Maitra U, Stephen C, Ciesla LM. Drug discovery from natural products - Old problems and novel solutions for the treatment of neurodegenerative diseases.
J Pharm Biomed Anal 2022;
210:114553. [PMID:
34968995 PMCID:
PMC8792363 DOI:
10.1016/j.jpba.2021.114553]
[Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. In fact, many currently approved drugs originated from compounds that were first identified in nature. Chemical diversity of natural compounds cannot be matched by man-made libraries of chemically synthesized molecules. Many natural compounds interact with and modulate regulatory protein targets and can be considered evolutionarily-optimized drug-like molecules. Despite this, many pharmaceutical companies have reduced or eliminated their natural product discovery programs in the last two decades. Screening natural products for pharmacologically active compounds is a challenging task that requires high resource commitment. Novel approaches at the early stage of the drug discovery pipeline are needed to allow for rapid screening and identification of the most promising molecules. Here, we review the possible evolutionary roots for drug-like characteristics of numerous natural compounds. Since many of these compounds target evolutionarily conserved cellular signaling pathways, we propose novel, early-stage drug discovery approaches to identify drug candidates that can be used for the potential prevention and treatment of neurodegenerative diseases. Invertebrate in vivo animal models of neurodegenerative diseases and innovative tools used within these models are proposed here as a screening funnel to identify new drug candidates and to shuttle these hits into further stages of the drug discovery pipeline.
Collapse