linear trend (P<0·05) was observed in all these analyses. CONCLUSIONS In this Mediterranean cohort, better adherence to the MedDiet was an eco-friendly option according to resource consumption and GHG emission.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
49 |
10
|
Ma J, Ullah S, Niu A, Liao Z, Qin Q, Xu S, Lin C. Heavy metal pollution increases CH 4 and decreases CO 2 emissions due to soil microbial changes in a mangrove wetland: Microcosm experiment and field examination. CHEMOSPHERE 2021; 269:128735. [PMID: 33127108 DOI: 10.1016/j.chemosphere.2020.128735] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Mangrove plays an important role in modulating global warming through substantial blue carbon storage relative to their greenhouse gas emission potential. The presence of heavy metals in mangrove wetlands can influence soil microbial communities with implications for decomposition of soil organic matter and emission of greenhouse gases. In this study, field monitoring and a microcosm experiment were conducted to examine the impacts of heavy metal pollution on soil microbial communities and greenhouse gas fluxes. The results show that heavy metal pollution decreased the richness and diversity of the overall soil microbial functional groups (heterotrophs and lithotrophs); however, it did not inhibit the activities of the methanogenic communities, possibly due to their stronger tolerance to heavy metal toxicity compared to the broader soil microbial communities. Consequently, the presence of heavy metals in the mangrove soils significantly increased the emission of CH4 while the emission of CO2 as a proxy of soil microbial respiration was decreased. The soil organic carbon content could also buffer the effect of heavy metal pollution and influence CO2 emissions due to reduced toxicity to microbes. The findings have implications for understanding the complication of greenhouse gas emissions by heavy metal pollution in mangrove wetlands.
Collapse
|
|
4 |
46 |
11
|
Wei D, Zhang K, Ngo HH, Guo W, Wang S, Li J, Han F, Du B, Wei Q. Nitrogen removal via nitrite in a partial nitrification sequencing batch biofilm reactor treating high strength ammonia wastewater and its greenhouse gas emission. BIORESOURCE TECHNOLOGY 2017; 230:49-55. [PMID: 28160658 DOI: 10.1016/j.biortech.2017.01.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 05/20/2023]
Abstract
In present study, the feasibility of partial nitrification (PN) process achievement and its greenhouse gas emission were evaluated in a sequencing batch biofilm reactor (SBBR). After 90days' operation, the average effluent NH4+-N removal efficiency and nitrite accumulation rate of PN-SBBR were high of 98.2% and 87.6%, respectively. Both polysaccharide and protein contents were reduced in loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) during the achievement of PN-biofilm. Excitation-emission matrix spectra implied that aromatic protein-like, tryptophan protein-like and humic acid-like substances were the main compositions of both kinds of EPS in seed sludge and PN-biofilm. According to typical cycle, the emission rate of CO2 had a much higher value than that of N2O, and their total amounts per cycle were 67.7 and 16.5mg, respectively. Free ammonia (FA) played a significant role on the inhibition activity of nitrite-oxidizing bacteria and the occurrence of nitrite accumulation.
Collapse
|
|
8 |
44 |
12
|
Yusuf AM, Abubakar AB, Mamman SO. Relationship between greenhouse gas emission, energy consumption, and economic growth: evidence from some selected oil-producing African countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15815-15823. [PMID: 32088819 PMCID: PMC7190595 DOI: 10.1007/s11356-020-08065-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/11/2020] [Indexed: 05/13/2023]
Abstract
This paper investigates the relationship between greenhouse gas emissions, energy consumption, and output growth among African OPEC countries (Libya, Nigeria, Angola, Algeria, Equatorial Guinea, and Gabon) using the panel autoregressive distributed lag model (PARDL) estimated by means of mean group (MG) and pooled mean group (PMG) for the period 1970-2016. The paper estimated three panel models comprising the components of greenhouse gasses which includes nitrous oxide, carbon dioxide (CO2), and methane and examined their relationship with economic growth and energy consumption. The findings of the study showed evidence of a positive impact of economic growth on both CO2 and methane emissions in the long run. Its impact on nitrous oxide emissions although positive was found to be statistically insignificant. Energy consumption was also found to produce an insignificant positive impact on CO2, methane, and nitrous oxide emissions in the long run. In the short run, economic growth exerts a significant positive effect on methane emissions; however, its effect on CO2 and nitrous oxide emissions although positive was found to be statistically insignificant. Energy consumption produces an insignificant impact on all components of greenhouse gasses in the short run. In addition, our empirical results showed the presence of a non-linear relationship between methane emissions and economic growth, confirming the existence of the environmental Kuznets curve (EKC) only in the case of methane emissions model.
Collapse
|
research-article |
5 |
41 |
13
|
Kumar A, Singh P, Raizada P, Hussain CM. Impact of COVID-19 on greenhouse gases emissions: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150349. [PMID: 34555610 PMCID: PMC8445775 DOI: 10.1016/j.scitotenv.2021.150349] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 05/03/2023]
Abstract
The global outburst of coronavirus 2019 (COVID-19) has posed severe challenges to human health, environment, energy and economy all over the world. The stringent measures to control the spread of COVID-19 results a significant slowdown in economic activities which in turn affected the environment by reducing the greenhouse gas (GHG) emissions, specifically lower atmospheric CO2 levels. Considering that, the present study intends to highlight the substantial impact of COVID-19 pandemic on GHG emissions, by systematically reviewing the available scientific literatures. The study further outlined the variation in GHG emissions by comparing the data focused on pre-pandemic, during pandemic, and post-pandemic (predictions) scenarios. Further, the assessment on elevating CO2 levels, global economic, and energy impacts of COVID-19 has also been reviewed. Also, the possible recovery plan for the framework of sustainable environmental and energy development is presented. Finally, the review concludes with an insightful summary involving the challenges and future outlook towards sustainable development goals in a hope that the present study can help the researchers to assess the global environmental and energy related consequences.
Collapse
|
Review |
3 |
35 |
14
|
Sun S, Liu J, Zhang M, He S. Simultaneous improving nitrogen removal and decreasing greenhouse gas emission with biofilm carriers addition in ecological floating bed. BIORESOURCE TECHNOLOGY 2019; 292:121944. [PMID: 31444120 DOI: 10.1016/j.biortech.2019.121944] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Ecological floating bed (EFB) is a green technology for treatment of micro-polluted wastewater. However, its nitrogen removal efficiency is still unsatisfactory. In this study, two EFBs with additional carbon source were established to explore biofilm carriers addition on nitrogen removal and greenhouse gas (GHG) emissions at different C/N ratios and temperatures. Results showed that biofilm carriers addition increased nitrification and nitrogen removal efficiencies in EFB, and more denitrifying and nitrifying bacteria were attached to the biofilm carriers. Higher N2O and CH4 emissions were found in control EFB without biofilm carriers addition which was consistent with higher nitrite accumulation. In addition, high-throughput sequencing analysis revealed that adding biofilm carriers could improve the richness and diversity of biological communities. For EFB with additional carbon source treating secondary effluent, adding biofilm carrier can obtain higher TN removal efficiency and lower greenhouse gas emission.
Collapse
|
Review |
6 |
33 |
15
|
Guo S, Liu X, Tang J. Enhanced degradation of petroleum hydrocarbons by immobilizing multiple bacteria on wheat bran biochar and its effect on greenhouse gas emission in saline-alkali soil. CHEMOSPHERE 2022; 286:131663. [PMID: 34371357 DOI: 10.1016/j.chemosphere.2021.131663] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, an immobilization method for forming and keeping dominant petroleum degradation bacteria was successfully developed by immobilizing Pseudomonas, Acinetobacter, and Sphingobacterium genus bacteria on wheat bran biochar pyrolyzed at 300, 500, and 700 °C. The removal efficiency indicated that the highest TPHs (total petroleum hydrocarbons) removal rate of BC500-4 B (biochar pyrolyzed at 500 °C with four kinds of petroleum bacteria) was 58.31%, which was higher than that of BC500 (36.91%) and 4 B (43.98%) used alone. The soil properties revealed that the application of biochar increased the content of organic matter, available phosphorus, and available potassium, but decreased pH and ammonium nitrogen content in soil. Bacterial community analysis suggested that the formation of dominant degrading community represented by Acinetobacter played key roles in TPHs removal. The removal rate of alkanes was similar to that of TPHs. Besides, biochar and immobilized material can also mediate greenhouse gas emission while removing petroleum, biochar used alone and immobilized all could improve CO2 emission, but decrease N2O emission and had no significant impact on CH4 emission. Furthermore, it was the first time to found the addition of Acinetobacter genus bacteria can accelerate the process of forming a dominant degrading community in wheat bran biochar consortium. This study focused on controlling greenhouse gas emission which provides a wider application of combining biochar and bacteria in petroleum soil remediation.
Collapse
|
|
3 |
30 |
16
|
Tian Z, Wang JJ, Liu S, Zhang Z, Dodla SK, Myers G. Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 533:329-338. [PMID: 26172600 DOI: 10.1016/j.scitotenv.2015.06.147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/21/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
Nitrogen (N) fertilization affects both ammonia (NH3) and greenhouse gas (GHG) emissions that have implications in air quality and global warming potential. Different cropping systems practice varying N fertilizations. The aim of this study was to investigate the effects of applications of polymer-coated urea and urea treated with N process inhibitors: NBPT [N-(n-butyl)thiophosphoric triamide], urease inhibitor, and DCD [Dicyandiamide], nitrification inhibitor, on NH3 and GHG emissions from a cotton production system in the Mississippi delta region. A two-year field experiment consisting of five treatments including the Check (unfertilized), urea, polymer-coated urea (ESN), urea+NBPT, and urea+DCD was conducted over 2013 and 2014 in a Cancienne loam (Fine-silty, mixed, superactive, nonacid, hyperthermic Fluvaquentic Epiaquepts). Ammonia and GHG samples were collected using active and passive chamber methods, respectively, and characterized. The results showed that the N loss to the atmosphere following urea-N application was dominated by a significantly higher emission of N2O-N than NH3-N and the most N2O-N and NH3-N emissions were during the first 30-50 days. Among different N treatments compared to regular urea, NBPT was the most effective in reducing NH3-N volatilization (by 58-63%), whereas DCD the most significant in mitigating N2O-N emissions (by 75%). Polymer-coated urea (ESN) and NBPT also significantly reduced N2O-N losses (both by 52%) over urea. The emission factors (EFs) for urea, ESN, urea-NBPT, urea+DCD were 1.9%, 1.0%, 0.2%, 0.8% for NH3-N, and 8.3%, 3.4%, 3.9%, 1.0% for N2O-N, respectively. There were no significant effects of different N treatments on CO2-C and CH4-C fluxes. Overall both of these N stabilizers and polymer-coated urea could be used as a mitigation strategy for reducing N2O emission while urease inhibitor NBPT for reducing NH3 emission in the subtropical cotton production system of the Mississippi delta region.
Collapse
|
|
10 |
28 |
17
|
Majumder S, Neogi S, Dutta T, Powel MA, Banik P. The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109466. [PMID: 31487602 DOI: 10.1016/j.jenvman.2019.109466] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 05/22/2023]
Abstract
Soil carbon (SC) is important for food security, ecosystem functioning, and environmental health, especially in light of global climate change. The physico-chemical character of biochar (pyrolyzed crop residue) has been shown to augment SC levels. This review systematically compares the environmental and economic benefits of applying crop residue versus biochar produced from crop residues to soils and the potential implications for SC sequestration. Crop residues enhance the mineralization rate of SC, while biochar can increase or decrease SC depending on the types of biochar/soil and duration. Therefore, converting crop residues to biochar may be more efficient for sequestering SC, but may/may not be more cost-effective. In this review, special emphasis is given to understanding the underlying mechanisms and biogeochemical processes of biochar production, in particular: surface (crystallinity), redox, and ability to control electron transfer reactions. By using meta-analytics, we determined the role of biochar compared to crop residue to enhance the status of organic SC.
Collapse
|
Review |
6 |
28 |
18
|
Sannigrahi S, Pilla F, Basu B, Basu AS, Sarkar K, Chakraborti S, Joshi PK, Zhang Q, Wang Y, Bhatt S, Bhatt A, Jha S, Keesstra S, Roy PS. Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138331. [PMID: 32302833 DOI: 10.1016/j.scitotenv.2020.138331] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Remote sensing techniques are effectively used for measuring the overall loss of terrestrial ecosystem productivity and biodiversity due to forest fires. The current research focuses on assessing the impacts of forest fires on terrestrial ecosystem productivity in India during 2003-2017. Spatiotemporal changes of satellite remote sensing derived burn indices were estimated for both fire and normal years to analyze the association between forest fires and ecosystem productivity. Two Light Use Efficiency (LUE) models were used to quantify the terrestrial Net Primary Productivity (NPP) of the forest ecosystem using the open-source and freely available remotely sensed data. A novel approach (delta NPP/delta burn indices) is developed to quantify the effects of forest fires on terrestrial carbon emission and ecosystem production. During 2003-2017, the forest fire intensity was found to be very high (>2000) across the eastern Himalayan hilly region, which is mostly covered by dense forest and thereby highly susceptible to wildfires. Scattered patches of intense forest fires were also detected in the lower Himalayan and central Indian states. The spatial correlation between the burn indices and NPP were mainly negative (-0.01 to -0.89) for the fire-prone states as compared to the other neighbouring regions. Additionally, the linear approximation between the burn indices and NPP showed a positive relation (0.01 to 0.63), suggesting a moderate to high impact of the forest fires on the ecosystem production and terrestrial carbon emission. The present approach has the potential to quantify the loss of ecosystem productivity due to forest fires.
Collapse
|
|
5 |
27 |
19
|
Qiao S, Hou C, Wang X, Zhou J. Minimizing greenhouse gas emission from wastewater treatment process by integrating activated sludge and microalgae processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139032. [PMID: 32454299 DOI: 10.1016/j.scitotenv.2020.139032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 05/12/2023]
Abstract
A novel integrated microalgae and activated sludge (MA/AS) system was constructed to minimize greenhouse gas emission from traditional wastewater treatment plants. Its removal properties for aqueous pollutants were assessed as well. The ratio of microalgae-to-activated sludge volatile suspended solids of 1.3 and an incident light intensity of 12 W/m2 provided the best performance: COD, NH4+, and total phosphorus (TP) removals were up to 100%, 99.6% and 100%, respectively. Even without illumination, COD, NH4+, and TP removal efficiencies were as high as 95.1%, 96.5% and 100%, respectively. In both cases, nutrient uptake by MA was proved to play an important role in nutrients removal. And no CH4 or N2O emissions were detected during the whole experimental period of the MA/AS system (mass ratio of 1.3:1). Only negligible CO2 was detected up to 45 μmol with illumination and 130 μmol without illumination in the headspace of the serum bottles, which merely accounted for 2.0% and 5.8% of the initial total carbon equivalent (glucose serving as organic carbon source). Since photosynthesis by microalgae could provide oxygen to heterotrophs or nitrifying bacteria, extra energy demand (mainly from aeration units) could be greatly cut down, which would heavily reduce the total energy demands and further indirect CO2 emission from wastewater treatment plants. Our integrated system is demonstrated to be a sustainable approach for contaminants removal from aqueous phase, restraining greenhouse gas emission and saving energy consumption contemporaneously.
Collapse
|
|
5 |
26 |
20
|
Kumar A, Nayak AK, Das BS, Panigrahi N, Dasgupta P, Mohanty S, Kumar U, Panneerselvam P, Pathak H. Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2032-2050. [PMID: 30290346 DOI: 10.1016/j.scitotenv.2018.09.332] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/03/2018] [Accepted: 09/26/2018] [Indexed: 05/26/2023]
Abstract
Rice is the foremost staple food in the world, safeguarding the global food and nutritional security. Rise in atmospheric carbon dioxide (CO2) and water deficits are threatening global rice productivity and sustainability. Under real field conditions these climatic factors often interact with each other resulting in impacts that are remarkably different compared to individual factor exposure. Rice soils exposed to drought and elevated CO2 (eCO2) alters the biomass, diversity and activity of soil microorganisms affecting greenhouse gas (GHG) emission dynamics. In this review we have discussed the impacts of eCO2 and water deficit on agronomic, biochemical and physiological responses of rice and GHGs emissions from rice soils. Drought usually results in oxidative stress due to stomatal closure, dry weight reduction, formation of reactive oxygen species, decrease in relative water content and increase in electrolyte leakage at almost all growth and developmental phases of rice. Elevated atmospheric CO2 concentration reduces the negative effects of drought by improving plant water relations, reducing stomatal opening, decreasing transpiration, increasing canopy photosynthesis, shortening crop growth period and increasing the antioxidant metabolite activities in rice. Increased scientific understanding of the effects of drought and eCO2 on rice agronomy, physiology and GHG emission dynamics of rice soil is essential for devising adaptation options. Integration of novel agronomic practices viz., crop establishment methods and alternate cropping systems with improved water and nutrient management are important steps to help rice farmers cope with drought and eCO2. The review summarizes future research needs for ensuring sustained global food security under future warmer, drier and high CO2 conditions.
Collapse
|
Review |
6 |
25 |
21
|
Benbi DK. Carbon footprint and agricultural sustainability nexus in an intensively cultivated region of Indo-Gangetic Plains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:611-623. [PMID: 29990911 DOI: 10.1016/j.scitotenv.2018.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Green Revolution led to an unprecedented increase in world food production but with a significant carbon footprint raising concerns about its sustainability. With the rising global population and the need to produce more food, the farming systems will have to be sustainable. To identify farming practices that increase yield with minimum environmental cost, it is imperative to quantify the environment footprint of different technologies. The present study quantified the impact of Green Revolution technologies on the carbon footprint of intensive crop production systems, mainly rice-wheat in an agriculturally important region of Indo-Gangetic Plains. The results revealed the overriding importance of groundwater irrigation and fertilizer use in determining the carbon footprint of crop production, and underpin the opportunities for their mitigation. Intensification of agriculture resulted in ~2.5 fold increase in food grain production and 3-fold increase in emission of greenhouse gases (GHGs) during 1980 to 2015. Carbon sustainability of food grain production declined with time indicating that energy use efficiency is decreasing; the greatest decline being in rice followed by wheat and negligible in maize. Options for mitigating environment footprint of food grain production included partially replacing area under rice with other less water requiring crops, improving irrigation water productivity and pumping efficiency, and increasing fertilizer use efficiency. Maize with low global warming potential and high C sustainability appeared a viable option for diversification. The implementation of these mitigation measures can reduce environment footprint by 46%. Preventing crop residue burning will not only offset the associated GHG emissions (6266 Gg yr-1) but can also improve soil health if returned to the soil. Intensification of agriculture has co-benefit of C sequestration in soil, which besides offsetting emissions by ~10% is an important determinant of soil quality and sustainability.
Collapse
|
|
7 |
25 |
22
|
Nosratpour MJ, Karimi K, Sadeghi M. Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pretreatments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:329-339. [PMID: 30125812 DOI: 10.1016/j.jenvman.2018.08.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Sugarcane bagasse was pretreated with sodium carbonate, sodium sulfite, and sodium acetate in concentrations of 0.5 M and 0.25 M, as well as hydrothermal pretreatment, to break down its structural recalcitrance and improve biogas and ethanol production. The pretreatments were conducted at 100, 140, and 180 °C for 1 h. The highest biogas and ethanol production was observed for sugarcane bagasse pretreated with 0.5 M sodium carbonate solution at 140 °C, which was 239 ± 20 Nml CH4/g VS, and 7.27 ± 0.70 g/l, respectively, containing gasoline equivalents of 164.2 ± 14.3 l/ton of raw bagasse and 147.8 ± 14.2 l/ton of raw bagasse, respectively. The highest gasoline equivalent was obtained for biogas production from the substrate pretreated with 0.5 M sodium sulfite solution at 100 °C (190.2 ± 2.1 l/ton of raw bagasse). In comparison to sodium carbonate and sodium sulfite, sodium acetate had less effect on biofuel production and was comparable with hydrothermal pretreatment. In contradiction to sodium acetate pretreated bagasse, in which increased pretreatment temperature intensified biofuel production, a reduction of biofuel production was observed for sodium carbonate and sodium sulfite pretreatment when temperature was increased from 140 to 180 °C. Besides considerable amounts of biofuel production at the best conditions obtained, over 762 and 543 kilotons of equivalent CO2 can be reduced annually in Iran by biogas and ethanol production from sugarcane, respectively.
Collapse
|
|
7 |
20 |
23
|
Jellali S, El-Bassi L, Charabi Y, Uaman M, Khiari B, Al-Wardy M, Jeguirim M. Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114368. [PMID: 34968937 DOI: 10.1016/j.jenvman.2021.114368] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
During the last decade, biochars have been considered as attractive and eco-friendly materials with various applications including wastewater treatment, energy production and soil amendments. However, the important nitrogen losses during biochars production using the pyrolysis process have limited their potential use in agriculture as biofertilizer. Therefore, it seems necessary to enrich these biochars with nitrogen sources before their use in agricultural soils. This paper is the first comprehensive review on the assessment of biomass type and the biochars' properties effects on N recovery efficiency from aqueous solutions as well as its release and availability for plants when applying the N-enriched chars in soils. In particular, the N recovery efficiency by raw biochars versus the type of the raw feedstock is summarized. Then, correlations between the adsorption performance and the main physico-chemical properties are established. The main mechanisms involved during ammonium (NH4-N) and nitrates (NO3-N) recovery process are thoroughly discussed. A special attention is given to the assessment of the biochars physico-chemical modification impact on their N recovery capacities improvement. After that, the application of these N-enriched biochars in agriculture and their impacts on plants growth as well as methane and nitrous oxide greenhouse gas emissions reduction are also discussed. Finally, the main future development and challenges of biochars enrichment with N from wastewaters and their valorization as biofertilizers for plants growth and greenhouse gas (GHG) emissions reduction are provided. This systematic review is intended to promote the real application of biochars for nutrients recovery from wastewaters and their reuse as eco-friendly fertilizers.
Collapse
|
Review |
3 |
19 |
24
|
Bälter K, Sjörs C, Sjölander A, Gardner C, Hedenus F, Tillander A. Is a diet low in greenhouse gas emissions a nutritious diet? - Analyses of self-selected diets in the LifeGene study. ACTA ACUST UNITED AC 2017; 75:17. [PMID: 28400959 PMCID: PMC5385588 DOI: 10.1186/s13690-017-0185-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 02/16/2017] [Indexed: 01/06/2023]
Abstract
Background Climate change is an urgent global issue and the food sector is a major contributor to greenhouse gas emissions (GHGE). Here we study if a diet low in GHGE could be a nutritious diet compared to the Nordic Nutrition Recommendations (NNR). Methods The environmental impact of foods from Life Cycle Assessment (LCA) data was linked to a food frequency questionnaire (FFQ) filled out by 5,364 participants in the Swedish LifeGene study. Thereafter, we calculated the daily emission of CO2 equivalents (CO2e) as well as the intake of selected nutrients associated with vegetables, fruits, meat and dairy products. The CO2e was divided into quartiles were quartile 1 corresponds to a diet generating the lowest CO2e, and quartile 4 corresponds to a diet with the highest CO2e. Results The overall diet-related emission was 4.7 kg CO2e/day and person, corresponding to 1.7 ton CO2e/year. In general, there were only small differences in nutrient intake between groups of varying levels of CO2e, regardless if the intake was analyzed as absolute intake, energy percent or as nutrient density. Moreover, adherence to NNR was high for the group with the lowest CO2e, except for saturated fat where the intake was higher than recommended for all CO2e groups. On the other hand, only the group with the lowest CO2e fulfilled recommended intake of fiber. However, none of the CO2e groups reached the recommended intake of folate and vitamin D. Conclusions Here we show that a self-selected diet low in CO2e provides comparable intake of nutrients as a diet high in in CO2e. Electronic supplementary material The online version of this article (doi:10.1186/s13690-017-0185-9) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
8 |
19 |
25
|
Hou P, Feng Y, Wang N, Petropoulos E, Li D, Yu S, Xue L, Yang L. Win-win: Application of sawdust-derived hydrochar in low fertility soil improves rice yield and reduces greenhouse gas emissions from agricultural ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142457. [PMID: 33113706 DOI: 10.1016/j.scitotenv.2020.142457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
As a good soil synergist, biochar has a wide prospect in improving soil fertility and crop production. Although hydrochar, produced by hydrothermal carbonization process has attracted attention due to production advantages, hydrochar application in low fertility soils as well as its impact to the associated greenhouse gas (GHG) emissions in farmlands is rarely reported. To advance our understanding on the effect of hydrochar addition on grain yield from low fertility soils and the corresponding CH4 and N2O emissions, a soil-column experiment, with two hydrochar types (sawdust-derived hydrochar (SDH), microbial-aged hydrochar (A-SDH)) at two application rates (5‰, 15‰; (w/w)), was conducted. The results showed that hydrochar addition evidently increased rice yield. The N2O emissions were mainly related to the substrate supply of the hydrochar itself and less affected by the denitrifiers (functional genes) present. Hydrochar amendment at low application rate (5‰; SDH05, A-SDH05) significantly decreased the cumulative N2O emissions by 26.32% ~ 36.84%. Additionally, hydrochar amendment could not increase the CH4 emissions due to the substrate limitation; the cumulative emissions were similar with those from the control, ranging between 11.1-12.8 g m-2. Regarding grain yield and global warming potential, greenhouse gas intensity from the soils subjected to hydrochar (SDH05, A-SDH05, A-SDH15) were significantly lower than that of the control, observation attributed to the high yield and low N2O emissions. Overall, hydrochar addition is an effective strategy to ensure grain yield in low fertility soils with relatively low/controlled GHG emissions, especially when the amendment is applied at low application rate.
Collapse
|
|
5 |
18 |