1
|
Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2013; 53:124-44. [PMID: 24362249 DOI: 10.1016/j.plipres.2013.12.001] [Citation(s) in RCA: 517] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022]
Abstract
In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise. This review mainly focuses on the role of long chain fatty acids (LCFAs) in regulating energy metabolism as ligands of peroxisome proliferator-activated receptors (PPARs). PPAR-alpha expressed primarily in liver is essential for metabolic adaptation to starvation by inducing genes for beta-oxidation and ketogenesis and by downregulating energy expenditure through fibroblast growth factor 21. PPAR-delta is highly expressed in skeletal muscle and induces genes for LCFA oxidation during fasting and endurance exercise. PPAR-delta also regulates glucose metabolism and mitochondrial biogenesis by inducing FOXO1 and PGC1-alpha. Genes targeted by PPAR-gamma in adipocytes suggest that PPAR-gamma senses incoming non-esterified LCFAs and induces the pathways to store LCFAs as triglycerides. Adiponectin, another important target of PPAR-gamma may act as a spacer between adipocytes to maintain their metabolic activity and insulin sensitivity. Another topic of this review is effects of skin LCFAs on energy metabolism. Specific LCFAs are required for the synthesis of skin lipids, which are essential for water barrier and thermal insulation functions of the skin. Disturbance of skin lipid metabolism often causes apparent resistance to developing obesity at the expense of normal skin function.
Collapse
|
Review |
12 |
517 |
2
|
Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats. Toxicol Appl Pharmacol 2013; 274:263-73. [PMID: 24275070 DOI: 10.1016/j.taap.2013.11.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/14/2022]
Abstract
Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE+ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE+HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE+HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a "two-programming" hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is "the first programming", and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as "the second programming".
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
82 |
3
|
Goh GYS, Winter JJ, Bhanshali F, Doering KRS, Lai R, Lee K, Veal EA, Taubert S. NHR-49/ HNF4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting. Aging Cell 2018; 17:e12743. [PMID: 29508513 PMCID: PMC5946062 DOI: 10.1111/acel.12743] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2018] [Indexed: 12/13/2022] Open
Abstract
Endogenous and exogenous stresses elicit transcriptional responses that limit damage and promote cell/organismal survival. Like its mammalian counterparts, hepatocyte nuclear factor 4 (HNF4) and peroxisome proliferator-activated receptor α (PPARα), Caenorhabditis elegans NHR-49 is a well-established regulator of lipid metabolism. Here, we reveal that NHR-49 is essential to activate a transcriptional response common to organic peroxide and fasting, which includes the pro-longevity gene fmo-2/flavin-containing monooxygenase. These NHR-49-dependent, stress-responsive genes are also upregulated in long-lived glp-1/notch receptor mutants, with two of them making critical contributions to the oxidative stress resistance of wild-type and long-lived glp-1 mutants worms. Similar to its role in lipid metabolism, NHR-49 requires the mediator subunit mdt-15 to promote stress-induced gene expression. However, NHR-49 acts independently from the transcription factor hlh-30/TFEB that also promotes fmo-2 expression. We show that activation of the p38 MAPK, PMK-1, which is important for adaptation to a variety of stresses, is also important for peroxide-induced expression of a subset of NHR-49-dependent genes that includes fmo-2. However, organic peroxide increases NHR-49 protein levels, by a posttranscriptional mechanism that does not require PMK-1 activation. Together, these findings establish a new role for the HNF4/PPARα-related NHR-49 as a stress-activated regulator of cytoprotective gene expression.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
62 |
4
|
Gu J, Huang LX, Gong YJ, Zheng SC, Liu L, Huang LH, Feng QL. De novo characterization of transcriptome and gene expression dynamics in epidermis during the larval-pupal metamorphosis of common cutworm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:794-808. [PMID: 23796435 DOI: 10.1016/j.ibmb.2013.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/11/2013] [Accepted: 06/05/2013] [Indexed: 06/02/2023]
Abstract
Larval cuticle is degraded and replaced by the pupal counterpart during larval-pupal metamorphosis in the holometabolous insects. In addition to the extrinsic transformation, the epidermis goes through significant changes at molecular levels. To elucidate the intrinsic mechanism of epidermal metamorphosis, the dynamics of chitin content in the cuticle was examined in an important agricultural lepidopteran, the common cutworm, and the transcriptome was analyzed using Illumina sequencing technology. Gene expression profiles during the metamorphosis were further studied by both the digital gene expression (DGE) system and real-time quantitative PCR. The results showed that the chitin content decreased in prepupae and then increased in pupae. A total of 58 million sequencing reads were obtained and assembled into 70,346 unigenes. Over 9000 unigenes were identified to express differentially during the transformation process. As compared with the 6th instar feeding larvae, the most significant changes took place in the proteasome and metabolic pathways in prepupae and pupae, respectively. The cytochrome P450s, VHDLs, chitinase, serine protease and genes involved in sex pheromone biosynthesis changed their mRNA levels remarkably. Three chitinolytic enzymes (chitinase, β-N-acetylglucosaminidase and chitin deacetylase) showed distinct mRNA expression patterns, the former two enzymes revealed the highest expression in prepupae, however the latter one showed its climax mRNA level in pupae. The gene expression patterns suggest that chitinase and β-N-acetylglucosaminidase may be responsible for the degradation of larval cuticles, whereas chitin deacetylase may help to degrade the pupal counterparts. Gene expression dynamics also implied that the chitin of pupal cuticle might be formed by recycling of the degraded chitin of larval cuticle rather than through de novo synthesis. The 20E-induced nuclear receptors seem to be important factors regulating chitin metabolic enzymes during the cuticle remodeling. Our data provide a comprehensive resource for exploring the molecular mechanism of epidermal metamorphosis in insects.
Collapse
|
|
12 |
43 |
5
|
Li N, Kong M, Zeng S, Xu Z, Li M, Hong W, Chu X, Sun X, Zhu M, Xu Y. The chromatin remodeling protein BRG1 regulates APAP-induced liver injury by modulating CYP3A11 transcription in hepatocyte. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3487-3495. [PMID: 30293568 DOI: 10.1016/j.bbadis.2018.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/12/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
Abstract
Acetaminophen (APAP) overdose represents the most frequent cause of acute liver failure. The underlying epigenetic mechanism is not fully understood. In the present study we investigated the mechanism whereby the chromatin remodeling protein brahma related gene 1 (Brg1) regulates APAP induced liver injury in mice. We report that hepatocyte-specific deletion of Brg1 attenuated APAP induced liver injury in mice as evidenced by reduced plasma ALT and AST levels, decreased liver necrosis, amelioration of GSH depletion, and prolonged survival. Brg1 regulated APAP-induced liver injury likely by stimulating the transcription of Cyp3a11, a key cytochrome enzyme involved in APAP metabolism. Immunoprecipitation coupled with DNA affinity microarray identified hepatocyte nuclear factor 4 (HNF4) as a novel binding partner for Brg1. HNF4 recruited Brg1 to the Cyp3a11 promoter and formed a complex with Brg1 to trans-activate Cyp3a11. In contrast, BRG1 deficiency attenuated HNF4 binding to the Cyp3a11 promoter and dampened Cyp3a11 transcription. Therefore, our data suggest that Brg1 might play an essential role mediating APAP induced liver injury in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
37 |
6
|
Saito K, Negishi M, James Squires E. Sexual dimorphisms in zonal gene expression in mouse liver. Biochem Biophys Res Commun 2013; 436:730-5. [PMID: 23791742 DOI: 10.1016/j.bbrc.2013.06.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/08/2013] [Indexed: 02/08/2023]
Abstract
Many of the metabolic functions of the liver are localized either in the pericentral region (zone 3) or in the periportal region (zone 1). However, a systematic analysis of the heterogeneity and sexual dimorphism of gene expression in the liver is lacking. Our objective was to obtain sections of intact tissue from zone 1 and zone 3 from both male and female mouse liver, and to measure the patterns of gene expression in these sections. Zone 1 and zone 3 areas were isolated by laser capture microdissection of liver sections, total RNA was isolated and microarray analysis was conducted using Agilent Whole Mouse Genome oligo arrays. To investigate functional characteristics as well as upstream regulators of specific gene lists, we used Ingenuity Pathway Analysis. We identified more than 925 genes in zone 1 and more than 450 genes in zone 3 of both male and female mice. Sexual dimorphism in metabolic functions was present in zone 1 but not zone 3. In zone 1, canonical pathways related to gluconeogenesis were male predominant, while canonical pathways related to hepatic progenitor cells were female predominant. In addition, we also analyzed the upstream regulators of zone-specific genes. SREBF1 was male-specific in zone 1, while TRIM24 was female-specific in zone 3. These results demonstrate the heterogeneity and sexually dimorphic differences in gene expression in the liver.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
28 |
7
|
Karagianni P, Moulos P, Schmidt D, Odom DT, Talianidis I. Bookmarking by Non-pioneer Transcription Factors during Liver Development Establishes Competence for Future Gene Activation. Cell Rep 2020; 30:1319-1328.e6. [PMID: 32023452 PMCID: PMC7003066 DOI: 10.1016/j.celrep.2020.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/31/2019] [Indexed: 01/01/2023] Open
Abstract
Transcription factor binding to enhancer and promoter regions critical for homeostatic adult gene activation is established during development. To understand how cell-specific gene expression patterns are generated, we study the developmental timing of association of two prominent hepatic transcription factors with gene regulatory regions. Most individual binding events display extraordinarily high temporal variations during liver development. Early and persistent binding is necessary, but not sufficient, for gene activation. Stable gene expression patterns are the result of combinatorial activity of multiple transcription factors, which mark regulatory regions long before activation and promote progressive broadening of active chromatin domains. Both temporally stable and dynamic, short-lived binding events contribute to the developmental maturation of active promoter configurations. The results reveal a developmental bookmarking function of master regulators and illuminate remarkable parallels between the principles employed for gene activation during development, during evolution, and upon mitotic exit.
Collapse
|
brief-report |
5 |
24 |
8
|
Almeida-Oliveira F, Tuthill BF, Gondim KC, Majerowicz D, Musselman LP. d HNF4 regulates lipid homeostasis and oogenesis in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103569. [PMID: 33753225 DOI: 10.1016/j.ibmb.2021.103569] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The fly genome contains a single ortholog of the evolutionarily conserved transcription factor hepatocyte nuclear factor 4 (HNF4), a broadly and constitutively expressed member of the nuclear receptor superfamily. Like its mammalian orthologs, Drosophila HNF4 (dHNF4) acts as a critical regulator of fatty acid and glucose homeostasis. Because of its role in energy storage and catabolism, the insect fat body controls non-autonomous organs including the ovaries, where lipid metabolism is essential for oogenesis. The present paper used dHNF4 overexpression (OE) in the fat bodies and ovaries to investigate its potential roles in lipid homeostasis and oogenesis. When the developing fat body overexpressed dHNF4, animals exhibited reduced size and failed to pupariate, but no changes in body composition were observed. Conditional OE of dHNF4 in the adult fat body produced a reduction in triacylglycerol content and reduced oogenesis. Ovary-specific dHNF4 OE increased oogenesis and egg-laying, but reduced the number of adult offspring. The phenotypic effects on oogenesis that arise upon dHNF4 OE in the fat body or ovary may be due to its function in controlling lipid utilization.
Collapse
|
|
4 |
21 |
9
|
Lerner J, Katznelson A, Zhang J, Zaret KS. Different chromatin-scanning modes lead to targeting of compacted chromatin by pioneer factors FOXA1 and SOX2. Cell Rep 2023; 42:112748. [PMID: 37405916 PMCID: PMC10529229 DOI: 10.1016/j.celrep.2023.112748] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Pioneer transcription factors interact with nucleosomes to scan silent, compact chromatin, enabling cooperative events that modulate gene activity. While at a subset of sites pioneer factors access chromatin by assisted loading with other transcription factors, the nucleosome-binding properties of pioneer factors enable them to initiate zygotic genome activation, embryonic development, and cellular reprogramming. To better understand nucleosome targeting in vivo, we assess whether pioneer factors FoxA1 and Sox2 target stable or unstable nucleosomes and find that they target DNase-resistant, stable nucleosomes, whereas HNF4A, a non-nucleosome binding factor, targets open, DNase-sensitive chromatin. Despite FOXA1 and SOX2 targeting similar proportions of DNase-resistant chromatin, using single-molecule tracking, we find that FOXA1 uses lower nucleoplasmic diffusion and longer residence times while SOX2 uses higher nucleoplasmic diffusion and shorter residence times to scan compact chromatin, while HNF4 scans compact chromatin much less efficiently. Thus, pioneer factors target compact chromatin through distinct processes.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
18 |
10
|
Novotný JP, Chughtai AA, Kostrouchová M, Kostrouchová V, Kostrouch D, Kaššák F, Kaňa R, Schierwater B, Kostrouchová M, Kostrouch Z. Trichoplax adhaerens reveals a network of nuclear receptors sensitive to 9- cis-retinoic acid at the base of metazoan evolution. PeerJ 2017; 5:e3789. [PMID: 28975052 PMCID: PMC5624297 DOI: 10.7717/peerj.3789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022] Open
Abstract
Trichoplax adhaerens, the only known species of Placozoa is likely to be closely related to an early metazoan that preceded branching of Cnidaria and Bilateria. This animal species is surprisingly well adapted to free life in the World Ocean inhabiting tidal costal zones of oceans and seas with warm to moderate temperatures and shallow waters. The genome of T. adhaerens (sp. Grell) includes four nuclear receptors, namely orthologue of RXR (NR2B), HNF4 (NR2A), COUP-TF (NR2F) and ERR (NR3B) that show a high degree of similarity with human orthologues. In the case of RXR, the sequence identity to human RXR alpha reaches 81% in the DNA binding domain and 70% in the ligand binding domain. We show that T. adhaerens RXR (TaRXR) binds 9-cis retinoic acid (9-cis-RA) with high affinity, as well as high specificity and that exposure of T. adhaerens to 9-cis-RA regulates the expression of the putative T. adhaerens orthologue of vertebrate L-malate-NADP+ oxidoreductase (EC 1.1.1.40) which in vertebrates is regulated by a heterodimer of RXR and thyroid hormone receptor. Treatment by 9-cis-RA alters the relative expression profile of T. adhaerens nuclear receptors, suggesting the existence of natural ligands. Keeping with this, algal food composition has a profound effect on T. adhaerens growth and appearance. We show that nanomolar concentrations of 9-cis-RA interfere with T. adhaerens growth response to specific algal food and causes growth arrest. Our results uncover an endocrine-like network of nuclear receptors sensitive to 9-cis-RA in T. adhaerens and support the existence of a ligand-sensitive network of nuclear receptors at the base of metazoan evolution.
Collapse
|
Journal Article |
8 |
14 |
11
|
Hepatocyte nuclear factors as possible C-reactive protein transcriptional inducer in the liver and white adipose tissue of rats with experimental chronic renal failure. Mol Cell Biochem 2018; 446:11-23. [PMID: 29330688 PMCID: PMC6096500 DOI: 10.1007/s11010-018-3268-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022]
Abstract
Inflammation related to chronic kidney disease (CKD) is an important clinical problem. We recently determined that hepatocyte nuclear factor 1α (HNF1α) was upregulated in the livers of chronic renal failure (CRF) rats—experimental model of CKD. Considering that the promoter region of gene encoding C-reactive protein (CRP) contains binding sites for HNF1α and that the loss-of-function mutation in the Hnfs1α leads to significant reduction in circulating CRP levels, we hypothesized that HNF1α can activate the Crp in CRF rats. Here, we found coordinated upregulation of genes encoding CRP, interleukin-6 (IL-6), HNF1α, and HNF4α in the livers and white adipose tissue (WAT) of CRF rats, as compared to the pair-fed and control animals. This was accompanied by elevated serum levels of CRP and IL-6. CRP and HNFs’ mRNA levels correlated positively with CRP and HNFs’ protein levels in the liver and WAT. Similar upregulation of the Crp, Il-6, and Hnfs in the liver and WAT and increased serum CRP and IL-6 concentrations were found in lipopolysaccharide (LPS)-induced systemic inflammation in rats. Moreover, silencing HNF1α in HepG2 cells by small interfering RNA led to decrease in CRP mRNA levels. Our results suggests that (a) HNFs act in concert with IL-6 in the upregulation of CRP production by the liver and WAT, leading to an increase in circulating CRP concentration in CRF rats and (b) CRF-related inflammation plays an important role in the upregulation of genes that encode HNFs and CRP in the liver and WAT of CRF rats.
Collapse
|
Journal Article |
7 |
12 |
12
|
Gracida X, Eckmann CR. Mind the gut: Dietary impact on germline stem cells and fertility. Commun Integr Biol 2013; 6:e26004. [PMID: 24563704 PMCID: PMC3917968 DOI: 10.4161/cib.26004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 01/24/2023] Open
Abstract
Animals thrive in environments where food resources are abundant. While this correlation between population growth and food abundance is well established, much less is known about the influence of diet quality on physiological and developmental programs that support animal reproduction. Here we discuss dietary impact on fertility, and highlight a recent report on the activity of a nuclear receptor that protects against dietary metabolites to maintain germline stem cell integrity and reproduction.
Collapse
|
Review |
12 |
5 |
13
|
Fallah S, Beaulieu JF. Src family kinases inhibit differentiation of intestinal epithelial cells through the Hippo effector YAP1. Biol Open 2021; 10:272600. [PMID: 34693980 PMCID: PMC8609238 DOI: 10.1242/bio.058904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Intestinal cell lineage differentiation is a tightly regulated mechanism that involves several intracellular signaling pathways affecting the expression of a variety of transcription factors, which ultimately regulate cell specific gene expression. Absorptive and goblet cells are the two main epithelial cell types of the intestine. Previous studies from our group using an shRNA knockdown approach have shown that YAP1, one of the main Hippo pathway effectors, inhibits the differentiation of these two cell types. In the present study, we show that YAP1 activity is regulated by Src family kinases (SFKs) in these cells. Inhibition of SFKs led to a sharp reduction in YAP1 expression at the protein level, an increase in CDX2 and the P1 forms of HNF4α and of absorptive and goblet cell differentiation specific markers. Interestingly, in Caco-2/15 cells which express both YAP1 and its paralog TAZ, TAZ was not reduced by the inhibition of SFKs and its specific knockdown rather impaired absorptive cell differentiation indicating that YAP1 and TAZ are not always interchangeable for regulating cell functions. This article has an associated First Person interview with the first author of the paper. Summary: Inhibition of Src family kinases leads to a sharp reduction in YAP1 expression and an increase in CDX2 and HNF4α, two regulators of intestinal cell differentiation, while its paralog TAZ appears not to be directly involved.
Collapse
|
|
4 |
5 |
14
|
Piskacek M, Havelka M, Jendruchova K, Knight A. Nuclear hormone receptors: Ancient 9aaTAD and evolutionally gained NCoA activation pathways. J Steroid Biochem Mol Biol 2019; 187:118-123. [PMID: 30468856 DOI: 10.1016/j.jsbmb.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Abstract
In higher metazoans, the nuclear hormone receptors activate transcription trough their specific adaptors, nuclear hormone receptor adaptors NCoA, which are absent in lower metazoans. The Nine amino acid TransActivation Domain, 9aaTAD, was reported for a large number of the transcription activators that recruit general mediators of transcription. In this study, we demonstrated that the 9aaTAD from NHR-49 receptor of nematode C.elegans activates transcription as a small peptide. We showed that the ancient 9aaTAD domains are conserved in the nuclear hormone receptors including human HNF4, RARa, VDR and PPARg. Also their small 9aaTAD peptides effectively activated transcription in absence of the NCoA adaptors. We also showed that adjacent H11 domains in ancient and modern hormone receptors have an inhibitory effect on their 9aaTAD function.
Collapse
|
|
6 |
5 |
15
|
Vemuri K, Radi SH, Sladek FM, Verzi MP. Multiple roles and regulatory mechanisms of the transcription factor HNF4 in the intestine. Front Endocrinol (Lausanne) 2023; 14:1232569. [PMID: 37635981 PMCID: PMC10450339 DOI: 10.3389/fendo.2023.1232569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) drives a complex array of transcriptional programs across multiple organs. Beyond its previously documented function in the liver, HNF4α has crucial roles in the kidney, intestine, and pancreas. In the intestine, a multitude of functions have been attributed to HNF4 and its accessory transcription factors, including but not limited to, intestinal maturation, differentiation, regeneration, and stem cell renewal. Functional redundancy between HNF4α and its intestine-restricted paralog HNF4γ, and co-regulation with other transcription factors drive these functions. Dysregulated expression of HNF4 results in a wide range of disease manifestations, including the development of a chronic inflammatory state in the intestine. In this review, we focus on the multiple molecular mechanisms of HNF4 in the intestine and explore translational opportunities. We aim to introduce new perspectives in understanding intestinal genetics and the complexity of gastrointestinal disorders through the lens of HNF4 transcription factors.
Collapse
|
Review |
2 |
3 |
16
|
Heppert JK, Lickwar CR, Tillman MC, Davis BR, Davison JM, Lu HY, Chen W, Busch-Nentwich EM, Corcoran DL, Rawls JF. Conserved roles for Hnf4 family transcription factors in zebrafish development and intestinal function. Genetics 2022; 222:iyac133. [PMID: 36218393 PMCID: PMC9713462 DOI: 10.1093/genetics/iyac133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
Transcription factors play important roles in the development of the intestinal epithelium and its ability to respond to endocrine, nutritional, and microbial signals. Hepatocyte nuclear factor 4 family nuclear receptors are liganded transcription factors that are critical for the development and function of multiple digestive organs in vertebrates, including the intestinal epithelium. Zebrafish have 3 hepatocyte nuclear factor 4 homologs, of which, hnf4a was previously shown to mediate intestinal responses to microbiota in zebrafish larvae. To discern the functions of other hepatocyte nuclear factor 4 family members in zebrafish development and intestinal function, we created and characterized mutations in hnf4g and hnf4b. We addressed the possibility of genetic redundancy amongst these factors by creating double and triple mutants which showed different rates of survival, including apparent early lethality in hnf4a; hnf4b double mutants and triple mutants. RNA sequencing performed on digestive tracts from single and double mutant larvae revealed extensive changes in intestinal gene expression in hnf4a mutants that were amplified in hnf4a; hnf4g mutants, but limited in hnf4g mutants. Changes in hnf4a and hnf4a; hnf4g mutants were reminiscent of those seen in mice including decreased expression of genes involved in intestinal function and increased expression of cell proliferation genes, and were validated using transgenic reporters and EdU labeling in the intestinal epithelium. Gnotobiotics combined with RNA sequencing also showed hnf4g has subtler roles than hnf4a in host responses to microbiota. Overall, phenotypic changes in hnf4a single mutants were strongly enhanced in hnf4a; hnf4g double mutants, suggesting a conserved partial genetic redundancy between hnf4a and hnf4g in the vertebrate intestine.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
2 |
17
|
Beinsteiner B, Billas IML, Moras D. Structural insights into the HNF4 biology. Front Endocrinol (Lausanne) 2023; 14:1197063. [PMID: 37404310 PMCID: PMC10315846 DOI: 10.3389/fendo.2023.1197063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor (NR) family that is expressed in liver, kidney, intestine and pancreas. It is a master regulator of liver-specific gene expression, in particular those genes involved in lipid transport and glucose metabolism and is crucial for the cellular differentiation during development. Dysregulation of HNF4 is linked to human diseases, such as type I diabetes (MODY1) and hemophilia. Here, we review the structures of the isolated HNF4 DNA binding domain (DBD) and ligand binding domain (LBD) and that of the multidomain receptor and compare them with the structures of other NRs. We will further discuss the biology of the HNF4α receptors from a structural perspective, in particular the effect of pathological mutations and of functionally critical post-translational modifications on the structure-function of the receptor.
Collapse
|
Review |
2 |
|
18
|
Reyes Barron C, Evans AG, Miyamoto H, Zhang B, Iqbal MA. Novel 1.3 Mb germline duplication in chromosome 8q21.11 by microarray comparative genomic hybridization plus single nucleotide polymorphism analysis in an adult patient with pancytopenia and urinary bladder complications. Clin Case Rep 2018; 6:1947-1952. [PMID: 30349704 PMCID: PMC6186884 DOI: 10.1002/ccr3.1746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 05/16/2018] [Accepted: 07/08/2018] [Indexed: 12/03/2022] Open
Abstract
We present the case of a 30-year-old woman with a history of perinatal complications as well as bladder and urinary disease through her childhood and adult life. Microarray comparative genomic hybridization (aCGH) analysis revealed a 1.3 megabase duplication at chromosome 8q21.11 encompassing the CASC9 and HNF4G genes.
Collapse
|
Case Reports |
7 |
|
19
|
Doering KRS, Ermakova G, Taubert S. Nuclear hormone receptor NHR-49 is an essential regulator of stress resilience and healthy aging in Caenorhabditis elegans. Front Physiol 2023; 14:1241591. [PMID: 37645565 PMCID: PMC10461480 DOI: 10.3389/fphys.2023.1241591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
The genome of Caenorhabditis elegans encodes 284 nuclear hormone receptor, which perform diverse functions in development and physiology. One of the best characterized of these is NHR-49, related in sequence and function to mammalian hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor α. Initially identified as regulator of lipid metabolism, including fatty acid catabolism and desaturation, additional important roles for NHR-49 have since emerged. It is an essential contributor to longevity in several genetic and environmental contexts, and also plays vital roles in the resistance to several stresses and innate immune response to infection with various bacterial pathogens. Here, we review how NHR-49 is integrated into pertinent signaling circuits and how it achieves its diverse functions. We also highlight areas for future investigation including identification of regulatory inputs that drive NHR-49 activity and identification of tissue-specific gene regulatory outputs. We anticipate that future work on this protein will provide information that could be useful for developing strategies to age-associated declines in health and age-related human diseases.
Collapse
|
Review |
2 |
|