Gao L, Han H, Wang H, Cao L, Feng WH. IL-10 knockdown with siRNA enhances the efficacy of Doxorubicin chemotherapy in EBV-positive tumors by inducing lytic cycle via PI3K/p38 MAPK/NF-kB pathway.
Cancer Lett 2019;
462:12-22. [PMID:
31352079 DOI:
10.1016/j.canlet.2019.07.016]
[Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
High levels of IL-10 expression in Epstein-Barr virus (EBV) associated tumors have been reported and it is likely to be important for maintaining EBV latency and EBV-associated tumors. The switch from the latent form of EBV to the lytic form in tumor cells can lead to tumor cell lysis. Here, we found that knockdown of IL-10 induced EBV lytic replication. Subsequently, we demonstrated that IL-10 knockdown activated BZLF1 promoter through PI3K-p38 MAPK-NF-κB signaling pathway. Interestingly, we verified that VEGF-A was required for IL-10 knockdown to activate PI3K signaling and the accompanying EBV lytic induction. Exogenous recombinant human VEGF-A induced PI3K activation and EBV lytic infection, and inhibition of VEGF-A signaling prevented the PI3K/AKT phosphorylation and EBV reactivation responded to IL-10 knockdown. Most importantly, IL-10 knockdown synergized with chemotherapeutic agent Doxorubicin to kill EBV associated tumor cells in vitro and repress EBV-positive tumor growth in vivo. Our results suggest that inhibition of IL-10 has the potential to serve as a new supplemental strategy for the treatment of EBV-associated tumors.
Collapse