1
|
Jia F, Li F, Bai KS, Zou XL. Current status and advancements in research of gut microecology in acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2023; 31:521-527. [DOI: 10.11569/wcjd.v31.i13.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal conditions in clinical practice, with increasing incidence and substantial healthcare burden. In recent years, substantial research with high-throughput sequencing technologies has revealed the imbalance between beneficial and pathogenic microbiomes as well as their metabolites during the clinical course of AP. Furthermore, disruption of the intestinal barrier and microbial translocation have been identified as important factors exacerbating systemic inflammatory response and subsequent infectious complications in AP. Maintaining a stable gastrointestinal microecology in patients may help prevent gut-derived infection and attenuate the "second hit" of inflammation induced by AP, thereby improving patient outcomes. This article provides a systematic review of the role of intestinal microbiota and microbial metabolites in the progression of AP, as well as potential therapeutic strategies, in order to offer insights into the understanding of AP pathogenesis and the identification of novel therapeutic targets.
Collapse
|
2
|
Kanwal F, Ren D, Kanwal W, Ding M, Su J, Shang X. The potential role of non-digestible Raffinose family oligosaccharides as prebiotics. Glycobiology 2023; 33:274-288. [PMID: 36795047 DOI: 10.1093/glycob/cwad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
Based on factual scientific health claims, prebiotics has gained significant importance in ever-growing food and pharmaceutical industries. The diverse nature of distinct prebiotics influences the host differently in distinguishable patterns. Functional oligosaccharides are either plant-derived or commercially prepared. Raffinose, stachyose, and verbascose are three types of raffinose family oligosaccharides (RFOs) that have been extensively used as medicine, cosmetic, and food additives. These dietary fiber fractions avert the adhesion and colonization by enteric pathogens and add nutrition metabolites for a healthy immune system. Enrichment of RFOs in healthy foods should be promoted as these oligosaccharides augment gut microecology by enhancing the health conferring microbes i.e. Bifidobacteria and Lactobacilli. RFOs influence the host's multiorgan systems due to their physiological and physicochemical properties. For example, the fermented microbial products of such carbohydrates affect neurological processes, including memory, mood, and behavior in humans. Raffinose-type sugar uptake is thought to be a ubiquitous property of Bifidobacteria. This review paper summarizes the source of RFOs and their metabolizing entities highlighting bifidobacterial carbohydrate utilization and health benefits.
Collapse
|
3
|
Ding D, Zhu J, Gao Y, Yang F, Ma Y, Cheng X, Li J, Dong P, Yang H, Chen S. Effect of cattle farm exposure on oropharyngeal and gut microbial communities and antibiotic resistance genes in workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150685. [PMID: 34600986 DOI: 10.1016/j.scitotenv.2021.150685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Livestock farms are recognized as the main sources of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) with potential implications for human health. In this study, we systematically analyzed microbiome composition, distribution of ARGs and mobile genetic elements (MGEs) in the oropharynx and gut of workers in cattle farms and surrounding villagers, cattle feces and farm air, and the relationship of microbial communities among farm air, cattle feces and farmworkers (oropharynx and gut). Exposure to the farm environment may have remodeled farmworkers' oropharynx and gut microbiota, with reduced microbial diversity (P < 0.05) and enrichment of some opportunistic pathogenic bacteria like Shigella, Streptococcus, and Neisseria in the oropharynx. Meanwhile, compared with villagers, ARG abundance in oropharynx of farmworkers increased significantly (P < 0.05), but, no significant difference in gut (P > 0.05). Microbial composition and ARG profile in farmworkers might be influenced by working time and work type, ARG abundance in farmworkers' gut was positively correlated with working time (P < 0.01), and higher ARG abundance was found in the oropharynx of drovers. The network analysis revealed that 4 MGEs (tnpA-01, tnpA-04, Tp614, and IS613), 5 phyla (e.g. Bacteroidetes, Fusobacteria, and TM7), and 6 genera were significantly associated with 37 ARGs (ρ > 0.6, P < 0.01). Overall, our results indicated that farm exposure may have affected the microbial composition and increased ARG abundance of farmworkers. Transmission of some ARGs may have occurred among the environment, animals and humans via host bacteria, which might pose a potential threat to human health.
Collapse
|
4
|
Yan W, Zhou Q, Yuan Z, Fu L, Wen C, Yang N, Sun C. Impact of the gut microecology on Campylobacter presence revealed by comparisons of the gut microbiota from chickens raised on litter or in individual cages. BMC Microbiol 2021; 21:290. [PMID: 34686130 PMCID: PMC8532315 DOI: 10.1186/s12866-021-02353-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Poultry is the major reservoir of Campylobacter that contributes to human campylobacteriosis and threatens food safety. Litter contact has been linked to Campylobacter colonization, but the gut microecological impact underlying this link remains not fully clear. Here, we sought to investigate the impact of the gut microecology on the presence of Campylobacter by examining the microbiota in the duodenum, jejunum, ileum, ceca, and feces from chickens raised on commercial litter and in individual cages at 0–57 days of age. Results Through litter contact, the presence of Campylobacter was found to benefit from microecological competition among Lactobacillus, Helicobacter, and genera that are halotolerant and aerobic or facultatively anaerobic in the upper intestine, such as Corynebacterium and Brachybacterium. The presence was also promoted by the increased abundance in obligate anaerobic fermentation microbes, especially members of the orders Clostridiales and Bacteroidales. The longitudinal analysis supported the vertical or pseudo-vertical transmission but suggested that colonization might occur immensely at 7–28 days of age. We observed a host genetic effect on the gut microecology, which might lead to increased heterogeneity of the microecological impact on Campylobacter colonization. Conclusions The findings advance the understanding of the gut microecological impact on Campylobacter presence in the chicken gut under conditions of litter contact and suggest that manipulations of the gut microecology, as well as the microbes identified in the Campylobacter association networks, might be important for the development of intervention strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02353-5.
Collapse
|
5
|
Zhang Y, Jiang X, Zhang J, Xia Y, Qiu J, Wang T, Qiu Y, Qin X, Wang B, Zou Z, Chen C. Heterozygous disruption of beclin 1 mitigates arsenite-induced neurobehavioral deficits via reshaping gut microbiota-brain axis. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122748. [PMID: 32768853 DOI: 10.1016/j.jhazmat.2020.122748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Gut microbiota is intimately involved in numerous aspects of human health. Arsenite expouse can perturb gut microbiota and is linked to increased susceptibility of individual to arsenite-related diseases. However, how microbiome factors influence arsenite-induced neurotoxicity remains largely unknown. In this study, after treating of healthy adult female mice with arsenite via drinking water for 6 months, our results clearly revealed that chronic arsenite exposure not only perturbed the composition of gut microbiota but also caused neurobehavioral dysfunctions, which manifested by learning and memory deficits and anxiety-like behavior. Given that the overactive autophagy directly leads to gut pathological changes, we further assessed whether inhibiton of autophagy by genetic mean could reverse arsenite-induced neurobehavioral dysfunctions. Our results illustrated for the first time that heterozygous disruption of beclin 1, which played a central role in autophagy, alleviated the perturbation of gut microbiome phenotypes induced by arsenite, and ultimately leading to the improvement of neurobehavioral deficits through gut-brain communication. These findings provide a new clue that regulation of autophagy is a potential approach for probing the functional impacts of arsenite on the gut microbiome, and it also may be severed as a way for protection strategies against arsenite neurotoxicity.
Collapse
|
6
|
Lu D, Huang Y, Kong Y, Tao T, Zhu X. Gut microecology: Why our microbes could be key to our health. Biomed Pharmacother 2020; 131:110784. [PMID: 33152942 DOI: 10.1016/j.biopha.2020.110784] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
The human body contains a large number of microorganisms, and the gut microecology environment contains the largest number and types of microorganisms. The structure and function of gut microbiota are closely related to the health of the human body. In a cascade of studies, the diversity of gut microbiota and its metabolite often found changed in patients or mice model. What kind of gut microbiota that associated with the occurrence or treatment of diseases were also found in many studies. Gut microbiota and its products can affect the function of the human body. Short-chain fatty acids, bile acid, indoles and so on were found can regulate the inflammation, immune response to affect the process of diseases. Immune cells like natural killer T cells, CD3 + T cells were also found had a link to gut microbiota which associated with diseases. Changes in gut microbiota are associated with changes in the body's major systems, such as the digestive system, the endocrine system, the cardiovascular system, the endocrine and metabolic system, the urinary system diseases, the respiratory system and so on. It is of great significance to study gut microecology for the prevention and treatment of various human diseases.
Collapse
|
7
|
Guo K, Xu S, Zhang Q, Peng M, Yang Z, Li W, Tan Z. Bacterial diversity in the intestinal mucosa of mice fed with Asparagus extract under high-fat diet condition. 3 Biotech 2020; 10:228. [PMID: 32377501 DOI: 10.1007/s13205-020-02225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study is to determine the effect of Asparagus on bacterial diversity in the intestinal mucosa of mice fed with high-fat diet, thus providing theoretical basis for the development and research of Asparagus products. Twelve healthy male Kunming mice and twelve healthy female Kunming mice were chosen and randomly divided into normal group, model group, Asparagus group, and lipid-lowering decoction group, with six mice in each group. After establishing the models of mice fed with high-fat diet through feeding with high-fat diet, the mice in the Asparagus group were gavaged with Asparagus juice, those in the lipid-lowering decoction group were gavaged with lipid-lowering decoction, and those in the normal group and high-fat diet group were gavaged with the equal amount of distilled water. Intestinal mucosa from the jejunum to ileum were collected, and DNA was extracted from each mice. The characteristics of the intestinal microbial species were analyzed by PacBio Sequel-based 16S rRNA sequencing. Result showed that the total OTU reached 1559 in the normal group, 1750 in the high-fat diet group, 1795 in the lipid-Lowering decoction group, and 1635 in the Asparagus group, which indicated that the Asparagus juice could inhibit the total OUT of intestinal bacteria. The analysis on sample community diversity indicated that the richness, diversity, richness estimation, and diversity in the Asparagus Group, lipid-lowering decoction group, and normal group were lower than those in the high-fat diet group. Bacteriophyta classification analysis indicated that the relative abundance of Firmicutes, Bacteroidetes, and Actinobacteria in the Asparagus group was between that in the high-fat diet group and normal group. In conclusion, Asparagus can affect the diversity of bacteria in the intestinal mucosa of mice fed with high-fat diet, and achieve a lipid-lowering effect by regulating the intestinal microecology of mice fed with high-fat diet.
Collapse
|
8
|
Zhang S, Jiang X, Cheng S, Fan J, Qin X, Wang T, Zhang Y, Zhang J, Qiu Y, Qiu J, Zou Z, Chen C. Titanium dioxide nanoparticles via oral exposure leads to adverse disturbance of gut microecology and locomotor activity in adult mice. Arch Toxicol 2020; 94:1173-1190. [PMID: 32162007 DOI: 10.1007/s00204-020-02698-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
Abstract
Titanium dioxide nanoparticles (TiO2NPs) have been widely used as food additives in daily life. However, the impact of oral intake of TiO2NPs on the nervous system is largely unknown. In this study, 7-week-old mice were treated with either vehicle or TiO2NPs suspension solution at 150 mg/kg by intragastric administration for 30 days. Our results demonstrated that oral exposure to TiO2NPs resulted in aberrant excitement of enteric neurons, although unapparent pathological changes were observed in gut. We also found the richness and evenness of gut microbiota were remarkably decreased and the gut microbial community compositions were significantly changed in the TiO2NP-treated group as compared with vehicle controls. Interestingly, oral exposure to TiO2NPs was capable to induce the inhibitory effects on locomotor activity, but it did not lead to significant change on the spatial learning and memory ability. We further revealed the mechanism that TiO2NPs could specifically cause locomotor dysfunction by elevating the excitement of enteric neuron, which might spread to brain via gut-brain communication by vagal pathway. However, inflammation response, enteric neurotransmitter 5-HT and major gut peptides might not be involved in this pathological process. Together, these findings provide valuable insights into the novel mechanism of TiO2NP-induced neurotoxicity. Understanding the microbiota-gut-brain axis will provide the foundation for potential therapeutic or prevention approaches against TiO2NP-induced gut and brain-related disorders.
Collapse
|
9
|
Xue M, Liang H, Ji X, Liu Y, Ge Y, Hou L, Sun T. Fucoidan prevent murine autoimmune diabetes via suppression TLR4-signaling pathways, regulation DC/Treg induced immune tolerance and improving gut microecology. Nutr Metab (Lond) 2019; 16:87. [PMID: 31889967 PMCID: PMC6916240 DOI: 10.1186/s12986-019-0392-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Background This study was to investigate the effect and its possible mechanism of fucoidan on the development of spontaneous autoimmune diabetes in non-obese diabetic (NOD) mice. Methods 7-week-old NOD mice were randomly divided into three groups: control group, low-dose (300 mg/kg) and high-dose (600 mg/kg) fucoidan-treatment groups. After 5 weeks of treatment, 10 mice per group were randomly selected to be sacrificed after feces collection. The remaining 12 mice per group were fed until 26 weeks of age to assess the incidence of diabetes. Results Treatment with fucoidan increased serum insulin level, delayed the onset and decreased the development of diabetes in NOD mice. Fucoidan reduced the levels of strong Th1 proinflammatory cytokines, but induced Th2-bias ed. cytokine response. And dentridic cells (DCs) in fucoidan treatment group were characterized as low expression of MHC class II and CD86 molecules. TLR4 expressions and the downstream molecules in pancreas were down-regulated in fucoidan-treated groups. There were significant differences in the composition of gut flora between NOD control group and fucoidan group. Lactobacillus and Akkermansia were significantly enriched in fucoidan group. Conclusions Fucoidan could prevent the development of autoimmune diabetes in NOD mice via regulating DC/Treg induced immune tolerance, improving gut microecology, down-regulating TLR4 signaling pathway, and maintaining pancreatic internal environment.
Collapse
|