1
|
Ye H, Adane B, Khan N, Alexeev E, Nusbacher N, Minhajuddin M, Stevens BM, Winters AC, Lin X, Ashton JM, Purev E, Xing L, Pollyea DA, Lozupone CA, Serkova NJ, Colgan SP, Jordan CT. Subversion of Systemic Glucose Metabolism as a Mechanism to Support the Growth of Leukemia Cells. Cancer Cell 2018; 34:659-673.e6. [PMID: 30270124 PMCID: PMC6177322 DOI: 10.1016/j.ccell.2018.08.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/18/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
From an organismal perspective, cancer cell populations can be considered analogous to parasites that compete with the host for essential systemic resources such as glucose. Here, we employed leukemia models and human leukemia samples to document a form of adaptive homeostasis, where malignant cells alter systemic physiology through impairment of both host insulin sensitivity and insulin secretion to provide tumors with increased glucose. Mechanistically, tumor cells induce high-level production of IGFBP1 from adipose tissue to mediate insulin sensitivity. Further, leukemia-induced gut dysbiosis, serotonin loss, and incretin inactivation combine to suppress insulin secretion. Importantly, attenuated disease progression and prolonged survival are achieved through disruption of the leukemia-induced adaptive homeostasis. Our studies provide a paradigm for systemic management of leukemic disease.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
82 |
2
|
Nijaguna MB, Patil V, Urbach S, Shwetha SD, Sravani K, Hegde AS, Chandramouli BA, Arivazhagan A, Marin P, Santosh V, Somasundaram K. Glioblastoma-derived Macrophage Colony-stimulating Factor (MCSF) Induces Microglial Release of Insulin-like Growth Factor-binding Protein 1 ( IGFBP1) to Promote Angiogenesis. J Biol Chem 2015; 290:23401-15. [PMID: 26245897 DOI: 10.1074/jbc.m115.664037] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NFκB pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NFκB-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
60 |
3
|
Shafiee MN, Seedhouse C, Mongan N, Chapman C, Deen S, Abu J, Atiomo W. Up-regulation of genes involved in the insulin signalling pathway (IGF1, PTEN and IGFBP1) in the endometrium may link polycystic ovarian syndrome and endometrial cancer. Mol Cell Endocrinol 2016; 424:94-101. [PMID: 26802879 DOI: 10.1016/j.mce.2016.01.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Endometrial cancer (EC) is the most common gynaecological cancer amongst women in the UK. Although previous studies have found that women with polycystic ovary syndrome (PCOS) have at least a three-fold increase in endometrial cancer (EC) risk compared to women without PCOS, the precise molecular mechanisms which link between PCOS and EC remain unclear. It has been suggested that insulin resistance may contribute to the increased risk of EC in PCOS. The specific expression of genes related to the insulin-signalling pathway including the IGF system in the endometrium of women with PCOS has however never been measured and compared to that in women with EC without PCOS and control women without EC or PCOS. . OBJECTIVES To test the hypothesis that insulin signalling plays a key role in the development of EC in women with PCOS by measuring and comparing the expression of three key genes involved in the insulin signalling pathway (IGF1, PTEN and IGFBP1) in endometrial tissue obtained from three groups of women; PCOS without EC, women with EC without PCOS and non-PCOS women without EC (controls). We also aimed to determine the correlation between the gene expressions to various clinical variables among participants. METHODS This was a cross-sectional study of 102 women in 3 groups (PCOS, EC and controls) at a University teaching hospital in the United Kingdom. Clinical assessment (blood pressure, body mass index (BMI) and waist-hip-circumference ratio), venepuntures (fasting blood sugar, insulin, lipid profile, hormones) and endometrial tissue biopsies were taken in all participants. Endometrial tissue RNA extraction was performed before real time polymerase-chain-reaction for the genes of interest (IGF1, IGFBP1 and PTEN) was carried out. To compare the baseline characteristics of the study population, One-Way-ANOVA test or the Independent t-test was used. For variables that were not normally distributed, the Spearman correlation test was used to calculate the r value. A "p" value of <0.05 was considered statistically significant. RESULTS IGF1, IGFBP1 and PTEN gene expression were significantly up-regulated in the endometrium of PCOS and EC women compared to controls. However there was no significant difference in the expression of these genes in PCOS compared to EC endometrium. The BMI of women with PCOS and controls, were not significantly different (29.28 (± 2.91) vs 28.58 (± 2.62) kg/m(2)) respectively, women with EC however had a higher mean BMI (32.22 (± 5.70) kg/m(2)). PCOS women were younger (31.8 (± 5.97) years) than women with EC (63.44 (± 10.07) years) and controls (43.68 (± 13.12) years). The changes in gene expression were independent of BMI, waist hip ratio, estradiol and androgen levels. Protein validation test in the serum samples in the three groups were consistent with the gene findings. CONCLUSION Women with PCOS and EC have an increased endometrial expression of genes (IGF1, IGFBP1 and PTEN) involved in the insulin signalling pathway compared with control women. This may explain the increased risk of EC in PCOS women. This study provides a strong basis for clinical trials aiming to prevent EC in women with PCOS by investigating drugs targeting the insulin signalling pathway. This panel of genes may also serve as clinically useful early biomarkers which predict which women with PCOS will go on to develop EC.
Collapse
|
Comparative Study |
9 |
52 |
4
|
Tang Q, Wu J, Zheng F, Hann SS, Chen Y. Emodin Increases Expression of Insulin-Like Growth Factor Binding Protein 1 through Activation of MEK/ERK/AMPKα and Interaction of PPARγ and Sp1 in Lung Cancer. Cell Physiol Biochem 2017; 41:339-357. [PMID: 28214826 DOI: 10.1159/000456281] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Emodin has anti-neoplastic activities on multiple tumors. However, the molecular mechanisms underlying this effect still remain to be fully understood. METHODS Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays and flow cytometry, respectively. Cell invasion and migration were examined by transwell invasion and wound healing assays. Western blot analysis was performed to examine the phosphorylation and protein expression of AMP-activated protein kinase alpha (AMPKα), extracellular signaling-regulated kinase 1/2 (ERK1/2), peroxisome proliferators-activated receptor gamma (PPARγ), insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and the transcription factor Sp1. QRT-PCR was used to examine the mRNA levels of the IGFBP1 gene. Small interfering RNAs (siRNAs) were used to knockdown PPARγ and IGFBP1 genes. Exogenously expression of IGFBP1 and Sp1 was determined by transient transfection assays. IGFBP1 promoter activity was measured by Secrete-Pair Dual Luminescence Assay Kit. In vivo nude mice xenograft model and bioluminescent imaging system were used to confirm the findings. RESULTS We showed that emodin induced cell cycle arrest of NSCLC cells. Emodin increased PPARγ protein and luciferase reporter activity, which were abolished by inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK)/ERK and AMPK. Silencing of PPARγ abrogated emodin-inhibited cell growth and cell cycle arrest. Furthermore, emodin elevated IGFBP1 mRNA, protein, and promoter activity through activation of PPARγ. Intriguingly, overexpressed Sp1 attenuated emodin-induced IGFBP1 expression, which was not observed in cells with silenced PPARγ gene. Moreover, silencing of IGFBP1 gene blunted emodin-induced inhibition of cell growth and cell cycle arrest. On the contrary, overexpressed IGFBP1 enhanced emodin-induced phosphorylation of AMPKα and ERK1/2, and restored emodin-inhibited growth in cells with silenced endogenous IGFBP1 gene. Emodin also inhibited growth of lung xenograft tumors and Sp1, and increased IGFBP1 and PPARγ protein expressions In vivo. CONCLUSION Collectively, our results show that emodin inhibits growth of non-small-cell lung cancer (NSCLC) cells through ERK and AMPKα-mediated induction of PPARγ, followed by reduction of Sp1. This in turn induces IGFBP1 gene expression. Thus, the signaling cascades, positive feedback loop and cooperative interplay between transcription factors-induced the expression of IGFBP1 gene contribute to the overall responses of emodin. This study provides a novel mechanism by which emodin inhibits growth of human lung cancer cells.
Collapse
|
Journal Article |
8 |
41 |
5
|
Gu T, Falhammar H, Gu HF, Brismar K. Epigenetic analyses of the insulin-like growth factor binding protein 1 gene in type 1 diabetes and diabetic nephropathy. Clin Epigenetics 2014; 6:10. [PMID: 24904693 PMCID: PMC4046502 DOI: 10.1186/1868-7083-6-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023] Open
Abstract
Background Clinical observations have demonstrated that high levels of circulating insulin-like growth factor binding protein-1 (IGFBP-1) are associated with type 1 diabetes (T1D), whereas low serum IGFBP-1 levels are associated with the risk of type 2 diabetes (T2D). Recently, we reported that increased DNA methylation levels in the IGFBP1 gene were associated with T2D. In the present study, we evaluated the epigenetic changes of IGFBP1 in T1D and diabetic nephropathy (DN). Results In total, 778 Swedish individuals, including T1D patients with or without DN and subjects with the normal glucose tolerance (NGT), were involved in the study. IGFBP1 methylation levels in genomic DNA extracted from peripheral blood were analyzed with bisulfite pyrosequencing. Serum IGFBP-1 levels were measured with radioimmunoassay. We found that DNA methylation levels in the IGFBP1 gene were decreased (15.6% versus 16.9%; P < 0.001), whereas serum IGFBP-1 levels were increased (31 versus 24 μg/L, P = 0.003) in T1D patients compared with NGT subjects. Furthermore, T1D patients with DN had increased circulating IGFBP-1 concentration compared with the patients without DN (52 versus 28 μg/L; P = 0.006). However, no difference of the IGFBP1 DNA methylation levels between T1D patients with and without DN was observed. Conclusions This study shows for the first time that T1D patients had decreased DNA methylation levels in the IGFBP1 gene and further implies that increased circulating IGFBP-1 levels are associated with T1D and DN.
Collapse
|
Journal Article |
11 |
35 |
6
|
Forsberg EA, Botusan IR, Wang J, Peters V, Ansurudeen I, Brismar K, Catrina SB. Carnosine decreases IGFBP1 production in db/db mice through suppression of HIF-1. J Endocrinol 2015; 225:159-67. [PMID: 25869614 DOI: 10.1530/joe-14-0571] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 12/27/2022]
Abstract
IGF binding protein 1 (IGFBP1) is a member of the binding proteins for the IGF with an important role in glucose homeostasis. Circulating IGFBP1 is derived essentially from the liver where it is mainly regulated negatively by insulin. Carnosine, a natural antioxidant, has been shown to improve metabolic control in different animal models of diabetes but its mechanisms of action are still not completely unraveled. We therefore investigate the effect of carnosine treatment on the IGFBP1 regulation in db/db mice. Db/db mice and heterozygous non-diabetic mice received for 4 weeks regular water or water supplemented with carnosine. Igfbp1 mRNA expression in the liver was evaluated using qPCR and the protein levels in plasma by western blot. Plasma IGF1 and insulin were analyzed using immunoassays. HepG2 cells were used to study the in vitro effect of carnosine on IGFBP1. The modulation of hypoxia inducible factor-1 alpha (HIF-1α) which is the central mediator of hypoxia-induction of IGFBP1 was analyzed using: WB, reporter gene assay and qPCR. Carnosine decreased the circulating IGFBP1 levels and the liver expression Igfbp1, through a complex mechanism acting both directly by suppressing the HIF-1α-mediated IGFBP1 induction and indirectly through increasing circulating insulin level followed by a decrease in the blood glucose levels and increased the plasma levels or IGF1. Reduction of IGFBP1 in diabetes through insulin-dependent and insulin-independent pathways is a novel mechanism by which carnosine contributes to the improvement of the metabolic control in diabetes.
Collapse
|
|
10 |
22 |
7
|
Yang LJ, Tang Q, Wu J, Chen Y, Zheng F, Dai Z, Hann SS. Inter-regulation of IGFBP1 and FOXO3a unveils novel mechanism in ursolic acid-inhibited growth of hepatocellular carcinoma cells. J Exp Clin Cancer Res 2016; 35:59. [PMID: 27036874 PMCID: PMC4815122 DOI: 10.1186/s13046-016-0330-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ursolic acid (UA), a natural pentacyclic triterpenoid, exerts anti-tumor effects in various cancer types including hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying this remain largely unknown. METHODS Cell viability and cell cycle were examined by MTT and Flow cytometry assays. Western blot analysis was performed to measure the phosphorylation and protein expression of p38 MAPK, insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and forkhead box O3A (FOXO3a). Quantitative real-time PCR (qRT-PCR) was used to examine the mRNA levels of IGFBP1 gene. Small interfering RNAs (siRNAs) method was used to knockdown IGFBP1 gene. Exogenous expressions of IGFBP1 and FOXO3a were carried out by transient transfection assays. IGFBP1 promoter activity was measured by Secrete-Pair™ Dual Luminescence Assay Kit . In vivo nude mice xenograft model and bioluminescent imaging system were used to confirm the findings in vitro. RESULTS We showed that UA stimulated phosphorylation of p38 MAPK. In addition, UA increased the protein, mRNA levels, and promoter activity of IGFBP1, which was abrogated by the specific inhibitor of p38 MAPK (SB203580). Intriguingly, we showed that UA increased the expression of FOXO3a and that overexpressed FOXO3a enhanced phosphorylation of p38 MAPK, all of which were not observed in cells silencing of endogenous IGFBP1 gene. Moreover, exogenous expressed IGFBP1 strengthened UA-induced phosphorylation of p38 MAPK and FOXO3a protein expression, and more importantly, restored the effect of UA-inhibited growth in cells silencing of endogenous IGFBP1 gene. Consistent with these, UA suppressed tumor growth and increased phosphorylation of p38 MAPK, protein expressions of IGFBP1 and FOXO3a in vivo. CONCLUSION Collectively, our results show that UA inhibits growth of HCC cells through p38 MAPK-mediated induction of IGFBP1 and FOXO3a expression. The interactions between IGFBP1 and FOXO3a, and feedback regulatory loop of p38 MAPK by IGFBP1 and FOXO3a resulting in reciprocal pathways, contribute to the overall effects of UA. This in vitro and in vivo study corroborates a potential novel mechanism by which UA controls HCC growth and implies that the rational targeting IGFBP1 and FOXO3a can be potential for the therapeutic strategy against HCC.
Collapse
|
research-article |
9 |
22 |
8
|
Sato Y, Inokuchi M, Takagi Y, Kojima K. IGFBP1 Is a Predictive Factor for Haematogenous Metastasis in Patients With Gastric Cancer. Anticancer Res 2019; 39:2829-2837. [PMID: 31177120 DOI: 10.21873/anticanres.13411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The clinicopathological significance and prognostic value of insulin-like growth factor binding protein 1 (IGFBP1) in gastric cancer have not been investigated to date. This study aimed to investigate the relationship of IGFBP1 expression with clinicopathological variables and prognosis. MATERIALS AND METHODS The correlation of IGFBP1 expression with the clinicopathological factors and the correlation of clinicopathogical factors with haematogenous metastasis in 219 gastric cancer patients who underwent surgery was examined. RESULTS High IGFBP1 expression was significantly associated with a poorer disease-specific survival (p<0.001) and relapse-free survival (p<0.001) in univariable analysis although IGFBP1 was not an independent prognostic factor. High IGFBP1 expression was the only independent risk factor of haematogenous metastasis. CONCLUSION High IGFBP1 expression was associated with haematogenous metastasis and poor survival. IGFBP1 might become a new prognostic factor and a target of molecular targeted therapy of gastric cancer.
Collapse
|
Journal Article |
6 |
18 |
9
|
van Dijk PR, Logtenberg SJJ, Groenier KH, Kleefstra N, Bilo HJG, Arnqvist HJ. Effect of i.p. insulin administration on IGF1 and IGFBP1 in type 1 diabetes. Endocr Connect 2014; 3:17-23. [PMID: 24327601 PMCID: PMC3899582 DOI: 10.1530/ec-13-0089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In type 1 diabetes mellitus (T1DM), low concentrations of IGF1 and high concentrations of IGF-binding protein 1 (IGFBP1) have been reported. It has been suggested that these abnormalities in the GH-IGF1 axis are due to low insulin concentrations in the portal vein. We hypothesized that the i.p. route of insulin administration increases IGF1 concentrations when compared with the s.c. route of insulin administration. IGF1 and IGFBP1 concentrations in samples derived from an open-label, randomized cross-over trial comparing the effects of s.c. and i.p. insulin delivery on glycaemia were determined. T1DM patients were randomized to receive either 6 months of continuous i.p. insulin infusion (CIPII) through an implantable pump (MIP 2007C, Medtronic) followed by 6 months of s.c. insulin infusion or vice versa with a washout phase in between. Data from 16 patients who had complete measurements during both treatment phases were analysed. The change in IGF1 concentrations during CIPII treatment was 10.4 μg/l (95% CI -0.94, 21.7 μg/l; P=0.06) and during s.c. insulin treatment was -2.2 μg/l (95% CI -13.5, 9.2 μg/l; P=0.69). When taking the effect of treatment order into account, the estimated change in IGF1 concentrations was found to be 12.6 μg/l (95% CI -3.1, 28.5 μg/l; P=0.11) with CIPII treatment compared with that with s.c. insulin treatment. IGFBP1 concentrations decreased to -100.7 μg/l (95% CI -143.0, -58.3 μg/l; P<0.01) with CIPII treatment. During CIPII treatment, parts of the GH-IGF1 axis changed compared with that observed during s.c. insulin treatment. This supports the hypothesis that the i.p. route of insulin administration is of importance in the IGF1 system.
Collapse
|
research-article |
11 |
16 |
10
|
Tang Q, Zheng F, Wu J, Xiao Q, Li L, Hann SS. Combination of Solamargine and Metformin Strengthens IGFBP1 Gene Expression Through Inactivation of Stat3 and Reciprocal Interaction Between FOXO3a and SP1. Cell Physiol Biochem 2017; 43:2310-2326. [PMID: 29073599 DOI: 10.1159/000484383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Solamargine, one natural photochemical component from traditional plants, has been shown to have anti-cancers properties. We previously showed that solamargine inhibited the growth of non-small-cell lung cancer (NSCLC) cells through suppression of prostaglandin E2 (PGE2) receptor EP4 gene and regulation of downstream signaling pathways. However, the detailed mechanism underlying this, especially in combination of metformin, a known AMPK activator, still remained to be determined. METHODS Cell viability was measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and colorimetric 5-bromo-2-deoxyuridine (BrdU) ELISA methods, respectively. Western blot analysis and immunohistochemistry were performed to examine the phosphorylation and protein expressions of signal transducer and activator of transcription 3 (Stat3), SP1, forkhead box O3a (FOXO3a), and insulin-like growth factor (IGF)-IGF binding protein 1 (IGFBP1). The expression of IGFBP1 mRNA was measured by quantitative real time PCR (qRT-PCR). Silencing of FOXO3a and IGFBP1 were examined by siRNA procedures. Exogenously expression of SP1, FOXO3a, and IGFBP1 were carried out by transient transfection assays. The promoter activity of IGFBP1 was tested using Secrete-PairTM Dual Luminescence Assay Kit. A xenografted tumor model was used to further test the effect of solamargine in combining with metformin in vivo. RESULTS We further demonstrated that solamargine inhibited growth and induced cell cycle arrest in other NSCLC cell lines. Through mechanism-based approaches, we showed that solamargine decreased the phosphorylation of Stat3; In addition, solamargine induced FOXO3a, whereas reduced SP1 protein levels; all of which were abrogated in cells with overexpressed Stat3 gene. Interestingly, there is interaction between FOXO3a and SP1. Moreover, solamargine increased mRNA, protein expression and promoter activity of IGFBP1, which was not observed in cells with overexpressed SP1 or with silenced FOXO3a genes. Finally, ablation of IGFBP1 expression by siRNA blocked the effect of solamargine on cell growth inhibition. More importantly, there was a synergy of combination of solamargine and metformin. Similar findings were also observed in vivo. CONCLUSION Our results show that solamargine increases IGFBP1 gene expression through inactivation of Stat3, followed by regulation and reciprocal interaction of FOXO3a and SP1 in vitro and in vivo. This ultimately leads to suppression of human lung cancer cell growth. Moreover, this is a synergy of solamargine in combination with metformin in this process. This study unravels a novel mechanism underlying the anti-lung cancer effects of solamargine in combination of metformin, and suggests a potential new lung cancer associated therapy.
Collapse
|
Journal Article |
8 |
16 |
11
|
Xu T, Gao S, Liu J, Huang Y, Chen K, Zhang X. MMP9 and IGFBP1 Regulate Tumor Immune and Drive Tumor Progression in Clear Cell Renal Cell Carcinoma. J Cancer 2021; 12:2243-2257. [PMID: 33758602 PMCID: PMC7974879 DOI: 10.7150/jca.48664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/13/2021] [Indexed: 01/20/2023] Open
Abstract
Immunotherapy is a novel approach and has been used in various diseases, especially in cancers. Recently, immunotherapy has gradually been used to treat advanced clear cell renal cell carcinoma (ccRCC) or metastatic ccRCC. However, the efficacy of immunotherapy is not satisfying due to the influence of the tumor microenvironment. In this study, we mainly focused on the abundance and function of tumor-infiltrating immune cells (TIICs). Monocyte and TNM stage were identified as independent prognostic factors via CIBERSORT and Cox regression analysis. Then, ccRCC patients were divided into high risk/TNMhighMonocyteslow cluster and low risk/TNMlowMonocyteshigh cluster. Further differential gene analysis, protein-protein interaction (PPI) network, and survival analysis screened nine hub genes between the above two clusters. MMP9 and IGFBP1 were selected for further study through sample validation. Moreover, gene set enrichment analysis revealed that MMP9 and IGFBP1 were involved in tumor immune via mediating cell surface receptor signal pathway, cytokine production pathway, or monocyte signal pathway. In conclusion, these findings suggested that monocyte acted as a protective factor and MMP9/IGFBP1 played a vital role in tumor immune, which might become potential novel biomarkers and therapeutic targets for immunotherapy in ccRCC.
Collapse
|
research-article |
4 |
15 |
12
|
Han K, Singh K, Rodman MJ, Hassanzadeh S, Baumer Y, Huffstutler RD, Chen J, Candia J, Cheung F, Stagliano KER, Pirooznia M, Powell-Wiley TM, Sack MN. Identification and Validation of Nutrient State-Dependent Serum Protein Mediators of Human CD4 + T Cell Responsiveness. Nutrients 2021; 13:nu13051492. [PMID: 33924911 PMCID: PMC8146063 DOI: 10.3390/nu13051492] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Intermittent fasting and fasting mimetic diets ameliorate inflammation. Similarly, serum extracted from fasted healthy and asthmatic subjects' blunt inflammation in vitro, implicating serum components in this immunomodulation. To identify the proteins orchestrating these effects, SOMAScan technology was employed to evaluate serum protein levels in healthy subjects following an overnight, 24-h fast and 3 h after refeeding. Partial least square discriminant analysis identified several serum proteins as potential candidates to confer feeding status immunomodulation. The characterization of recombinant IGFBP1 (elevated following 24 h of fasting) and PYY (elevated following refeeding) in primary human CD4+ T cells found that they blunted and induced immune activation, respectively. Furthermore, integrated univariate serum protein analysis compared to RNA-seq analysis from peripheral blood mononuclear cells identified the induction of IL1RL1 and MFGE8 levels in refeeding compared to the 24-h fasting in the same study. Subsequent quantitation of these candidate proteins in lean versus obese individuals identified an inverse regulation of serum levels in the fasted subjects compared to the obese subjects. In parallel, IL1RL1 and MFGE8 supplementation promoted increased CD4+ T responsiveness to T cell receptor activation. Together, these data show that caloric load-linked conditions evoke serological protein changes, which in turn confer biological effects on circulating CD4+ T cell immune responsiveness.
Collapse
|
Validation Study |
4 |
14 |
13
|
Tryptophan and kynurenine stimulate human decidualization via activating Aryl hydrocarbon receptor: Short title: Kynurenine action on human decidualization. Reprod Toxicol 2020; 96:282-292. [PMID: 32781018 DOI: 10.1016/j.reprotox.2020.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Decidualization is essential for successful pregnancy in rodents and primates. Although L-Tryptophan and its metabolites are essential for mammalian pregnancy, the underlying mechanism is poorly defined. We explored effects of tryptophan and kynurenine on human in vitro decidualization in human endometrial stromal cell line and primary endometrial stromal cells. Tryptophan significantly stimulates the expression of prolactin and insulin growth factor binding protein 1, reliable markers for human decidualization. When stromal cells are treated with tryptophan, tryptophan hydroxylase-1 remains unchanged, but indoleamine 2,3-dioxygenase 1 is significantly increased, suggesting tryptophan is mainly metabolized through kynurenine pathway. Kynurenine significantly stimulates insulin growth factor binding protein 1 expression. Aryl hydrocarbon receptor and its target genes (P450 1A1 and P450 1B1) are significantly increased by tryptophan and kynurenine. The induction of tryptophan and kynurenine on insulin growth factor binding protein 1 is abrogated by CH223191, an aryl hydrocarbon receptor inhibitor. Cytochrome P450 1A1 and P450 1B1 catalyze the oxidative metabolism of estradiol to catechol estrogens (2-hydroxy estradiol and 4-hydroxy estradiol), respectively. Insulin growth factor binding protein 1 is up-regulated by 2-hydroxy estradiol and 4-hydroxy estradiol. Interferon-γ significantly induces the expression of indoleamine 2,3-dioxygenase 1, aryl hydrocarbon receptor and insulin growth factor binding protein 1. All the data are also verified in primary human stromal cells. Our data indicate that Interferon-γ-induced kynurenine pathway promotes human decidualization via aryl hydrocarbon receptor signaling.
Collapse
|
Journal Article |
5 |
11 |
14
|
Nel I, Baba HA, Weber F, Sitek B, Eisenacher M, Meyer HE, Schlaak JF, Hoffmann AC. IGFBP1 in epithelial circulating tumor cells as a potential response marker to selective internal radiation therapy in hepatocellular carcinoma. Biomark Med 2015; 8:687-98. [PMID: 25123037 DOI: 10.2217/bmm.14.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Local ablative techniques such as selective internal radiation therapy (SIRT) have become the mainstay of treating hepatocellular carcinoma (HCC) in the bridging-to-transplant and palliative setting. We recently demonstrated that epithelial circulating tumor cells (CTCs) correlate to an unfavorable outcome. We wanted to scrutinize whether molecular markers detected in this specific CTC subgroup may also have clinical implications. MATERIALS & METHODS Mononuclear cells and CTCs were isolated from peripheral blood samples using density gradient centrifugation followed by depletion of hematopoietic and enrichment of epithelial (EpCAM(+)) cells employing immunomagnetic beads. The mRNA expression of candidate markers was correlated with response to SIRT in 25 patients using quantitative real-time reverse-transcription PCR. RESULTS IGFBP1 mRNA expression levels were significantly correlated with time to progression in a Kaplan-Meier log rank test (p = 0.04; 0 vs 4 months) and receiver operating characteristic analysis demonstrated a potential use to predict patients with shortened time to progression (area under the curve: 0.8; 95% CI: 0.44-0.98; p = 0.03). CONCLUSION The EpCAM fraction of CTCs may be useful to detect novel molecular markers to individualize treatment decision in patients with HCC.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
10 |
15
|
Inflammation-Associated Cytokines IGFBP1 and RANTES Impair the Megakaryocytic Potential of HSCs in PT Patients after Allo-HSCT. Biol Blood Marrow Transplant 2018; 24:1142-1151. [PMID: 29410193 DOI: 10.1016/j.bbmt.2018.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/21/2018] [Indexed: 02/06/2023]
Abstract
Prolonged isolated thrombocytopenia (PT) is a severe complication in patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Whether the megakaryoctic potential of hematopoietic stem cells (HSCs) in bone marrow is intact and what factors drive the pathological process of PT remain elusive. A retrospective study in patients (n = 285) receiving HSCT revealed that the occurrence of PT was approximately 8% and the number of platelets and megakaryocytes in PT patients is much lower compared with control subjects. To test whether the deficiency of thrombopoiesis was caused by the activities of HSCs, the megakaryocytic differentiation potential of HSCs before or after transplantation was assessed. Interestingly, a substantial decrease of megakaryocytic differentiation was observed 2 weeks after transplantation of HSCs in all of the allo-HSCT recipients. However, 4 weeks after transplantation, the ability of HSCs to generate CD41+CD42b+ megakaryocytes in successful platelet engraftment patients recovered to the same level as those of HSCs before implantation. In contrast, HSCs derived from PT patients throughout the postimplantation period exhibited poor survival and failed to differentiate properly. A protein array analysis demonstrated that multiple inflammation-associated cytokines were elevated in allo-HSCT recipients with PT. Among them, insulin-like growth factor-binding protein 1 and regulated on activation, normal T cell expressed and secreted were found to significantly suppress the proliferation and megakaryocytic differentiation of HSCs in vitro. Our results suggested that the occurrence of PT may be attributed, at least partially, to the damage to HSC function caused by inflammation-associated cytokines after HSCT. These findings shed light on the mechanism underlying HSC megakaryocytic differentiation in PT patients and may provide potential new strategies for treating PT patients after HSCT.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
8 |
16
|
Hepatitis B virus suppresses the secretion of insulin-like growth factor binding protein 1 to facilitate anti-apoptotic IGF-1 effects in HepG2 cells. Exp Cell Res 2018; 370:399-408. [PMID: 29981339 DOI: 10.1016/j.yexcr.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) infection is a major global health burden as chronic hepatitis B (CHB) is associated with the development of liver diseases including hepatocellular carcinoma (HCC). To gain insight into the mechanisms causing HBV-related HCC, we investigated the effects of HBV replication on global host cell gene expression using human HepG2 liver cells. By microarray analysis, we identified 54 differentially expressed genes in HBV-replicating HepG2 cells. One of the differentially-expressed genes was insulin-like growth factor binding protein 1 (IGFBP1) which was downregulated in HBV-replicating cells. Consistent with the gene expression data, IGFBP1 was suppressed at both the cellular and secreted protein levels in the presence of HBV replication. Transient transfection experiments with an inducible plasmid encoding the HBV X protein (HBx) revealed that HBx alone was sufficient to modulate IGFBP1 expression. Small interference RNA (siRNA)-mediated loss of function studies revealed that knockdown of IGFBP1 reduced apoptosis induced by either thapsigargin (TG) or staurosporine (STS). Treatment of cells with recombinant insulin-like growth factor 1 (IGF-1) decreased both TG- or STS-induced apoptosis. Interestingly, addition of recombinant IGFBP1 reversed the anti-apoptotic effect of IGF-1 on TG-induced, but not STS-induced, apoptosis. In conclusion, our results suggest an anti-apoptotic autocrine function of HBV-mediated downregulation of IGFBP1 in HepG2 cells. Such an effect may contribute to the development of HBV-mediated HCC by increasing pro-survival and anti-apoptotic IGF-1 effects.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
7 |
17
|
Fang Z, Yang S, Zhu L, Li Y, Chen Y, Jin Y, Zhao X, Zhao H, Chen X, Zhao Y, Shen C, Yao Y. Association study of IGFBP1 and IGFBP3 polymorphisms with hypertension and cardio-cerebral vascular diseases in a Chinese Han population. Oncotarget 2017; 8:77836-77845. [PMID: 29100429 PMCID: PMC5652818 DOI: 10.18632/oncotarget.20839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/17/2017] [Indexed: 01/25/2023] Open
Abstract
Previous studies have showed that insulin-like growth factor (IGF) axis is involved in the development of hypertension. It is unclear whether genetic variants in the IGF-binding proteins (IGFBPs) contribute to the susceptibility to hypertension. Three single-nucleotide polymorphisms (SNPs) in IGFBP1 and four SNPs in IGFBP3 were selected for genotyping in 2,012 hypertension cases and 2,210 healthy controls and 4,128 subjects were followed up for a median of 5.01 years. Multiple logistic regression and Cox regression were performed to evaluate the association of these seven SNPs with hypertension and cardio-cerebral vascular disease (CCVD). In the case-control study, rs2132572 and rs3110697 at IGFBP3 were significantly associated with hypertension, and the odds ratios (ORs) of rs2132572 (CT+TT vs. CC) and rs3110697 (GA+AA vs. GG) were 1.235 (P=0.002) and 1.176 (P=0.013), respectively (PFDR<0.05). The association of rs2132572 (TT vs. CT+CC) with hypertension was further replicated in the follow-up population, with a hazard ratio (HR) of 1.694 (P=0.014). rs1874479 at IGFBP1 was significantly associated with CCVD, particularly with stroke, and the HRs of the additive model were 1.310 (P=0.007) and 1.372 (P=0.015). Moreover, the hypertension cases presented with lower serum IGFBP1 levels than the controls (P=0.011). The serum levels of IGFBP1 significantly varied among the genotypes of rs1065780, rs2854843 and rs13223993, both in the controls and in the hypertension cases (P<0.05). These findings suggest that the genetic variants of IGFBP1 and IGFBP3 were associated with an increased risk of stroke and hypertension, respectively. Lower serum IGFBP1 levels may predict an increased risk of hypertension.
Collapse
|
Journal Article |
8 |
6 |
18
|
Kistner A, Vanpée M, Hall K. Leptin may enhance hepatic insulin sensitivity in children and women born small for gestational age. Endocr Connect 2013; 2:38-49. [PMID: 23781317 PMCID: PMC3680956 DOI: 10.1530/ec-12-0071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Children born small for gestational age (SGA) are at risk for developing type 2 diabetes. Lipodystrophy leads to early type 2 diabetes and leptin reverses the metabolic consequences of the disease. Low IGF-binding protein 1 (IGFBP1) can predict the development of type 2 diabetes. The aim of this study was to determine leptin, insulin, and IGFBP1 in children and adult women born preterm or SGA to evaluate the role of leptin as a compensatory mechanism in insulin resistance development. METHODS Seventy-six children (8.5-10 years, 41 girls and 35 boys) and 45 women (23-30 years) were studied. The children comprised subjects born appropriate for gestational age (<30 gestational weeks) (n=22), born SGA at term (n=23), and full-term normal-weight controls (n=31). Among the women, the corresponding figures were, n=10, n=18, and n=17 respectively. Fasting levels of IGFBP1, leptin, insulin, and IGF1 were determined and total adiponectin only in women. RESULTS In girls and women, term SGA subjects had higher leptin levels in relation to BMI SDS (P=0.042 and P=0.03 respectively). More than half of IGFBP1 variability was explained by leptin and insulin in children. In term SGA women, IGFBP1 level was lower compared with controls (P=0.012) and the regression line of IGFBP1 on insulin was suppressed below -1 s.d. of a reference material. CONCLUSION Leptin levels were elevated in term SGA girls and women, in particular in adult women, but not found in preterm girls and women. IGFBP1 was lower in term SGA women. In children, leptin and insulin were strong suppressors of IGFBP1. We speculate that higher leptin levels could be a protective event to enhance hepatic insulin sensitivity.
Collapse
|
research-article |
12 |
6 |
19
|
Arnetz L, Rajamand Ekberg N, Brismar K, Alvarsson M. Gender difference in adrenal sensitivity to ACTH is abolished in type 2 diabetes. Endocr Connect 2015; 4:92-9. [PMID: 25750212 PMCID: PMC4401103 DOI: 10.1530/ec-15-0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis has been implicated in type 2 diabetes (T2D). The aim of this study was to investigate the impact of T2D and gender on the HPA axis. METHODS Synthetic ACTH (1 μg) was administered to 21 subjects with T2D (age 62 (54-70) years, 11 men/ten women, HbA1c 49±2 mmol/mol, treated with diet or oral antidiabetic drugs) and 38 controls (age 58 (41-67) years, 20 men/18 women). Fasting basal B-glucose, serum cortisol, insulin, IGF1 and IGFBP1 concentrations were measured, and sampling for all but IGF1 was repeated 30, 60, and 90 min after ACTH injection. Patients took 0.25 mg dexamethasone at 2200-2300 h and returned the next morning for the measurement of serum cortisol concentration. DESIGN Cross-sectional study. RESULTS Patients with T2D had similar fasting serum cortisol, IGF1 and IGFBP1 concentrations; however, serum cortisol concentration after administration of dexamethasone did not differ between the groups. Healthy women exhibited higher peak cortisol levels compared with healthy men (675±26 vs 582±21 nmol/l, P=0.014), while the peak levels were equally high in men and women with T2D, resulting in a higher peak level in men with T2D compared with healthy men (691±42 vs 582±21 nmol/l, P=0.024). Serum cortisol concentration after administration of dexamethasone did not differ between the groups, nor did IGF1 and IGFBP1. NOVELTY OF THE FINDINGS Some studies have previously indicated disturbed regulation of the hypothalamus-pituitary-adrenal (HPA) axis in subjects with type 2 diabetes (T2D); however, much remains unknown in this area. To the best of our knowledge, this is the first study to show that the gender difference in the adrenal response to ACTH (with greater reactivity in women) is abolished in T2D. While the clinical implications cannot be determined by this paper, it is known that gender differences exist in the pathogenesis and complications of T2D. Thus, our findings suggest that further research into gender differences in the HPA axis is warranted. CONCLUSIONS Gender differences in adrenal response to ACTH were abolished in T2D. Men with T2D had a higher peak cortisol compared with controls. Further studies are needed to elucidate the clinical implications.
Collapse
|
research-article |
10 |
6 |
20
|
Li X, Li C, Wang Y, Cai J, Zhao L, Su Z, Ye H. IGFBP1 inhibits the invasion, migration, and apoptosis of HTR-8/SVneo trophoblast cells in preeclampsia. Hypertens Pregnancy 2022; 41:53-63. [PMID: 35168459 DOI: 10.1080/10641955.2022.2033259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the effects and underlying mechanisms of IGFBP1 on the biological functions of trophoblasts in simulated preeclampsia. METHODS IGFBP1 expression in placenta was determined by immunohistochemistry. HTR-8/SVneo cells were stimulated with/without IGFBP1-overexpression and hypoxia-reoxygenation, and the proliferation, invasion, migration, and apoptosis were detected by CCK8, transwell, and flow cytometry, respectively. RESULTS IGFBP1 expression was increased in placenta of preeclampsia. IGFBP1 overexpression inhibited proliferation, invasion, migration, and apoptosis of HTR-8/SVneo cells and induced MMP-26 expression with/without hypoxia-reoxygenation challenge. CONCLUSION IGFBP1 affects biological functions of trophoblasts, and it may play a role in pathophysiology of preeclampsia by inducing MMP-26.
Collapse
|
|
3 |
5 |
21
|
Darr RL, Savage KJ, Baker M, Wilding GE, Raswalsky A, Rideout T, Browne RW, Horvath PJ. Vitamin D supplementation affects the IGF system in men after acute exercise. Growth Horm IGF Res 2016; 30-31:45-51. [PMID: 27863277 DOI: 10.1016/j.ghir.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/02/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Contradictory data between the Insulin-Like Growth Factor System (IGF) system and exercise may be due to alteration in IGF binding proteins. Vitamin D (D) deficiency has been related to muscle weakness and Insulin Like Growth Factor Binding Protein 3 (IGFBP3). A Vit. D and acute exercise merge is proposed to modify the IGF system. DESIGN D insufficient and deficient men (39.0±8.6yo with serum D (25OH D) 20.0±7.7ng/mL) did 1h of stretching (ST), aerobic (AB), and resistance (RT) exercises, before and after 28d of 4000IU/d Vit. D3 (D, n=6) or Placebo (P, n=7). ST, a time/attention control visit, interchanged unreceptive movements. AB was moderate intensity treadmill walking. RT rotated moderate strength 50% 1-RM repetitions (15, 10) of squat, bench press, leg press, and lat pull down. Serum Total IGF1 (TIGF1), Insulin Like Growth Factor Binding Protein 1 (IGFBP1), and IGFBP3 were measured before (T1, fasting), immediately after (T2), and 2h post (T3) exercise. RESULTS After ST, IGFBP3 was greater in the D group at T2 (2948, 2130ng/mL; p<0.03) and T3 (3087, 2212; p<0.02). During RT, TIGF1 decreased in the Placebo (P) group from T1 to T3 (151.4, 107.3ng/mL; p<0.05), while IGFBP1 increased in the D group from T1 to T3 (26.5, 96.2ng/mL; p<0.05). RT IGFBP3 was greater at T1, T2, and T3 in the D group (2932.5, 2110.7; p<0.03), (3163.9, 2392.5; p<0.04), and (3355.3, 2353.1; p<0.01). In AB, IGFBP3 was greater in the D group at T2 (3128.6, 2226.3.0; p<0.04) and T3 (2949.7, 2135.1; p<0.05). CONCLUSION D supplementation amplified IGFBP3 after low or moderate activity which may increase the delivery of IGF1 to tissues. Resistance exercise with D not only increased IGFBP3 and IGFBP1 levels but also conserved TIGF1 levels, possibly shifting the IGF system for enriched muscle well-being.
Collapse
|
|
9 |
5 |
22
|
Freis A, Germeyer A, Jauckus J, Capp E, Strowitzki T, Zorn M, Machado Weber A. Endometrial expression of receptivity markers subject to ovulation induction agents. Arch Gynecol Obstet 2019; 300:1741-1750. [PMID: 31667611 DOI: 10.1007/s00404-019-05346-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Implantation rates differ according to ovulation induction agents in ART. This study investigates the different local endometrial effects of LH- versus hCG-induced ovulation. METHODS Endometrial stromal cells from healthy patients were cultured with hCG or LH in different concentrations, supplemented with 250 ng/mL hCG and progesterone after 2 and 5 days. In addition after decidualization induction, cells were treated with hCG (50 or 250 ng/mL) or LH (10 or 50 ng/mL) for 3 days. Receptivity markers expression was evaluated by real-time quantitative PCR on day 3 and 6. RESULTS On day 3, non-decidualized cells treated with LH showed an increased expression of IGFBP1, IL-8 and CXCL12 compared to hCG. The expression pattern changed on day 6, where cells treated with hCG showed higher expression of implantation markers compared to LH-treated cells. Furthermore, on day 3, decidualized cells treated with hCG250 showed an increased IL8 and CXCL12 expression compared to LH10. CONCLUSIONS LH seems to modulate the local endometrial expression of receptivity markers earlier compared to hCG; however, the effect is not sustained over time in cells without prior decidualization. Though, in decidualized cells, pattern changed and an earlier positive effect of hCG was shown on IL-8 and CXCL12.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
4 |
23
|
Founds SA, Stolz DB. Gene expression of four targets in situ of the first trimester maternal-fetoplacental interface. Tissue Cell 2019; 64:101313. [PMID: 32473702 DOI: 10.1016/j.tice.2019.101313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022]
Abstract
EPAS1, FSTL3, IGFBP1, and SEMA3C were localized to determine whether expression is decidual, trophoblastic, or both in the human first trimester maternal-fetoplacental interface. Identified on global genome-wide microarray analysis of chorionic villus sampling tissues in preclinical preeclampsia, these targets were predicted to interact by bioinformatics pathways analysis. In situ hybridization (ISH) with mRNA of each gene was conducted in 10 cases of archived first trimester termination tissues. Randomly selected areas of cells by tissue type yielded the relative proportion of cells expressing mRNA signal in decidual and fetoplacental sites. Data were analyzed using Shapiro-Wilk and Kruskal-Wallis tests (p ≤ .05). The average gestational age was 10.2 weeks. Expression signal for each gene differed by cell type (p < .001). FSTL3 expression was 17 times higher in cells of anchoring columns than areas of decidua without ISH signal. SEMA3C was three times higher in cells of anchoring columns than in decidua. EPAS1 was 1.31 times higher in cells of anchoring columns than in areas of decidua. IGFBP1 was 20 times higher in some decidua versus cells in anchoring columns or villous trophoblast. While all targets were expressed by both maternal and fetoplacental cells, our localizations identified which compartment had relatively higher expression of each gene.
Collapse
|
Journal Article |
6 |
3 |
24
|
Peng X, He D, Peng R, Feng J, Chen D, Xie H, Li Q, Guo Y, Zhou J, Chen Y, He H. Associations between IGFBP1 gene polymorphisms and the risk of preeclampsia and fetal growth restriction. Hypertens Res 2023; 46:2070-2084. [PMID: 37217731 DOI: 10.1038/s41440-023-01309-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
IGFBP1 plays a critical role in the pathogenesis of preeclampsia (PE), but the association between single nucleotide polymorphism (SNP) of IGFBP1 gene and PE susceptibility has not yet been determined. In our study, 229 women with PE and 361 healthy pregnant (non-PE) women were enrolled to investigate its association via TaqMan genotyping assay. In addition, the protein levels of IGFBP1 under different genotypes were explored by ELISA and IHC. We found that IGFBP1 SNP rs1065780A > G was associated with an decreased risk for PE. Women with GG (P = 0.027) or AG (Padj. = 0.023) genotype manifested a significantly lower risk for PE compared to women with AA genotype. In PE group, women carrying G allele exhibited greater fetal birth weight, lower diastolic BP, and lower levels of ALT and AST. The G genotype was found significantly less frequently in the severe preeclampsia (SPE) group than in the non-PE group (GG vs. AA, P = 0.007; G vs. A, P = 0.006). Additionally, women in the PE group who experienced fetal growth restriction (FGR) reflected a lower level of the allele G than did the non-FGR group (P = 0.032); this was not the case for the non-PE group.Rs1065780A>G elevated IGFBP1 protein level in plasma and decidua in PE group. In conclusion Chinese Han women with the SNP IGFBP1 rs1065780 occupied by G exhibited a lower risk of developing PE relative to women with the A genotype and augured for improved pregnancy outcomes through elevation of IGFBP1 protein level.
Collapse
|
|
2 |
3 |
25
|
Nakagawa Y, Kumagai K, Han SI, Mizunoe Y, Araki M, Mizuno S, Ohno H, Matsuo K, Yamada Y, Kim JD, Miyamoto T, Sekiya M, Konishi M, Itoh N, Matsuzaka T, Takahashi S, Sone H, Shimano H. Starvation-induced transcription factor CREBH negatively governs body growth by controlling GH signaling. FASEB J 2021; 35:e21663. [PMID: 34042217 DOI: 10.1096/fj.202002784rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
cAMP responsive element-binding protein H (CREBH) is a hepatic transcription factor to be activated during fasting. We generated CREBH knock-in flox mice, and then generated liver-specific CREBH transgenic (CREBH L-Tg) mice in an active form. CREBH L-Tg mice showed a delay in growth in the postnatal stage. Plasma growth hormone (GH) levels were significantly increased in CREBH L-Tg mice, but plasma insulin-like growth factor 1 (IGF1) levels were significantly decreased, indicating GH resistance. In addition, CREBH overexpression significantly increased hepatic mRNA and plasma levels of FGF21, which is thought to be as one of the causes of growth delay. However, the additional ablation of FGF21 in CREBH L-Tg mice could not correct GH resistance at all. CREBH L-Tg mice sustained GH receptor (GHR) reduction and the increase of IGF binding protein 1 (IGFBP1) in the liver regardless of FGF21. As GHR is a first step in GH signaling, the reduction of GHR leads to impairment of GH signaling. These data suggest that CREBH negatively regulates growth in the postnatal growth stage via various pathways as an abundant energy response by antagonizing GH signaling.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
2 |