1
|
Zhou Y, Li Z, Yu S, Wang X, Xie T, Zhang W. Iguratimod prevents renal fibrosis in unilateral ureteral obstruction model mice by suppressing M2 macrophage infiltration and macrophage-myofibroblast transition. Ren Fail 2024; 46:2327498. [PMID: 38666363 PMCID: PMC11057400 DOI: 10.1080/0886022x.2024.2327498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/03/2024] [Indexed: 05/01/2024] Open
Abstract
Iguratimod is a novel synthetic, small-molecule immunosuppressive agent used to treat rheumatoid arthritis. Through ongoing exploration of its role and mechanisms of action, iguratimod has been observed to have antifibrotic effects in the lung and skin; however, its effect on renal fibrosis remains unknown. This study aimed to investigate whether iguratimod could affect renal fibrosis progression. Three different concentrations of iguratimod (30 mg/kg/day, 10 mg/kg/day, and 3 mg/kg/day) were used to intervene in unilateral ureteral obstruction (UUO) model mice. Iguratimod at 10 mg/kg/day was observed to be effective in slowing UUO-mediated renal fibrosis. In addition, stimulating bone marrow-derived macrophages with IL-4 and/or iguratimod, or with TGF-β and iguratimod or SRC inhibitors in vitro, suggested that iguratimod mitigates the progression of renal fibrosis in UUO mice, at least in part, by inhibiting the IL-4/STAT6 signaling pathway to attenuate renal M2 macrophage infiltration, as well as by impeding SRC activation to reduce macrophage-myofibroblast transition. These findings reveal the potential of iguratimod as a treatment for renal disease.
Collapse
|
2
|
Zhang M, Cheng J, Liu J, Geng Y, Fan Y, Yang L, Zhu Y. The Mechanism of Immune Intervention by Iguratimod in Oral Lichen Planus Patients: An In Vitro Experimental Study. J Oral Pathol Med 2024. [PMID: 39608785 DOI: 10.1111/jop.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/03/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Oral lichen planus (OLP) is a T cell-mediated immune disease. Iguratimod (IGU) is a novel immunomodulatory agent for rheumatoid arthritis. No studies have been reported on the mechanism of IGU in the treatment of OLP, which deserves investigation. METHODS Samples were collected from two batches of non-erosive OLP, erosive OLP (EOLP) patients and healthy control subjects. In the first batch, the effects of IGU or the same volume of dimethyl sulfoxide (DMSO) on proliferation, apoptosis and migration of peripheral blood T lymphocytes (PBL T) were examined by CCK-8, flow cytometry and transwell assay respectively. The levels of IL-6, IL-17, TNF-α, TGF-β and IL-10 were measured by enzyme-linked immunosorbent assay. In the second batch, the percentages of Th17 and Treg cells were determined by flow cytometry in peripheral blood mononuclear cells after IGU or DMSO stimulation. RESULTS Compared with the control, IGU promoted apoptosis and inhibited migration, but had no significant effect on the proliferation of PBL T in OLP. IL-6, IL-17 and TNF-α were decreased in OLP. TGF-β and IL-10 showed an upward trend in the IGU-treated EOLP. IGU decreased Th17 in OLP and reduced Th17/Treg ratio in EOLP. The percentage of Treg cells showed an upregulated trend but the difference was not statistically significant. CONCLUSION IGU may intervene in the immune response of OLP by affecting functions of PBL T, improving the balance of Th17/Treg and regulating related cytokines.
Collapse
|
3
|
Li D, Dong J, Xiong T, Zhou X, Li Y, Chen C, Li S, Song Z, Xu N, Yang M, Yan X, Liu T, Liu S. Transdermal delivery of iguratimod and colchicine ethosome by dissolving microneedle patch for the treatment of recurrent gout. Colloids Surf B Biointerfaces 2024; 242:114087. [PMID: 39003846 DOI: 10.1016/j.colsurfb.2024.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
This study introduces a novel approach of repetitive modeling to simulate the pathological process of recurrent gout attacks in humans. This methodology addresses the instability issues present in rat models of gout, providing a more accurate representation of the damage recurrent gout episodes inflict on human skeletal systems. A soluble nanoneedle system encapsulating colchicine and iguratimod ethosomal formulations was developed. This system aims to modulate inflammatory cytokines and inhibit osteoclast activity, thereby treating inflammatory pain and bone damage associated with recurrent gout. Additionally, a comprehensive evaluation of the microneedles' appearance, morphology, mechanical properties, and penetration capability confirmed their effectiveness in penetrating the stratum corneum. Dissolution tests and skin irritation assessments demonstrated that these microneedles dissolve rapidly without irritating the skin. In vitro permeation studies indicated that transdermal drug delivery via these microneedles is more efficient and incurs lower drug loss compared to traditional topical applications. In vivo pharmacodynamic assessments conducted in animal models revealed significant analgesic and anti-inflammatory effects when both types of microneedles were used together. Further analyses, including X-ray imaging, hematoxylin and eosin (H&E) staining, Safranin-O/fast green staining, tartrate-resistant acid phosphatase staining, and quantification of osteoclasts, confirmed the bone-protective effects of the microneedle combination. In conclusion, the findings of this research underscore the potential of this novel therapeutic approach for clinical application in the treatment of recurrent gout.
Collapse
|
4
|
Zhang Q, Yang XR, Deng Y. Iguratimod Alleviates Experimental Sjögren's Syndrome by Inhibiting NLRP3 Inflammasome Activation. Cell Biochem Biophys 2024; 82:2275-2283. [PMID: 38839699 DOI: 10.1007/s12013-024-01337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Iguratimod (T-614) is a compound widely used as anti-rheumatic drug. This study investigated the effect and underlying mechanism of T-614 on experimental Sjögren's syndrome (ESS). ESS mice model was established by injection of submandibular gland protein. Mice were randomly divided into control, experimental Sjögren's syndrome (ESS), ESS + T-614 (10 mg/kg), ESS + T-614 (20 mg/kg), and ESS + T-614 (30 mg/kg) groups. Human submandibular gland (HSG) were cultured with 0, 0.5, 5, or 50 μg/ml T-614 in the absence or presence of interferon-α (IFN-α). Haematoxylin and eosin (H&E) and cytokine levels were used to detect immune cells activation in submandibular glands. Apoptosis in submandibular glands tissues and cells was determined by TUNEL and flow cytometry. Apoptosis and NLRP3 inflammasome-related proteins were detected by western blotting. T-614 treatment attenuated submandibular gland damage in ESS mice. T-614 administration inhibited submandibular gland cell apoptosis in ESS mice. Furthermore, T-614 blocked inflammatory factor levels and NLRP3 inflammasome activation in the submandibular glands. In vitro, results corroborated that T-614 could protect HSG cells from IFN-α-induced cell apoptosis and inflammation by inhibiting NLRP3 inflammasome activation. Our results expounded that T-614 alleviated ESS by inhibiting NLRP3 inflammasome activation.
Collapse
|
5
|
Lu H, Sun X, Yang C, Zheng M, Ni B, Han Z, Tao J, Ju X, Tan R, Shen B, Gu M, Wang Z. Iguratimod ameliorates antibody-mediated rejection after renal transplant by modulating the Th17/Treg paradigm. Int Immunopharmacol 2024; 136:112409. [PMID: 38850789 DOI: 10.1016/j.intimp.2024.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Iguratimod (IGU) is widely used in clinical practice due to its stable anti-inflammatory effects. Our previous studies have confirmed that the proportion of Th17/Treg balance in patients taking IGU altered significantly. This study aims to explore the role of IGU in antibody-mediated rejection (ABMR) and its potential mechanisms. METHODS We conducted bioinformatics analysis of sequencing data from the GEO database to analyze the abundance of immune cell infiltration in transplanted kidney tissues. In vivo, IGU was intervened in a mice secondary skin transplantation model and a mice kidney transplantation ABMR model, and histological morphology of the grafts were examined by pathological staining, while relevant indicators were determined through qRT-PCR, immunohistochemistry, and enzyme-linked immunosorbent assay, observed T cell differentiation by flow cytometry, and preliminarily assessed the immunosuppressive effect of IGU. In vitro, we established Th17 and Treg cell induction and stimulation differentiation culture systems and added IGU for intervention to explore its effects on their differentiation. RESULTS Through bioinformatics analysis, we found that Th17 and Treg may play important roles in the occurrence and development of ABMR. In vivo, we found that IGU could effectively reduce the damage caused by ABMR to the grafts, alleviate the infiltration of inflammatory cells in the graft tissues, and reduce the deposition of C4d in the grafts. Moreover, it is also found that IGU regulated the differentiation of Th17 and Treg cells in the spleen and peripheral blood and reduced the expression of IL-17A in the grafts and serum. In addition, same changes were observed in the induction and differentiation culture system of Th17 and Treg cells in vitro after the addition of IGU. CONCLUSION IGU can inhibit the progression of ABMR by regulating the differentiation of Th17 and Treg cells, providing novel insights for optimizing clinical immunosuppressive treatment regimens.
Collapse
|
6
|
Shi L, Hu J, Wu H, Shen Y, Chen X, Weng Q, Xu RA, Tang C. Simultaneous determination of iguratimod and its metabolite in rat plasma using a UPLC-MS/MS method: Application for drug-drug interaction. J Pharm Biomed Anal 2024; 243:116079. [PMID: 38471255 DOI: 10.1016/j.jpba.2024.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
This aim of the work was to establish an acceptable sensitive assay based on ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for quantitatively analyzing the plasma concentrations of iguratimod (IGR) and its metabolite M2 in rats, and to further investigate the effect of fluconazole on the pharmacokinetics of IGR and M2. The mobile phase consisted of acetonitrile and water with 0.1% formic acid, was used to separate IGR, M2 and internal standard (IS) fedratinib on a UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with the flow rate of 0.4 mL/min. Positive ion mode and multiple reaction monitoring (MRM) were used to construct the quantitative analysis. The calibration standard of IGR and M2 covered 2-10000 and 1-1000 ng/mL respectively, with the lower limit of quantification (LLOQ) as 2 ng/mL and 1 ng/mL respectively. In addition, selectivity, recovery, accuracy, precision, matrix effect and stability of the method validation program were well accepted in this work. Subsequently, this approach was used to assess the effect of fluconazole on the pharmacokinetics of IGR and M2 in rats. In the presence of 20 mg/kg fluconazole (experimental group), we found the main pharmacokinetic parameters were significantly altered when compared with 2.5 mg/kg IGR alone (control group). Among them, AUC(0-∞) and Cmax of IGR in the experimental group was 1.43 and 1.08 times higher than that of the control group, respectively. Moreover, we also found that the other main pharmacokinetic parameters of M2 had no significant changes, except t1/2z and Tmax. In conclusion, fluconazole significantly altered the main pharmacokinetics of IGR and M2 in rats. It implys that we should pay more attention to the adverse reaction of IGR when the concomitant use of fluconazole and IGR occur in the future clinical practice.
Collapse
|
7
|
Peng T, Li B, Bi L, Zhang F. Iguratimod inhibits protein citrullination and inflammation by downregulating NBCe2 in patients with rheumatoid arthritis. Biomed Pharmacother 2024; 174:116551. [PMID: 38636399 DOI: 10.1016/j.biopha.2024.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Bicarbonate has recently been identified as a crucial factor affecting peptidylarginine deiminase (PAD) activity; however, the mechanism underlying its role in rheumatoid arthritis (RA) remains unclear. Iguratimod (IGU), a small-molecule disease-modifying anti-rheumatic drug, requires further investigation. This study aimed to explore the mechanism by which bicarbonate affects citrullination and inflammation in RA and identify new targets for IGU. METHODS We enrolled 20 patients with RA in the study. Sodium bicarbonate cotransporter 2 (NBCe2) was detected in the peripheral blood neutrophils and peripheral blood mononuclear cells (PBMCs) of these patients. The effects of varying concentrations of IGU, methotrexate (MTX), dexamethasone (DXM), and S0859 (an NBCe2 inhibitor) on NBCe2, PAD2, PAD4, and citrullinated histone H3 (cit-H3) levels in, migration ability of, and cytokine production from neutrophils and PBMCs were examined. RESULTS Our findings showed that in patients with RA, citrullinated protein production by peripheral blood neutrophils instead of PBMCs, which showed higher NBCe2 expression levels, increased with an increase in the bicarbonate concentration. In addition, tumor necrosis factor-alpha (TNF-α) promoted NBCe2 expression in neutrophils from patients with RA. Furthermore, we revealed that the inhibitory effects of IGU on neutrophil NBCe2 and cit-H3 levels, degrees of inhibition of neutrophil and PBMC migration, and suppression of interleukin 6, TNF-α, and metalloproteinase-9 secretion from neutrophil-like differentiated HL-60 cells did not substantially differ from those of MTX, DXM, and S0859 at specific doses. CONCLUSIONS Bicarbonate promotes protein citrullination and inflammation in RA via NBCe2, and IGU can downregulate NBCe2.
Collapse
|
8
|
Miura T, Etani Y, Noguchi T, Hirao M, Takami K, Goshima A, Kurihara T, Fukuda Y, Ochiai N, Kanamoto T, Nakata K, Okada S, Ebina K. Iguratimod suppresses sclerostin and receptor activator of NF-κB ligand production via the extracellular signal-regulated kinase/early growth response protein 1/tumor necrosis factor alpha pathway in osteocytes and ameliorates disuse osteoporosis in mice. Bone 2024; 181:117026. [PMID: 38325651 DOI: 10.1016/j.bone.2024.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Disuse osteoporosis is a prevalent complication among patients afflicted with rheumatoid arthritis (RA). Although reports have shown that the antirheumatic drug iguratimod (IGU) ameliorates osteoporosis in RA patients, details regarding its effects on osteocytes remain unclear. The current study examined the effects of IGU on osteocytes using a mouse model of disuse-induced osteoporosis, the pathology of which crucially involves osteocytes. A reduction in distal femur bone mass was achieved after 3 weeks of hindlimb unloading in mice, which was subsequently reversed by intraperitoneal IGU treatment (30 mg/kg; five times per week). Histology revealed that hindlimb-unloaded (HLU) mice had significantly increased osteoclast number and sclerostin-positive osteocyte rates, which were suppressed by IGU treatment. Moreover, HLU mice exhibited a significant decrease in osteocalcin-positive cells, which was attenuated by IGU treatment. In vitro, IGU suppressed the gene expression of receptor activator of NF-κB ligand (RANKL) and sclerostin in MLO-Y4 and Saos-2 cells, which inhibited osteoclast differentiation of mouse bone marrow cells in cocultures. Although IGU did not affect the nuclear translocation or transcriptional activity of NF-κB, RNA sequencing revealed that IGU downregulated the expression of early growth response protein 1 (EGR1) in osteocytes. HLU mice showed significantly increased EGR1- and tumor necrosis factor alpha (TNFα)-positive osteocyte rates, which were decreased by IGU treatment. EGR1 overexpression enhanced the gene expression of TNFα, RANKL, and sclerostin in osteocytes, which was suppressed by IGU. Contrarily, small interfering RNA-mediated suppression of EGR1 downregulated RANKL and sclerostin gene expression. These findings indicate that IGU inhibits the expression of EGR1, which may downregulate TNFα and consequently RANKL and sclerostin in osteocytes. These mechanisms suggest that IGU could potentially be used as a treatment option for disuse osteoporosis by targeting osteocytes.
Collapse
|
9
|
Hu P, Cai J, Yang C, Xu L, Ma S, Song H, Yang P. SLAMF3 promotes Th17 differentiation and is reversed by iguratimod through JAK1/STAT3 pathway in primary Sjögren's syndrome. Int Immunopharmacol 2024; 126:111282. [PMID: 38061117 DOI: 10.1016/j.intimp.2023.111282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVE The signaling lymphocytic activation molecule family of receptors (SLAMF) is involved in the activation of T cells and plays important roles in the pathogenesis of autoimmune diseases. The purpose of this study is to observe the expression of SLAMF3 on CD4 + T cells and its effect on the differentiation of T helper 17 (Th17) in primary Sjögren's syndrome (pSS). Furthermore, we found iguratimod (IGU) could effectively reverse the aberrant Th17 differentiation through JAK1/STAT3 signaling. METHODS Peripheral blood mononuclear cells from 40 pSS and 40 healthy control subjects were enrolled for analysis of expression of SLAMF3 on CD4 + T and Th17 cells by flow cytometry. Serum IL-17 and SLAMF3 were detected by ELISA assay. Labial biopsies from 20 pSS patients and 20 non-pSS controls were performed immunohistochemical for staining expression of CD4, IL-17, and SLAMF3. Under the priming conditions with anti-CD3/CD28 or CD3/SLAMF3 antibodies on CD4 + T cells extracted from pSS and controls, the proportion of Th17 cells in CD4 + T cells and the amount of soluble IL-17A were assessed by flow cytometry and ELISA. Furthermore, RNA sequencing was performed for the transcriptomics study. Additionally, RNA level of RORγt and IL-17A and the protein level of RORγt, p-JAK1 and p-STAT3, were detected by real-time PCR and western blot. RESULTS The expression levels of SLAMF3 on CD4 + T and Th17 cells in the peripheral blood and salivary glands in pSS patients were significantly elevated than that in control groups. The serum IL-17A and SLAMF3 in pSS patients were much higher compared with the control group. Although co-stimulation of CD3/SLAMF3 could promote CD4 + T cells differentiate into Th17 cells both in pSS and controls, the CD4 + T cells from pSS have a more sensitive response in Th17 differentiation with the SLAMF3 stimulation. Transcriptomics results showed the CD3/SLAMF3 stimulation caused the activation of Th17 signaling and JAK1/STAT3 pathway. Quantitative PCR and western blotting confirmed the IGU (iguratimod), which is a safe clinical drug in treatment of autoimmune diseases, effectively reversed the increased Th17 proportion, the expression levels of RORγt, pJAK1, and pSTAT3 caused by CD3/SLAMF3 stimulation. CONCLUSION SLAMF3 upregulates Th17 cell differentiation of CD4 + T cells and IL-17A secretion through enriching RORγt and activating the transcriptomics participating in the pathogenesis of primary Sjögren's syndrome. IGU could inhibit the process through this therapeutic target in pSS.
Collapse
|
10
|
Duan H, Gao S, Zhang L, Song L, Zhai J, Deng X. The clinical characteristics and prognosis of patients with SAPHO syndrome--a real-world cohort study. Clin Rheumatol 2024; 43:561-568. [PMID: 37755548 DOI: 10.1007/s10067-023-06782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVES We aimed to analyze the clinical characteristics and outcomes of patients with synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome. METHODS The clinical records of 64 patients with SAPHO syndrome were collected, and the treatment and outcomes of 27 patients were followed up. The patients were divided into three groups according to the site of bone lesions: only anterior chest wall (ACW) involvement, only spinal involvement, and bone lesion involvement at both sites. The clinical characteristics and outcomes were compared. The clinical characteristics of the patients with and without peripheral joint involvement were compared. RESULTS Among all patients, 31.25% (20/64) had only ACW involvement, 15.63% (10/64) had only spinal involvement, and 53.12% (34/64) had both ACW and spinal involvement. Peripheral joint involvement was observed in 25.00% (16/64) of the patients. Patients with only spinal involvement were older than those with only ACW involvement (p = 0.006). Patients with both ACW and spinal involvement were older than those with only ACW involvement (p = 0.002) and had a longer diagnosis delay (p = 0.015). Patients with peripheral joint involvement were younger than those without peripheral joint involvement (p = 0.028). During follow-up, 88.89% (24/27) of patients had good outcomes. Twenty-two patients were treated with non-steroidal anti-inflammatory drugs + Iguratimod (IGU), and the outcomes of 90.91% (20/22) improved. CONCLUSIONS A relationship may exist between the sites of bone lesions and clinical characteristics of patients with SAPHO syndrome. The clinical outcomes of these patients may be good, and IGU may be effective in treating SAPHO syndrome. Key Points • This study is the first long-term follow-up on the effectiveness of iguratimod in treating patients with SAPHO. • This study revealed that patients with SAPHO and different bone lesion sites may present with different clinical characteristics.
Collapse
|
11
|
邹 雪, 白 小, 张 丽. [Effectiveness of tofacitinib combined with iguratimod in the treatment of difficult-to-treat moderate-to-severe rheumatoid arthritis]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2023; 55:1013-1021. [PMID: 38101782 PMCID: PMC10723989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE To investigate the efficacy and safety of iguratimod combined with tofacitinib in patients with difficult-to-treat moderate-to-severe rheumatoid arthritis (RA). METHODS In this prospective clinical study, 30 patients with difficult-to-treat moderate-to-severe RA who attended the Department of Rheumatology and Immunology of Shanxi Province Fenyang Hospital from September 2021 to June 2022 were selected. Twenty-three patients enrollment had been treated with 2 or more conventional synthetic disease modifying anti-rheumatic drugs (DMARDs) for more than 6 months. At least, methotrexate or leflunomide was included. Seven patients were treated with conventional synthetic DMARDs combined with tumor necrosis factor antagonists. Because all the patients had not reached the target of treatment, the combination treatment regimen of DMARDs was changed to iguratimod and tofacitinib. The observation period was 12 weeks. Clinical data were collected before and after treatment. At the end of 4 weeks, 8 weeks and 12 weeks, the clinical data were collected such as swollen joints count (SJC), tender joints count (TJC), time of morning stiffness, clinical disease activity index (CDAI), health status assessment questionnaire (HAQ), and 28-joint disease activity score (DAS28) were included. We collected laboratory indicators, recorded the patient's medication, and observed some changes to see if any adverse drug reactions occurred during the treatment. RESULTS There were significant differences in erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF), platelet (PLT), SJC, TJC, DAS28 based on ESR(DAS28-ESR), time of morning stiffness, HAQ, CDAI, and anti-cyclic citrullinated peptide antibody before and after treatment. The differences had statistical significance (P < 0.05). There was no statistical differences in globulin before and after treatment (P>0.05). During the treatment of iguratimod combined with tofacitinib, there was no serious adverse reactions such as leukopenia, significant elevation of liver enzymes, allergy or thromboemblolic events that occurred in all the patients. CONCLUSION Iguratimod combined with tofacitinib in the treatment of difficult-to-treat moderate-to-severe RA may have efficacy. The machanism was improving the patients' recent clinical symptoms by reducing inflammatory indexes. This combination treatment regimen with iguratimod and tofacitinib has a good safety profile.
Collapse
|
12
|
Chen J, Che Q, Kou Y, Rong X, Zhang X, Li M, Shu Q. A novel drug combination of Tofacitinib and Iguratimod alleviates rheumatoid arthritis and secondary osteoporosis. Int Immunopharmacol 2023; 124:110913. [PMID: 37717316 DOI: 10.1016/j.intimp.2023.110913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND The inadequate response of some patients with rheumatoid arthritis (RA) to current therapies is an issue that needs to be addressed. Patients with refractory RA (RRA) are often accompanied by high Tumor necrosis factor (TNF) expression. We evaluated the synergistic therapeutic effects of the combination of Iguratimod (IGU) and Tofacitinib (TOF) on RRA and secondary osteoporosis. METHODS Pathological changes in the ankle joints of collagen-induced arthritis (CIA) + TNF model rats were assessed using hematoxylin and eosin (HE) staining. Immunohistochemistry (IHC) and immunofluorescence (IF) were used to evaluate pyroptosis-related protein levels in the synovial tissues. Moreover, the knee joint was investigated by performing HE staining, IHC, and micro-computed tomography. Furthermore, in vitro, western blotting and enzyme-linked immunosorbent assay (ELISA) were performed to detect the effects of TOF and IGU on TNF-α-induced pyroptosis in fibroblast-like synoviocytes of RA. RESULTS After treatment with TOF and/or IGU, the arthritis scores, inflammatory cell infiltration in synovial tissues, and levels of interleukin (IL)-18, IL-1β, and IL-6 in the plasma were remarkably increased in the CIA + TNF model and dramatically decreased in the combination group. The expression of pyroptosis-related proteins was significantly lower in the combination group than in the CIA + TNF group, and a consistent trend was observed in vitro. Bone destruction was significantly alleviated, and the bone turnover rate was remarkably increased in the combination group compared to that in the CIA + TNF model. CONCLUSION TOF + IGU alleviated the severity of RRA in the CIA + TNF rat model, relieving joint inflammation, reducing bone erosion, and suppressing pyroptosis. The combined application of TOF and IGU may have a superimposed therapeutic effect on RRA and secondary osteoporotic bone remodeling.
Collapse
|
13
|
Wang Q, Yi J, Liu H, Luo M, Yin G, Huang Z. Iguratimod promotes functional recovery after SCI by repairing endothelial cell tight junctions. Exp Neurol 2023; 368:114503. [PMID: 37572946 DOI: 10.1016/j.expneurol.2023.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Destruction of the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) is an important factor promoting the progression of the injury. This study addressed how to repair the BSCB in order to promote the repair of injured spinal cords. Iguratimod (IGU), an anti-rheumatic drug, has been approved for clinical use. A spinal cord injury mouse model and TNF-α-stimulated bEnd.3 cells were used to investigate the effect and mechanism of IGU on injured BSCB. An intracerebroventricular osmotic pump was used to administer drugs to the SCI mouse model. The results showed that the SCI mice in the treatment group had better recovery of neurological function than the control group. Examination of the tissue revealed better repair of the BSCB in injured spinal cords after medication. According to the results from the cell model, IGU promoted the expression of tight junction proteins and reduced cell permeability. Further research found that IGU repaired the barrier function by regulating glycolysis levels in the injured endothelial cells. In studying the mechanism, IGU was found to regulate HIF-1α expression through the NF-κB pathway, thereby regulating the expression of the glycolytic enzymes related to endothelial injury. In summary, IGU promoted functional recovery in vivo by repairing the BSCB. In vitro, IGU regulated the level of glycolysis in the damaged endothelium through the NF-κB pathway, thereby repairing the tight junctions between the endothelium. Therefore, IGU may become a potential drug for treating spinal cord injury.
Collapse
|
14
|
Lyu T, Jiang H, Zeng L, Liu S, He C, Luo C, Qiao L, Zhao Y, Chen H. Iguratimod suppresses Tfh cell differentiation in primary Sjögren's syndrome patients through inhibiting Akt/mTOR/STAT3 signaling. Arthritis Res Ther 2023; 25:152. [PMID: 37608388 PMCID: PMC10463648 DOI: 10.1186/s13075-023-03109-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/09/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Iguratimod (IGU) reduces hypergammaglobulinemia and disease activity in pSS (primary Sjögren's syndrome) patients. However, the therapeutical mechanism of IGU for pSS remains largely unknown. This study aimed to investigate the regulation of Tfh cell differentiation by IGU in pSS patients. METHODS We prospectively enrolled 13 pSS patients treated with IGU for 3 months and examined circulating T cell and B cell subsets by flow cytometry. We measured Tfh cell differentiation treated by IGU in pSS patients and healthy controls. Transcriptome analysis combined with molecular docking were employed to identify potential therapeutical targets of IGU, which were verified by Western blot and Tfh cell differentiation. RESULTS Tfh, plasmablast, and plasma cells were suppressed by IGU treatment at 1 and 3 months. Tfh cell differentiation and function were significant inhibited by IGU in pSS patients and healthy controls in vitro. Pyruvate dehydrogenase kinase 1 (PDK1) was identified as a target of IGU during Tfh cell differentiation, and the downstream Akt phosphorylation was attenuated by IGU. Moreover, the activity of mTORC1 and phosphorylation of STAT3 were suppressed by IGU, with downregulation of BCL6 and upregulation of PRDM1. Finally, Akt activator restored IGU-suppressed Tfh cell differentiation. CONCLUSIONS IGU suppresses Tfh cell differentiation in pSS patients through interacting with PDK1 and suppressing Akt-mTOR-STAT3 signaling.
Collapse
|
15
|
Shen L, Yin H, Sun L, Zhang Z, Jin Y, Cao S, Fu Q, Fan C, Bao C, Lu L, Zhan Y, Xu X, Chen X, Yan Q. Iguratimod attenuated fibrosis in systemic sclerosis via targeting early growth response 1 expression. Arthritis Res Ther 2023; 25:151. [PMID: 37596660 PMCID: PMC10439582 DOI: 10.1186/s13075-023-03135-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND The early growth response 1 (EGR1) is a central transcription factor involved in systemic sclerosis (SSc) pathogenesis. Iguratimod is a synthesized anti-rheumatic disease-modifying drug, which shows drastic inhibition to EGR1 expression in B cells. This study is aiming to investigate the anti-fibrotic effect of iguratimod in SSc. METHODS EGR1 was detected by immunofluorescence staining real-time PCR or western blot. Iguratimod was applied in EGR1 overexpressed or knockdown human dermal fibroblast, bleomycin pre-treated mice, tight skin 1 mice, and SSc skin xenografts. RNA sequencing was performed in cultured fibroblast and xenografts to identify the iguratimod regulated genes. RESULTS EGR1 overexpressed predominantly in non-immune cells of SSc patients. Iguratimod reduced EGR1 expression in fibroblasts and neutralized changes of EGR1 response genes regulated by TGFβ. The extracellular matrix (ECM) production and activation of fibroblasts were attenuated by iguratimod while EGR1 overexpression reversed this effect of iguratimod. Iguratimod ameliorated the skin fibrosis induced by bleomycin and hypodermal fibrosis in TSK-1 mice. Decreasing in the collagen content as well as the density of EGR1 or TGFβ positive fibroblasts of skin xenografts from naïve SSc patients was observed after local treatment of iguratimod. CONCLUSION Targeting EGR1 expression is a probable underlying mechanism for the anti-fibrotic effect of iguratimod.
Collapse
|
16
|
Ebina K, Hirano T, Maeda Y, Okita Y, Etani Y, Hirao M, Yamamoto W, Hashimoto M, Murata K, Onishi A, Jinno S, Hara R, Son Y, Amuro H, Kotani T, Shiba H, Katayama M, Yamamoto K, Kumanogoh A, Okada S, Nakata K. Add-on effectiveness of methotrexate or iguratimod in patients with rheumatoid arthritis exhibiting an inadequate response to Janus kinase inhibitors: The ANSWER cohort study. Mod Rheumatol 2023; 33:690-699. [PMID: 35962543 DOI: 10.1093/mr/roac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES This multicenter, retrospective study evaluated the effectiveness of add-on methotrexate (MTX) or iguratimod (IGU) in patients with rheumatoid arthritis exhibiting an inadequate response to Janus kinase inhibitors (JAKis). METHODS Forty-five patients were treated with new additional MTX (n = 22) or IGU (n = 23) and followed for 6 months. Patients' background is as follows: age, 59.2 years; disease activity score of 28 joints with C-reactive protein (DAS28-CRP), 3.4; clinical disease activity index, 15.7; biological disease-modifying antirheumatic drug (DMARD)-switched cases, 77.8%; first JAKi cases, 95.6%; and JAKi treatment: tofacitinib (n = 25), baricitinib (n = 17), upadacitinib (n = 2), and peficitinib (n = 1) for 9.6 months. RESULTS Thirty-five patients continued the combination therapy for 6 months without a significant change in concomitant glucocorticoid or other conventional synthetic DMARDs. DAS28-CRP (MTX, 3.6 to 2.6, p < 0.05; IGU, 3.3 to 2.1, p < 0.001) and clinical disease activity index (MTX, 16.7 to 8.8, p < 0.05; IGU, 14.6 to 6.5, p < 0.01) improved significantly from baseline. Using the 2019 European League Against Rheumatism criteria, 45.4% (MTX) and 39.1% (IGU) achieved moderate or good response and 40.9% (MTX) and 39.1% (IGU) achieved American College of Rheumatology 20% improvement criteria. CONCLUSIONS Adding MTX or IGU to inadequate responders of JAKi can be considered as a complementary treatment.
Collapse
|
17
|
Younis M, Wu Y, Fang Q, Shan H, Huang X. Synergistic therapeutic antitumor effect of PD-1 blockade cellular vesicles in combination with Iguratimod and Rhodium nanoparticles. J Colloid Interface Sci 2023; 649:929-942. [PMID: 37392683 DOI: 10.1016/j.jcis.2023.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023]
Abstract
Immune checkpoint blockade has emerged as a significant therapeutic development in immunotherapy during the past decade. However, only a small percentage of cancer patients respond to checkpoint blockade, suggesting that a fundamental knowledge of the underlying processes of immune checkpoint receptor signaling remains elusive and that novel therapeutic medications are needed. Here, the programmed cell death protein 1(PD-1) expressing nanovesicles were developed to enhance T cell activity. Iguratimod (IGU) and Rhodium (Rh) nanoparticles (NPs) were loaded in PD-1 nanovesicles (NVs) for synergistic therapeutic antitumor effects against lung cancer and metastasis. For the first time, this study revealed that IGU exhibits an antitumor effect by inhibiting the phosphorylation of mammalian target of rapamycin (mTOR) and Rh-NPs provided a photothermal effect by improving reactive oxygen species (ROS)-dependent apoptosis in lung cancer cells. IGU-Rh-PD-1 NVs also reduced the migration ability through the epithelial-mesenchymal transition (EMT) pathway. Furthermore, IGU-Rh-PD-1 NVs reached the targeted site and inhibited tumor growth in vivo. This strategy could boost T cell performance and simultaneously possess chemotherapeutic and photothermal therapy to serve as a new combination therapy for lung cancer and potentially other aggressive cancer.
Collapse
|
18
|
Zhang T, Shu Q, Zhu H, Wang M, Yang N, Zhang H, Ge W. Serum proteomics analysis of biomarkers for evaluating clinical response to MTX/IGU therapy in early rheumatoid arthritis. Mol Immunol 2023; 153:119-125. [PMID: 36462402 DOI: 10.1016/j.molimm.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Methotrexate (MTX) and iguratimod (IGU) are conventional synthetic disease modifying antirheumatic drugs widely used in the treatment of Rheumatoid arthritis (RA) in China. Although MTX combined with IGU can significantly inhibit the progression of RA, some patients do not respond to the treatment. The purpose of this study is to explore the difference of serum protein expression between RA patients with good and poor response to the combined therapy by label-free quantitative proteomic approach. From the proteomics data, a total of 782 proteins in the serum of RA patients were detected, and of which 9 were upregulated and 18 were downregulated in the good response group compared to poor response group. Among them, four significantly differentially expressed proteins (RELN, LDHA, MRC1 and TKT) were further validated by multiple reaction monitoring (MRM)-based quantification approach, and three of them (RELN, LDHA and MRC1) were confirmed to be correlated with the response to MTX/IGU therapy. Logistic regression and ROC analysis indicated that the combination of RELN, LDHA and MRC1 had good performance in evaluating the response. This result proved the different serum proteins signature fingerprint between response group and non-response group; and highlighted the potential of the label-free and mass spectrometry-based quantitative proteomic approach in screening biomarkers for evaluating clinical response to MTX/IGU therapy in RA.
Collapse
|
19
|
Long Z, Deng Y, He Q, Yang K, Zeng L, Hao W, Deng Y, Fan J, Chen H. Efficacy and safety of Iguratimod in the treatment of Ankylosing Spondylitis: A systematic review and meta-analysis of randomized controlled trials. Front Immunol 2023; 14:993860. [PMID: 36936924 PMCID: PMC10020631 DOI: 10.3389/fimmu.2023.993860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/10/2023] [Indexed: 03/06/2023] Open
Abstract
Objective To explore the efficacy and safety of Iguratimod (IGU) intervention in the treatment of Ankylosing Spondylitis (AS). Methods We used computer to search literature databases, collected randomized controlled trials (RCTs) related to IGU treatment of AS, and searched the relevant literature in each database until Sep. 2022. Two researchers independently carried out literature screening, data extraction, and evaluation and analysis of the risk of bias in the included studies, and then used Rev Man5.3 software for meta-analysis. The protocol is CRD42020220798. Results A total of 10 RCTs involves in 622 patients were collected. The statistical analysis showed that IGU can decrease the BASDAI score (SMD -1.62 [-2.20, -1.05], P<0.00001. Quality of evidence: low), the BASFI score (WMD -1.30 [-1.48, -1.12], P<0.00001. Quality of evidence: low) and the VAS (WMD -2.01 [-2.83, -1.19], P<0.00001. Quality of evidence: very low). Meanwhile, the addition of IGU into the conventional therapy would not increase the adverse events (RR 0.65 [0.43, 0.98], P=0.04. Quality of evidence: moderate). Conclusion IGU may be an effective and safe intervention for AS. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?, identifier CRD42020220798.
Collapse
|
20
|
Xue L, Xu J, Lu W, Fu J, Liu Z. Iguratimod alleviates tubulo-interstitial injury in mice with lupus. Ren Fail 2022; 44:636-647. [PMID: 35387545 PMCID: PMC9004506 DOI: 10.1080/0886022x.2022.2058962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
INTRODUCTION Tubulo-interstitial injury is a poor prognostic factor for lupus nephritis (LN). Here, we tested whether iguratimod could inhibit tubulo-interstitial injury in LN. METHODS MRL/lpr mice, an animal model of lupus, were treated with iguratimod or vehicle solution. Pathological changes of kidney were evaluated blindly by the same pathologist. Renal type I collagen (COL-I), IgG, E-cadherin, fibroblast-specific protein 1 (FSP-1) were detected by immunofluorescence, immunohistochemical staining or quantitative real-time PCR. After treated with transforming growth factor β1 (TGF-β1) and iguratimod, E-cadherin, fibronectin, Smad2/3, p38 MAPK, p-Smad2/3, and p-p38 MAPK, β-catenin and TGF-β type II receptor (TGFβRII) in HK2 cells were measured by western blotting, quantitative real-time PCR or immunofluorescence. RESULTS Iguratimod reduced immune deposition along the tubular basement membrane, inhibited the tubulo-interstitial infiltration of inflammatory cells, and alleviated tubular injury in MRL/lpr mice. Moreover, Iguratimod eased the tubulo-interstitial deposition of collagen fibers, which was confirmed by decreased expression of COL-I. Furthermore, iguratimod suppressed the expression of FSP-1 and increased that of E-cadherin in renal tubular epithelial cells. In HK2 cells cultured with TGF-β1, iguratimod treatment not only reversed cellular morphological changes, but also prevented E-cadherin downregulation and fibronectin upregulation. In addition, iguratimod inhibited phosphorylation of TGFβRII, Smad2/3 and p38 MAPK in HK2 cells treated with TGF-β1, and also blocked nuclear translocation of β-catenin. CONCLUSION Iguratimod eased tubulo-interstitial lesions in LN, especially tubulo-interstitial fibrosis, and might have potential as a drug for inhibiting the progression of tubulo-interstitial fibrosis in LN.
Collapse
|
21
|
Zhang J, Wang X, Tian JJ, Zhu R, Duo RX, Huang YC, Shen HL. Iguratimod in treatment of primary Sjögren’s syndrome concomitant with autoimmune hemolytic anemia: A case report. World J Clin Cases 2022; 10:1286-1290. [PMID: 35211561 PMCID: PMC8855182 DOI: 10.12998/wjcc.v10.i4.1286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) concomitant with autoimmune hemolytic anemia (AIHA) but without eye and mouth dryness is exceedingly rare. Iguratimod (IGU) has been widely used in the treatment of pSS. However, there are few reports about the application of IGU in pSS concomitant with AIHA.
CASE SUMMARY Here, we present the case of a patient with pSS concomitant with AIHA but without eye and mouth dryness. The patient was initially diagnosed with hyperplastic anemia and AIHA while pSS was missed, and was finally diagnosed with pSS concomitant with AIHA. The patient was treated with IGU along with prednisone and hydroxychloroquine, and her hemoglobin, reticulocytes and IgG returned to normal levels.
CONCLUSION IGU was effective for and well tolerated by our patient with pSS concomitant with AIHA, and may be a promising therapy for the treatment of this disease.
Collapse
|
22
|
Feng D, Huang Z, Chen H, Tao J, Gao X, Liu J, Sun L, Wang Z, Han Z, Ju X, Tan R, Gu M. Iguratimod reduces panel reactive antibody in high mismatched renal transplant recipients: One single-center experience. Clin Transplant 2021; 36:e14565. [PMID: 34931720 DOI: 10.1111/ctr.14565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate the clinical efficacy and safety of iguratimod (IGU) for reducing panel reactive antibody (PRA) in high-mismatched renal transplant recipients. METHODS Eligible recipients positive for PRAs who received or did not receive IGU treatment were enrolled. We retrospectively reviewed, collected, and analyzed statistically the clinical data of the recipients. RESULTS A total of 80 recipients were included for further analysis. After IGU was administered for nine months, no significant difference was found in the change rates of donor specific antibodies between two groups. Meanwhile, the reduction in the PRAs in the IGU group was greater than that in the non-IGU group in anti-human leukocyte antigen (HLA) class I and class II, anti-HLA class I, anti-HLA class II, anti-HLA A, and anti-HLA DR antibodies. However, no differences were found in the anti-HLA B, anti-HLA Cw, anti-HLA DP, and anti-HLA DQ antibodies between the two groups. No serious adverse events were reported, and the incidence of adverse events was comparable between the two groups. CONCLUSION PRA levels in high-mismatched renal transplant recipients were significantly reduced after the administration of IGU. The high safety of IGU was also determined. This article is protected by copyright. All rights reserved.
Collapse
|
23
|
Tao J, Sun L, Wang Z, Chen H, Han Z, Zhang H, Yang H, Huang Z, Fei S, Ju X, Tan R, Gu M. Efficacy and Safety of Iguratimod Supplement to the Standard Immunosuppressive Regimen in Highly Mismatched Renal Transplant Recipients: A Pilot Study. Front Immunol 2021; 12:738392. [PMID: 34887851 PMCID: PMC8650225 DOI: 10.3389/fimmu.2021.738392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Iguratimod (IGU) can mitigate the symptoms of rheumatoid arthritis through its anti-inflammatory effects. The objective of this study was to investigate the clinical efficacy and safety of IGU in highly HLA-mismatched renal transplant recipients, in combination with standard immunosuppressive regimen. This pilot study was designed as an open-label, blank-control, randomized clinical trial on patients recruited from a single transplant center in China. Patients who met the inclusion criteria were randomized to the IGU (n=27) and blank control (n=27) groups. IGU was administrated with the conventional triple immunosuppressive protocol for 52 weeks after kidney transplantation. The incidence of biopsy-proven acute rejection rate was 14.8% (4/27) in the IGU group and 29.6% (8/27) in the control group, P = 0.19. The clinical rejection rate was also substantially reduced in the IGU group (3.7% vs. 18.5%, P = 0.08). De novo donor-specific antibody also showed a decline trend in the IGU group after 52 weeks. The graft function and incidence of adverse events were similar between the two groups. In addition, IGU intervention significantly decreased the number of NK cells throughout the follow-up. In conclusion, our study has shown the possibility that IGU could reduce the allograft rejection rate and de novo DSA with appreciable safety in combination with conventional immunosuppressants. Formal clinical trials were warranted based on current findings.
Collapse
|
24
|
Yan Q, Du F, Kang Y, Ye P, Wang X, Xu J, Tang J, Wang N, Jiang G, Li Z, Wang X, Xue Q, Huang X, Zhang X, Zhou Y, Dai M, Bao C. Comparison of iguratimod and conventional cyclophosphamide with sequential azathioprine as treatment of active lupus nephritis: study protocol for a multi-center, randomized, controlled clinical trial (iGeLU study). Trials 2021; 22:530. [PMID: 34380536 PMCID: PMC8356213 DOI: 10.1186/s13063-021-05475-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease that can involve multiple organs or systems. Lupus nephritis (LN) is associated with high mortality and morbidity. However, plenty of patients do not respond to present treatment or relapse. Iguratimod (IGU) is a new small molecular, anti-rheumatic drug and has shown the potential for drug repurposing from rheumatoid arthritis (RA) to LN treatment. It has been approved for treating RA in northeast Asia. Beyond expectation in a recent observational study, over 90% of thirteen refractory LN patients responded to iguratimod monotherapy in 24 weeks, with no steroids dose increasing or any other medication add-on during the entire follow-up. Methods/design This study is a multi-center, randomized, 52-week parallel positive drug-controlled study. The study was designed as a head-to-head comparison between the iguratimod and present first-line therapy on LN patients. A total of 120 patients (60 patients each group) is in the enrolling plan. All enrolled patients are assigned randomly into trial and control groups. The patients will be selected from six study sites in China and will all have biopsy-proven active lupus nephritis. In the first 24 weeks of the trial, IGU is compared with cyclophosphamide as an induction therapy, and in the second 24 weeks, IGU is compared with azathioprine as a maintenance therapy. The primary outcome is renal remission rate including both complete remission and partial remission at week 52, which will be analyzed using a non-inferiority hypothesis test. Discussion Most patients diagnosed with SLE will develop LN within 5 years and LN remains a major cause of morbidity and death for SLE patients. Although some medications are proven effective for the treatment of this condition, at least 20–35% LN patients have to suffer from relapse or ineffective treatment and medication intolerance is also frequent. This trial is designed to demonstrate whether iguratimod can be used as an alternative induction or maintenance therapy in subjects who have lupus nephritis. Data from this study will provide an evidence on whether or not iguratimod should be recommended to active LN patients. Trial registration ClinicalTrials.govNCT 02936375. Registered on October 18, 2016. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05475-3.
Collapse
|
25
|
Shao S, Qu Z, Liang Y, Xu Y, Zhou D, Li D, Zhang Y, Yin S. Iguratimod decreases bleomycin-induced pulmonary fibrosis in association with inhibition of TNF-α in mice. Int Immunopharmacol 2021; 99:107936. [PMID: 34284287 DOI: 10.1016/j.intimp.2021.107936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Severe interstitial lung disease secondary to connective tissue diseases, characterized by pulmonary inflammation and fibrosis, often have very poor prognosis due to lack of effective treatments. Iguratimod (IGU) shows encouraging efficacy in treating connective tissue diseases, however, the underlying mechanism is still to be elucidated. In this study, we investigated the impact of IGU on bleomycin-induced interstitial lung disease and the related tumor necrosis factor-α (TNF-α) signaling pathway in mice and in the alveolar epithelial cell A549. We found IGU decreased pulmonary inflammation and fibrosis and expression of fibrosis-related genes such as Collagen I, α-smooth muscle actin (α-SMA) and matrix metalloproteinase-2 (MMP-2) induced by bleomycin. IGU inhibited epithelial-mesenchymal transition as evidenced by decreased E-cadherin expression but increased vimentin expression. IGU reduced TNF-α production in the pulmonary fibrosis murine model and in the in vitro cultured A549 cells. Furthermore, IGU ameliorated TNF-α-induced severe pulmonary fibrosis and inhibited TNF-α-induced activation of NF-κB. In addition, IGU decreased IL-6 production and phosphorylation of STAT3. In conclusion, the IGU-mediated anti-fibrogenesis effect was associated with the inhibition of TNF-α and NF-κB.
Collapse
|