1
|
Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H, Guo CJ, Chen S, Trier AM, Xu AZ, Tripathi SV, Luo J, Gao X, Yang L, Hamilton SL, Wang PL, Brestoff JR, Council ML, Brasington R, Schaffer A, Brombacher F, Hsieh CS, Gereau RW, Miller MJ, Chen ZF, Hu H, Davidson S, Liu Q, Kim BS. Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell 2017; 171:217-228.e13. [PMID: 28890086 DOI: 10.1016/j.cell.2017.08.006] [Citation(s) in RCA: 701] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/18/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
Mammals have evolved neurophysiologic reflexes, such as coughing and scratching, to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases, including asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood. Here, we show that type 2 cytokines directly activate sensory neurons in both mice and humans. Further, we demonstrate that chronic itch is dependent on neuronal IL-4Rα and JAK1 signaling. We also observe that patients with recalcitrant chronic itch that failed other immunosuppressive therapies markedly improve when treated with JAK inhibitors. Thus, signaling mechanisms previously ascribed to the immune system may represent novel therapeutic targets within the nervous system. Collectively, this study reveals an evolutionarily conserved paradigm in which the sensory nervous system employs classical immune signaling pathways to influence mammalian behavior.
Collapse
|
Journal Article |
8 |
701 |
2
|
Werfel T, Allam JP, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E, Hoetzenecker W, Knol E, Simon HU, Wollenberg A, Bieber T, Lauener R, Schmid-Grendelmeier P, Traidl-Hoffmann C, Akdis CA. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 2017; 138:336-49. [PMID: 27497276 DOI: 10.1016/j.jaci.2016.06.010] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a complex skin disease frequently associated with other diseases of the atopic diathesis. Recent evidence supports the concept that AD can also recognize other comorbidities, such as chronic inflammatory bowel or cardiovascular diseases. These comorbidities might result from chronic cutaneous inflammation or from a common, yet-to-be-defined immunologic background leading to immune deviations. The activation of immune cells and their migration to the skin play an essential role in the pathogenesis of AD. In patients with AD, an underlying immune deviation might result in higher susceptibility of the skin to environmental factors. There is a high unmet medical need to define immunologic endotypes of AD because it has significant implications on upcoming stratification of the phenotype of AD and the resulting targeted therapies in the development of precision medicine. This review article emphasizes studies on environmental factors affecting AD development and novel biological agents used in the treatment of AD. Best evidence of the clinical efficacy of novel immunologic approaches using biological agents in patients with AD is available for the anti-IL-4 receptor α-chain antibody dupilumab, but a number of studies are currently ongoing with other specific antagonists to immune system players. These targeted molecules can be expressed on or drive the cellular players infiltrating the skin (eg, T lymphocytes, dendritic cells, or eosinophils). Such approaches can have immunomodulatory and thereby beneficial clinical effects on the overall skin condition, as well as on the underlying immune deviation that might play a role in comorbidities. An effect of these immunologic treatments on pruritus and the disturbed microbiome in patients with AD has other potential consequences for treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
425 |
3
|
IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015; 75:68-78. [PMID: 26070934 DOI: 10.1016/j.cyto.2015.05.014] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/15/2015] [Indexed: 12/12/2022]
Abstract
Aberrant production of the prototypical type 2 cytokines, interleukin (IL)-4 and IL-13 has long been associated with the pathogenesis of allergic disorders. Despite tremendous scientific inquiry, the similarities in their structure, and receptor usage have made it difficult to ascertain the distinct role that these two look-alike cytokines play in the onset and perpetuation of allergic inflammation. However, recent discoveries of differences in receptor distribution, utilization/assembly and affinity between IL-4 and IL-13, along with the discovery of unique innate lymphoid 2 cells (ILC2) which preferentially produce IL-13, not IL-4, are beginning to shed light on these mysteries. The purpose of this chapter is to review our current understanding of the distinct roles that IL-4 and IL-13 play in allergic inflammatory states and the utility of their modulation as potential therapeutic strategies for the treatment of allergic disorders.
Collapse
|
Review |
10 |
335 |
4
|
Barlow JL, Peel S, Fox J, Panova V, Hardman CS, Camelo A, Bucks C, Wu X, Kane CM, Neill DR, Flynn RJ, Sayers I, Hall IP, McKenzie ANJ. IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction. J Allergy Clin Immunol 2013; 132:933-41. [PMID: 23810766 DOI: 10.1016/j.jaci.2013.05.012] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/02/2013] [Accepted: 05/09/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND IL-25 and IL-33 belong to distinct cytokine families, but experimental mouse studies suggest their immunologic functions in type 2 immunity are almost entirely overlapping. However, only polymorphisms in the IL-33 pathway (IL1RL1 and IL33) have been significantly associated with asthma in large-cohort genome-wide association studies. OBJECTIVE We sought to identify distinct pathways for IL-25 and IL-33 in the lung that might provide insight into their roles in asthma pathogenesis and potential for therapeutic intervention. METHODS IL-25 receptor-deficient (Il17rb(-/-)), IL-33 receptor-deficient (ST2, Il1rl1(-/-)), and double-deficient (Il17rb(-/-)Il1rl1(-/-)) mice were analyzed in models of allergic asthma. Microarrays, an ex vivo lung slice airway contraction model, and Il13(+/eGFP) mice were then used to identify specific effects of IL-25 and IL-33 administration. RESULTS Comparison of IL-25 and IL-33 pathway-deficient mice demonstrates that IL-33 signaling plays a more important in vivo role in airways hyperreactivity than IL-25. Furthermore, methacholine-induced airway contraction ex vivo increases after treatment with IL-33 but not IL-25. This is dependent on expression of the IL-33 receptor and type 2 cytokines. Confocal studies with Il13(+/eGFP) mice show that IL-33 more potently induces expansion of IL-13-producing type 2 innate lymphoid cells, correlating with airway contraction. This predominance of IL-33 activity is enforced in vivo because IL-33 is more rapidly expressed and released in comparison with IL-25. CONCLUSION Our data demonstrate that IL-33 plays a critical role in the rapid induction of airway contraction by stimulating the prompt expansion of IL-13-producing type 2 innate lymphoid cells, whereas IL-25-induced responses are slower and less potent.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
310 |
5
|
Bartemes KR, Kephart GM, Fox SJ, Kita H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol 2014; 134:671-678.e4. [PMID: 25171868 PMCID: PMC4149890 DOI: 10.1016/j.jaci.2014.06.024] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND In mice, group 2 innate lymphoid cells (ILC2s) likely mediate helminth immunity, inflammation, and tissue repair and remodeling. However, the involvement of ILC2s in human diseases, such as asthma, is not well understood. OBJECTIVES The goals of this study were to investigate whether peripheral blood specimens can be used to monitor innate type 2 immunity in human subjects and to examine whether ILC2s are involved in human asthma. METHODS PBMCs from subjects with allergic asthma (AA), subjects with allergic rhinitis (AR), or healthy control (HC) subjects were cultured in vitro with IL-25 or IL-33. Flow cytometry and cell sorting were used to identify, isolate, and quantitate ILC2s in PBMCs. RESULTS Human PBMCs produced IL-5 and IL-13 when stimulated with IL-33 or IL-25 in the presence of IL-2 without antigens. In addition, IL-7 or thymic stromal lymphopoietin were able to replace IL-2. The cell population with phenotypic ILC2 characteristics, lineage(-)CD127(+)CRTH2(+) cells, responded to IL-33 and produced large quantities of IL-5 and IL-13 but undetectable levels of IL-4. PBMCs from subjects with AA produced significantly larger amounts of IL-5 and IL-13 in response to IL-25 or IL-33 than from subjects with AR or HC. The prevalence of ILC2s in blood was greater in the AA group than in the AR group or the HC group. CONCLUSIONS Innate type 2 immune responses are increased in asthma but not in AR, suggesting potential differences in the immunopathogenesis of these diseases. Peripheral blood is useful for evaluating innate type 2 immunity in humans.
Collapse
|
Comparative Study |
11 |
303 |
6
|
Le Floc’h A, Allinne J, Nagashima K, Scott G, Birchard D, Asrat S, Bai Y, Lim WK, Martin J, Huang T, Potocky TB, Kim JH, Rafique A, Papadopoulos NJ, Stahl N, Yancopoulos GD, Murphy AJ, Sleeman MA, Orengo JM. Dual blockade of IL-4 and IL-13 with dupilumab, an IL-4Rα antibody, is required to broadly inhibit type 2 inflammation. Allergy 2020; 75:1188-1204. [PMID: 31838750 PMCID: PMC7317958 DOI: 10.1111/all.14151] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dupilumab, a fully human monoclonal antibody that binds IL-4Rα and inhibits signaling of both IL-4 and IL-13, has shown efficacy across multiple diseases with underlying type 2 signatures and is approved for treatment of asthma, atopic dermatitis, and chronic sinusitis with nasal polyposis. We sought to provide a comprehensive analysis of the redundant and distinct roles of IL-4 and IL-13 in type 2 inflammation and report dupilumab mechanisms of action. METHODS Using primary cell assays and a mouse model of house dust mite-induced asthma, we compared IL-4 vs IL-13 vs IL-4Rα blockers. RESULTS Intranasal administration of either IL-4 or IL-13 confers an asthma-like phenotype in mice by inducing immune cell lung infiltration, including eosinophils, increasing cytokine/chemokine expression and mucus production, thus demonstrating redundant functions of these cytokines. We further teased out their respective contributions using human in vitro culture systems. Then, in a mouse asthma model by comparing in head-to-head studies, either IL-4 or IL-13 inhibition to dual IL-4/IL-13 inhibition, we demonstrate that blockade of both IL-4 and IL-13 is required to broadly block type 2 inflammation, which translates to protection from allergen-induced lung function impairment. Notably, only dual IL-4/IL-13 blockade prevented eosinophil infiltration into lung tissue without affecting circulating eosinophils, demonstrating that tissue, but not circulating eosinophils, contributes to disease pathology. CONCLUSIONS Overall, these data support IL-4 and IL-13 as key drivers of type 2 inflammation and help provide insight into the therapeutic mechanism of dupilumab, a dual IL-4/IL-13 blocker, in multiple type 2 diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
285 |
7
|
Wollenberg A, Howell MD, Guttman-Yassky E, Silverberg JI, Kell C, Ranade K, Moate R, van der Merwe R. Treatment of atopic dermatitis with tralokinumab, an anti- IL-13 mAb. J Allergy Clin Immunol 2018; 143:135-141. [PMID: 29906525 DOI: 10.1016/j.jaci.2018.05.029] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/23/2018] [Accepted: 05/22/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND IL-13 has an important role in atopic dermatitis (AD) pathogenesis. Tralokinumab is a fully human mAb that potently and specifically neutralizes IL-13. OBJECTIVE We sought to evaluate the efficacy and safety of tralokinumab in adults with moderate-to-severe AD. METHODS In this phase 2b study (NCT02347176), 204 adults were randomized 1:1:1:1 to receive 45, 150, or 300 mg of subcutaneous tralokinumab, or placebo, every 2 weeks for 12 weeks with concomitant topical glucocorticoids. Coprimary end points were change from baseline in Eczema Area Severity Index score and percentage of participants with an Investigator's Global Assessment response (0/1 score and reduction of ≥2 grades from baseline) at week 12. RESULTS At week 12, 300 mg of tralokinumab significantly improved change from baseline in Eczema Area Severity Index score versus placebo (adjusted mean difference, -4.94; 95% CI, -8.76 to -1.13; P = .01), and a greater percentage of participants achieved an Investigator's Global Assessment response (26.7% vs 11.8%). Greater responses were found in participants with greater concentrations of biomarkers of increased IL-13 activity. Participants treated with 300 mg of tralokinumab demonstrated improvements in SCORAD, Dermatology Life Quality Index, and pruritus numeric rating scale (7-day mean) scores versus placebo. Upper respiratory tract infection was the most frequent treatment-emergent adverse event reported as related to study drug in the placebo (3.9%) and pooled tralokinumab (3.9%) groups. CONCLUSIONS Tralokinumab treatment was associated with early and sustained improvements in AD symptoms and an acceptable safety and tolerability profile, thereby providing evidence for targeting IL-13 in patients with AD.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
273 |
8
|
Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J Allergy Clin Immunol 2015; 135:299-310; quiz 311. [PMID: 25662302 DOI: 10.1016/j.jaci.2014.12.1871] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 11/21/2022]
Abstract
Traditionally, asthma and allergic diseases have been defined by broad definitions and treated with nonspecific medications, including corticosteroids and bronchodilators. There is an increasing appreciation of heterogeneity within asthma and allergic diseases based primarily on recent cluster analyses, molecular phenotyping, biomarkers, and differential responses to targeted and nontargeted therapies. These pioneering studies have led to successful therapeutic trials of molecularly targeted therapies in defined phenotypes. This review analyzed randomized double-blind, placebo-controlled trials of molecularly targeted therapies in defined allergic disease and asthma phenotypes. IgE was the first successful biological target used in patients with allergic disease and asthma. This review shows that therapies targeting the canonical type 2 cytokines IL-4, IL-5, and IL-13 have shown consistent efficacy, especially in asthmatic patients with evidence of TH2/type 2 inflammation ("type 2 high"). As of yet, there are no successful trials of targeted therapies in asthmatic patients without evidence for type 2 inflammation. We conclude that further refinement of type 2 therapies to specific type 2 phenotypes and novel approaches for patients without type 2 inflammation are needed for asthma and allergic disease treatment.
Collapse
|
Review |
10 |
263 |
9
|
Peters MC, Mekonnen ZK, Yuan S, Bhakta NR, Woodruff PG, Fahy JV. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J Allergy Clin Immunol 2014; 133:388-94. [PMID: 24075231 PMCID: PMC3981552 DOI: 10.1016/j.jaci.2013.07.036] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 07/15/2013] [Accepted: 07/30/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND The 3-gene signature of periostin, chloride channel accessory 1 (CLCA1), and Serpin β2 (SERPINB2) in airway epithelial brushings is used to classify asthma into TH2-high and TH2-low endotypes. Little is known about the utility of gene profiling in sputum as a molecular phenotyping method. OBJECTIVE We sought to determine whether gene profiling in sputum cells can identify T(H)2-high and T(H)2-low subtypes of asthma. METHODS In induced sputum cell pellets from 37 asthmatic patients and 15 healthy control subjects, PCR was used to profile gene expression of the epithelial cell signature of IL-13 activation (periostin, CLCA1, and SERPINB2), TH2 genes (IL4, IL5, and IL13), and other genes associated with airway TH2 inflammation. RESULTS Gene expression levels of CLCA1 and periostin, but not SerpinB2, were significantly higher than normal in sputum cells from asthmatic subjects. Expression levels of IL-4, IL-5, and IL-13 were also significantly increased in asthmatic patients and highly correlated within individual subjects. By combining the expression levels of IL-4, IL-5, and IL-13 in a single quantitative metric ("T(H)2 gene mean"), 26 (70%) of the 37 asthmatic patients had T(H)2-high asthma, which was characterized by more severe measures of asthma and increased blood and sputum eosinophilia. TH2 gene mean values tended to be stable when initial values were very high or very low but fluctuated above or below the T(H)2-high cutoff when initial values were intermediate. CONCLUSION IL-4, IL-5, and IL-13 transcripts are easily detected in sputum cells from asthmatic patients, and their expression levels can be used to classify asthma into T(H)2-high and T(H)2-low endotypes.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
250 |
10
|
Kimura H, Francisco D, Conway M, Martinez FD, Vercelli D, Polverino F, Billheimer D, Kraft M. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol 2020; 146:80-88.e8. [PMID: 32422146 PMCID: PMC7227558 DOI: 10.1016/j.jaci.2020.05.004] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/04/2023]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has dramatically changed our world, country, communities, and families. There is controversy regarding risk factors for severe COVID-19 disease. It has been suggested that asthma and allergy are not highly represented as comorbid conditions associated with COVID-19. Objective Our aim was to extend our work in IL-13 biology to determine whether airway epithelial cell expression of 2 key mediators critical for SARS-CoV-2 infection, namely, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2), are modulated by IL-13. Methods We determined effects of IL-13 treatment on ACE2 and TMPRSS2 expression ex vivo in primary airway epithelial cells from participants with and without type 2 asthma obtained by bronchoscopy. We also examined expression of ACE2 and TMPRSS2 in 2 data sets containing gene expression data from nasal and airway epithelial cells from children and adults with asthma and allergic rhinitis. Results IL-13 significantly reduced ACE2 and increased TMPRSS2 expression ex vivo in airway epithelial cells. In 2 independent data sets, ACE2 expression was significantly reduced and TMPRSS2 expression was significantly increased in the nasal and airway epithelial cells in type 2 asthma and allergic rhinitis. ACE2 expression was significantly negatively associated with type 2 cytokines, whereas TMPRSS2 expression was significantly positively associated with type 2 cytokines. Conclusion IL-13 modulates ACE2 and TMPRSS2 expression in airway epithelial cells in asthma and atopy. This deserves further study with regard to any effects that asthma and atopy may render in the setting of COVID-19 infection.
Collapse
|
Journal Article |
5 |
241 |
11
|
Rothenberg ME, Wen T, Greenberg A, Alpan O, Enav B, Hirano I, Nadeau K, Kaiser S, Peters T, Perez A, Jones I, Arm JP, Strieter RM, Sabo R, Gunawardena KA. Intravenous anti- IL-13 mAb QAX576 for the treatment of eosinophilic esophagitis. J Allergy Clin Immunol 2014; 135:500-7. [PMID: 25226850 DOI: 10.1016/j.jaci.2014.07.049] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/04/2014] [Accepted: 07/29/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a chronic allergic disease with limited treatment options. OBJECTIVE We evaluated QAX576, an mAb against IL-13, in the treatment of patients with EoE. METHODS Patients (18-50 years) with proton pump inhibitor-resistant esophageal eosinophilia received intravenous QAX576 (6 mg/kg) or placebo (2:1) at weeks 0, 4, and 8 and were followed for 6 months. The primary end point was the responder rate for a greater than 75% decrease in peak eosinophil counts at week 12. Efficacy was to be declared if the lower 90% confidence limit for the proportion of responders on QAX576 was 35% or greater. Secondary end points included changes in esophageal eosinophil counts, symptoms assessed by questionnaire scores, and quantification of a series of biomarkers. RESULTS Twenty-three patients completed the study up to week 12, and 18 continued to the end of the study. For the proximal and distal esophageal biopsies combined, the responder rate was 12.5% (90% confidence limit, 1% to 43%) with placebo, compared to 40.0% (90% confidence limit, 22% to 61%) with QAX576. Although the primary end point was not met, the mean esophageal eosinophil count decreased by 60% with QAX576 versus an increase of 23% with placebo (P = .004), and the decrease was sustained up to 6 months. There was a trend for improved symptoms, particularly dysphagia. QAX576 improved expression of EoE-relevant esophageal transcripts, including eotaxin-3, periostin, and markers of mast cells and barrier function, for up to 6 months after treatment. QAX576 was well tolerated. CONCLUSIONS QAX576 significantly improved intraepithelial esophageal eosinophil counts and dysregulated esophageal disease-related transcripts in adults with EoE in a sustained manner.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
218 |
12
|
Furue M. Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. Int J Mol Sci 2020; 21:E5382. [PMID: 32751111 PMCID: PMC7432778 DOI: 10.3390/ijms21155382] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is an eczematous, pruritic skin disorder with extensive barrier dysfunction and elevated interleukin (IL)-4 and IL-13 signatures. The barrier dysfunction correlates with the downregulation of barrier-related molecules such as filaggrin (FLG), loricrin (LOR), and involucrin (IVL). IL-4 and IL-13 potently inhibit the expression of these molecules by activating signal transducer and activator of transcription (STAT)6 and STAT3. In addition to IL-4 and IL-13, IL-22 and IL-17A are probably involved in the barrier dysfunction by inhibiting the expression of these barrier-related molecules. In contrast, natural or medicinal ligands for aryl hydrocarbon receptor (AHR) are potent upregulators of FLG, LOR, and IVL expression. As IL-4, IL-13, IL-22, and IL-17A are all capable of inducing oxidative stress, antioxidative AHR agonists such as coal tar, glyteer, and tapinarof exert particular therapeutic efficacy for AD. These antioxidative AHR ligands are known to activate an antioxidative transcription factor, nuclear factor E2-related factor 2 (NRF2). This article focuses on the mechanisms by which FLG, LOR, and IVL expression is regulated by IL-4, IL-13, IL-22, and IL-17A. The author also summarizes how AHR and NRF2 dual activators exert their beneficial effects in the treatment of AD.
Collapse
|
Review |
5 |
210 |
13
|
Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy 2020; 75:54-62. [PMID: 31230370 DOI: 10.1111/all.13954] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin condition that has traditionally been considered a paradigmatic type 2 immunity (T2)-driven disease. Interleukin (IL)-4 and IL-13 are both pivotal cytokines involved in the generation of allergic diseases. Currently, besides dupilumab, which blocks the binding of both cytokines to their receptors, a number of new pharmacologic entities have been designed to target both T2 cytokines and/or their receptors and/or receptor-associated signal transduction machinery such as Janus kinases. Recently, IL-13 has been suggested to be the key T2 cytokine driving inflammation in the periphery, while IL-4 may merely have a central effect. There is increasing evidence that this concept holds true for the inflammatory reaction underlying AD, where IL-13 is overexpressed locally and has a significant impact on skin biology, including the recruitment of inflammatory cells, the alteration of the skin microbiome, and the decrease in the epidermal barrier function. This review provides an update on the role of IL-13 in AD and discusses the different strategies aimed at interfering with its biologic activity as well as their potential in a precision medicine approach in the management of AD.
Collapse
|
Review |
5 |
203 |
14
|
IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J Allergy Clin Immunol 2016; 138:801-811.e9. [PMID: 27177780 DOI: 10.1016/j.jaci.2016.02.030] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/26/2016] [Accepted: 02/12/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Food allergy is a major health issue, but its pathogenesis remains obscure. Group 2 innate lymphoid cells (ILC2s) promote allergic inflammation. However their role in food allergy is largely unknown. OBJECTIVE We sought to investigate the role of ILC2s in food allergy. METHODS Food allergy-prone mice with a gain-of-function mutation in the IL-4 receptor α chain (Il4raF709) were orally sensitized with food allergens, and the ILC2 compartment was analyzed. The requirement for ILC2s in food allergy was investigated by using Il4raF709, IL-33 receptor-deficient (Il1rl1(-/-)), IL-13-deficient (Il13(-/-)), and IL-4-deficient (Il4(-/-)) mice and by adoptive transfer of in vitro-expanded ILC2s. Direct effects of ILC2s on regulatory T (Treg) cells and mast cells were analyzed in coculture experiments. Treg cell control of ILC2s was assessed in vitro and in vivo. RESULTS Il4raF709 mice with food allergy exhibit increased numbers of ILC2s. IL-4 secretion by ILC2s contributes to the allergic response by reducing allergen-specific Treg cell and activating mast cell counts. IL-33 receptor deficiency in Il4raF709 Il1rl1(-/-) mice protects against allergen sensitization and anaphylaxis while reducing ILC2 induction. Adoptive transfer of wild-type and Il13(-/-) but not Il4(-/-) ILC2s restored sensitization in Il4raF709 Il1rl1(-/-) mice. Treg cells suppress ILC2s in vitro and in vivo. CONCLUSION IL-4 production by IL-33-stimulated ILC2s blocks the generation of allergen-specific Treg cells and favors food allergy. Strategies to block ILC2 activation or the IL-33/IL-33 receptor pathway can lead to innovative therapies in the treatment of food allergy.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
197 |
15
|
Renert-Yuval Y, Thyssen JP, Bissonnette R, Bieber T, Kabashima K, Hijnen D, Guttman-Yassky E. Biomarkers in atopic dermatitis-a review on behalf of the International Eczema Council. J Allergy Clin Immunol 2021; 147:1174-1190.e1. [PMID: 33516871 PMCID: PMC11304440 DOI: 10.1016/j.jaci.2021.01.013] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Atopic dermatitis (AD) is a common yet complex skin disease, posing a therapeutic challenge with increasingly recognized different phenotypes among variable patient populations. Because therapeutic response may vary on the basis of heterogeneous clinical and molecular phenotypes, a shift toward precision medicine approaches may improve AD management. Herein, we will consider biomarkers as potential instruments in the toolbox of precision medicine in AD and will review the process of biomarker development and validation, the opinion of AD experts on the use of biomarkers, types of biomarkers, encompassing biomarkers that may improve AD diagnosis, biomarkers reflecting disease severity, and those potentially predicting AD development, concomitant atopic diseases, or therapeutic response, and current practice of biomarkers in AD. We found that chemokine C-C motif ligand 17/thymus and activation-regulated chemokine, a chemoattractant of TH2 cells, has currently the greatest evidence for robust correlation with AD clinical severity, at both baseline and during therapy, by using the recommendations, assessment, development, and evaluation approach. Although the potential of biomarkers in AD is yet to be fully elucidated, due to the complexity of the disease, a comprehensive approach taking into account both clinical and reliable, AD-specific biomarker evaluations would further facilitate AD research and improve patient management.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
175 |
16
|
Czarnowicki T, Esaki H, Gonzalez J, Malajian D, Shemer A, Noda S, Talasila S, Berry A, Gray J, Becker L, Estrada Y, Xu H, Zheng X, Suárez-Fariñas M, Krueger JG, Paller AS, Guttman-Yassky E. Early pediatric atopic dermatitis shows only a cutaneous lymphocyte antigen (CLA)(+) TH2/TH1 cell imbalance, whereas adults acquire CLA(+) TH22/TC22 cell subsets. J Allergy Clin Immunol 2015; 136:941-951.e3. [PMID: 26242300 PMCID: PMC4946641 DOI: 10.1016/j.jaci.2015.05.049] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Identifying differences and similarities between cutaneous lymphocyte antigen (CLA)(+) polarized T-cell subsets in children versus adults with atopic dermatitis (AD) is critical for directing new treatments toward children. OBJECTIVE We sought to compare activation markers and frequencies of skin-homing (CLA(+)) versus systemic (CLA(-)) "polar" CD4 and CD8 T-cell subsets in patients with early pediatric AD, adults with AD, and control subjects. METHODS Flow cytometry was used to measure CD69/inducible costimulator/HLA-DR frequency in memory cell subsets, as well as IFN-γ, IL-13, IL-9, IL-17, and IL-22 cytokines, defining TH1/cytotoxic T (TC) 1, TH2/TC2, TH9/TC9, TH17/TC17, and TH22/TC22 populations in CD4 and CD8 cells, respectively. We compared peripheral blood from 19 children less than 5 years old and 42 adults with well-characterized moderate-to-severe AD, as well as age-matched control subjects (17 children and 25 adults). RESULTS Selective inducible costimulator activation (P < .001) was seen in children. CLA(+) TH2 T cells were markedly expanded in both children and adults with AD compared with those in control subjects, but decreases in CLA(+) TH1 T-cell numbers were greater in children with AD (17% vs 7.4%, P = .007). Unlike in adults, no imbalances were detected in CLA(-) T cells from pediatric patients with AD nor were there altered frequencies of TH22 T cells within the CLA(+) or CLA(-) compartments. Adults with AD had increased frequencies of IL-22-producing CD4 and CD8 T cells within the skin-homing population, compared with controls (9.5% vs 4.5% and 8.6% vs 2.4%, respectively; P < .001), as well as increased HLA-DR activation (P < .01). CONCLUSIONS These data suggest that TH2 activation within skin-homing T cells might drive AD in children and that reduced counterregulation by TH1 T cells might contribute to excess TH2 activation. TH22 "spreading" of AD is not seen in young children and might be influenced by immune development, disease chronicity, or recurrent skin infections.
Collapse
|
Comparative Study |
10 |
168 |
17
|
Czarnowicki T, Gonzalez J, Shemer A, Malajian D, Xu H, Zheng X, Khattri S, Gilleaudeau P, Sullivan-Whalen M, Suárez-Fariñas M, Krueger JG, Guttman-Yassky E. Severe atopic dermatitis is characterized by selective expansion of circulating TH2/TC2 and TH22/TC22, but not TH17/TC17, cells within the skin-homing T-cell population. J Allergy Clin Immunol 2015; 136:104-115.e7. [PMID: 25748064 DOI: 10.1016/j.jaci.2015.01.020] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Past studies of blood T-cell phenotyping in patients with atopic dermatitis (AD) have provided controversial results and were mostly performed before the identification of TH9, TH17, and TH22 T-cell populations in human subjects. OBJECTIVE We sought to quantify TH1, TH2, TH9, TH17, and TH22 T-cell populations and corresponding CD8(+) T-cell subsets in both cutaneous lymphocyte antigen (CLA)-positive and CLA(-) T-cell subsets in patients with AD and control subjects. METHODS We studied 42 adults with severe AD (mean SCORAD score, 65) and 25 healthy subjects using an 11-color flow cytometric antibody panel. Frequencies of IFN-γ-, IL-22-, IL-13-, IL-17-, and IL-9-producing CD4(+) and CD8(+) T cells were compared in CLA(-) and CLA(+) populations. RESULTS We measured increased TH2/TC2/IL-13(+) and TH22/TC22/IL-22(+) populations (P < .1) in patients with severe AD versus control subjects, with significant differences in CLA(+) T-cell numbers (P < .01). A significantly lower frequency of CLA(+) IFN-γ-producing cells was observed in patients with AD, with no significant differences in CLA(-) T-cell numbers. The CLA(+) TH1/TH2 and TC1/TC2 ratio was highly imbalanced in patients with AD (10 vs 3 [P = .005] and 19 vs 7 [P < .001], respectively). Positive correlations were found between frequencies of IL-13- and IL-22-producing CD4(+) and CD8(+) T cells (r = 0.5 and 0.8, respectively; P < .0001), and frequencies of IL-13-producing CLA(+) cells were also correlated with IgE levels and SCORAD scores. Patients with AD with skin infections had higher CD4(+) IL-22(+) and IL-17(+) cell frequencies, which were highly significant among CLA(-) cells (IL-22: 3.7 vs 1.7 [P < .001] and IL-17: 1.7 vs 0.6 [P < .001]), with less significant effects among CLA(+) T cells (IL-22: 11 vs 7.5, P = .04). CONCLUSIONS Severe AD is accompanied by expansion of skin-homing TH2/TC2 and TH22/TC22 subsets with lower TH1/TC1 frequencies. These data create a critical basis for studying alterations in immune activation in adults and pediatric patients with AD.
Collapse
|
|
10 |
167 |
18
|
Deleuran M, Thaçi D, Beck LA, de Bruin-Weller M, Blauvelt A, Forman S, Bissonnette R, Reich K, Soong W, Hussain I, Foley P, Hide M, Bouaziz JD, Gelfand JM, Sher L, Schuttelaar MLA, Wang C, Chen Z, Akinlade B, Gadkari A, Eckert L, Davis JD, Rajadhyaksha M, Staudinger H, Graham NMH, Pirozzi G, Ardeleanu M. Dupilumab shows long-term safety and efficacy in patients with moderate to severe atopic dermatitis enrolled in a phase 3 open-label extension study. J Am Acad Dermatol 2019; 82:377-388. [PMID: 31374300 DOI: 10.1016/j.jaad.2019.07.074] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Significant unmet need exists for long-term treatment of moderate to severe atopic dermatitis (AD). OBJECTIVE To assess the long-term safety and efficacy of dupilumab in patients with AD. METHODS This ongoing, multicenter, open-label extension study (NCT01949311) evaluated long-term dupilumab treatment in adults who had previously participated in phase 1 through 3 clinical trials of dupilumab for AD. This analysis examined patients given 300 mg dupilumab weekly for up to 76 weeks at data cutoff (April 2016). Safety was the primary outcome; efficacy was also evaluated. RESULTS Of 1491 enrolled patients (1042.9 patient-years), 92.9% were receiving treatment at cutoff. The safety profile was consistent with previously reported trials (420.4 adverse events/100 patient-years and 8.5 serious adverse events/100 patient-years), with no new safety signals; common adverse events included nasopharyngitis, conjunctivitis, and injection-site reactions. Sustained improvement was seen up to 76 weeks in all efficacy outcomes, including measures of skin inflammation, pruritus, and quality of life. LIMITATIONS Lack of control arm, limited number of patients with 76 weeks or longer of treatment (median follow-up, 24 weeks), and patients not receiving the approved dose regimen of 300 mg every 2 weeks. CONCLUSION The safety and efficacy profile from this study supports the role of dupilumab as continuous long-term treatment for patients with moderate to severe AD.
Collapse
|
Multicenter Study |
6 |
164 |
19
|
Stier MT, Bloodworth MH, Toki S, Newcomb DC, Goleniewska K, Boyd KL, Quitalig M, Hotard AL, Moore ML, Hartert TV, Zhou B, McKenzie AN, Peebles RS. Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. J Allergy Clin Immunol 2016; 138:814-824.e11. [PMID: 27156176 PMCID: PMC5014571 DOI: 10.1016/j.jaci.2016.01.050] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 01/12/2016] [Accepted: 01/29/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a major health care burden with a particularly high worldwide morbidity and mortality rate among infants. Data suggest that severe RSV-associated illness is in part caused by immunopathology associated with a robust type 2 response. OBJECTIVE We sought to determine the capacity of RSV infection to stimulate group 2 innate lymphoid cells (ILC2s) and the associated mechanism in a murine model. METHODS Wild-type (WT) BALB/c, thymic stromal lymphopoietin receptor (TSLPR) knockout (KO), or WT mice receiving an anti-TSLP neutralizing antibody were infected with the RSV strain 01/2-20. During the first 4 to 6 days of infection, lungs were collected for evaluation of viral load, protein concentration, airway mucus, airway reactivity, or ILC2 numbers. Results were confirmed with 2 additional RSV clinical isolates, 12/11-19 and 12/12-6, with known human pathogenic potential. RESULTS RSV induced a 3-fold increase in the number of IL-13-producing ILC2s at day 4 after infection, with a concurrent increase in total lung IL-13 levels. Both thymic stromal lymphopoietin (TSLP) and IL-33 levels were increased 12 hours after infection. TSLPR KO mice did not mount an IL-13-producing ILC2 response to RSV infection. Additionally, neutralization of TSLP significantly attenuated the RSV-induced IL-13-producing ILC2 response. TSLPR KO mice displayed reduced lung IL-13 protein levels, decreased airway mucus and reactivity, attenuated weight loss, and similar viral loads as WT mice. Both 12/11-19 and 12/12-6 similarly induced IL-13-producing ILC2s through a TSLP-dependent mechanism. CONCLUSION These data demonstrate that multiple pathogenic strains of RSV induce IL-13-producing ILC2 proliferation and activation through a TSLP-dependent mechanism in a murine model and suggest the potential therapeutic targeting of TSLP during severe RSV infection.
Collapse
|
research-article |
9 |
155 |
20
|
Rigas D, Lewis G, Aron JL, Wang B, Banie H, Sankaranarayanan I, Galle-Treger L, Maazi H, Lo R, Freeman GJ, Sharpe AH, Soroosh P, Akbari O. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction. J Allergy Clin Immunol 2016; 139:1468-1477.e2. [PMID: 27717665 DOI: 10.1016/j.jaci.2016.08.034] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. OBJECTIVE In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. METHODS ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. RESULTS We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. CONCLUSION These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma.
Collapse
|
Journal Article |
9 |
151 |
21
|
Noonan M, Korenblat P, Mosesova S, Scheerens H, Arron JR, Zheng Y, Putnam WS, Parsey MV, Bohen SP, Matthews JG. Dose-ranging study of lebrikizumab in asthmatic patients not receiving inhaled steroids. J Allergy Clin Immunol 2013; 132:567-574.e12. [PMID: 23726041 DOI: 10.1016/j.jaci.2013.03.051] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/21/2013] [Accepted: 03/27/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Asthma is a disease with marked heterogeneity in its clinical course and response to treatment. IL-13 is central to type 2 inflammation, which contributes to many key features of asthma. Lebrikizumab is an anti-IL-13 mAb previously reported to significantly improve lung function in patients with inadequately controlled asthma despite inhaled corticosteroid therapy, especially in periostin-high patients. OBJECTIVE This phase II study investigated the efficacy and safety of IL-13 blockade with different doses of lebrikizumab in asthmatic patients not receiving inhaled corticosteroids. METHODS Patients were randomized to receive 125, 250, or 500 mg of lebrikizumab or placebo subcutaneously monthly for 12 weeks with an 8-week follow-up period. The primary efficacy end point was the relative change in prebronchodilator FEV1 from baseline to week 12. RESULTS A total of 212 patients were randomized. The mean relative change in FEV1 was numerically higher in all lebrikizumab dose groups versus the placebo group, although the difference was neither statistically nor clinically significant. There were no meaningful differences in changes in FEV1 between the dose groups and the placebo group by the periostin subgroup. Lebrikizumab treatment was associated with a reduced risk of treatment failure at all doses versus placebo (P < .001), and results were similar by the periostin subgroup, with no apparent differences between doses of lebrikizumab. Lebrikizumab was generally well tolerated. CONCLUSION Blocking IL-13, a single cytokine, in this population of asthmatic patients is insufficient to improve lung function. There is evidence that IL-13 blockade may improve disease control, as measured by prevention of protocol-defined treatment failure in these patients.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
144 |
22
|
Iwaszko M, Biały S, Bogunia-Kubik K. Significance of Interleukin (IL)-4 and IL-13 in Inflammatory Arthritis. Cells 2021; 10:cells10113000. [PMID: 34831223 PMCID: PMC8616130 DOI: 10.3390/cells10113000] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-4 and IL-13 belong to the T helper 2 (Th2) cytokine family, along with IL-3, IL-5, and IL-9. These cytokines are key mediators of allergic inflammation. They have important immunomodulatory activities and exert influence on a wide variety of immune cells, such as B cells, eosinophils, basophils, monocytes, fibroblasts, endothelial cells, airway epithelial cells, smooth muscle cells, and keratinocytes. Recent studies have implicated IL-4 and IL-13 in the development of various autoimmune diseases. Additionally, these cytokines have emerged as potential players in pathogenesis of inflammatory arthritis. Recent findings suggest that the IL-4 and IL-13 might play a significant role in the downregulation of inflammatory processes underlying RA pathology, and beneficially modulate the course of the disease. This review summarizes the biological features of the IL-4 and IL-13 and provides current knowledge regarding the role of these cytokines in inflammatory arthritis.
Collapse
|
Review |
4 |
142 |
23
|
McLeod JJA, Baker B, Ryan JJ. Mast cell production and response to IL-4 and IL-13. Cytokine 2015; 75:57-61. [PMID: 26088754 PMCID: PMC4532630 DOI: 10.1016/j.cyto.2015.05.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 11/24/2022]
Abstract
IL-4 was identified as the first cytokine to be produced by mast cells and is responsible for promoting mast cell IL-13 production. IL-4 and IL-13 play a prominent role in stimulating and maintaining the allergic response. As closely related genes, IL-4 and IL-13 share a common receptor subunit, IL-4Rα, necessary for signaling. Here we summarize the literature on mast cell activation associated with IL-4 and IL-13 production, including downstream signaling. We also describe the positive and negative roles each cytokine plays in mast cell immunity and detail the differences that exist between mouse and human mast cell responses to IL-4 and IL-13.
Collapse
|
Review |
10 |
141 |
24
|
Caldwell JM, Collins MH, Stucke EM, Putnam PE, Franciosi JP, Kushner JP, Abonia JP, Rothenberg ME. Histologic eosinophilic gastritis is a systemic disorder associated with blood and extragastric eosinophilia, TH2 immunity, and a unique gastric transcriptome. J Allergy Clin Immunol 2014; 134:1114-24. [PMID: 25234644 DOI: 10.1016/j.jaci.2014.07.026] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/05/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND The definition of eosinophilic gastritis (EG) is currently limited to histologic EG based on the tissue eosinophil count. OBJECTIVE We aimed to provide additional fundamental information about the molecular, histopathologic, and clinical characteristics of EG. METHODS Genome-wide transcript profiles and histologic features of gastric biopsy specimens, as well as blood eosinophil counts, were analyzed in patients with EG and control subjects (n = 15 each). RESULTS The peak gastric antrum eosinophil count was 283 ± 164 eosinophils/×400 high-power field in patients with EG and 11 ± 9 eosinophils/×400 high-power field in control subjects (P = 6.1 × 10(-7)). Patients with EG (87%) had coexisting eosinophilic inflammation in multiple gastrointestinal segments; the esophagus represented the most common secondary site. Increased peripheral blood eosinophil counts (patients with EG: 1.09 ± 0.88 × 10(3)/μL vs control subjects: 0.09 ± 0.08 10(3)/μL, P = .0027) positively correlated with peak gastric eosinophil counts (Pearson r(2) = .8102, P < .0001). MIB-1(+) (proliferating), CD117(+) (mast cells), and FOXP3(+) (regulatory T cells, activated T cells, or both) cell counts were increased in patients with EG. Transcript profiling revealed changes in 8% of the genome in gastric tissue from patients with EG. Only 7% of this EG transcriptome overlapped with the eosinophilic esophagitis transcriptome. Significantly increased IL4, IL5, IL13, IL17, CCL26, and mast cell-specific transcripts and decreased IL33 transcripts were observed. CONCLUSION EG is a systemic disorder involving profound blood and gastrointestinal tract eosinophilia, TH2 immunity, and a conserved gastric transcriptome markedly distinct from the eosinophilic esophagitis transcriptome. The data herein define germane cellular and molecular pathways of EG and provide a basis for improving diagnosis and treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
133 |
25
|
Saatian B, Rezaee F, Desando S, Emo J, Chapman T, Knowlden S, Georas SN. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers 2014; 1:e24333. [PMID: 24665390 PMCID: PMC3875607 DOI: 10.4161/tisb.24333] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 01/19/2023] Open
Abstract
Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma.
Collapse
|
Journal Article |
11 |
133 |