Wu Q, He L, Jiang ZW, Li Y, Zhao TT, Li YH, Huang CZ, Li YF. One-step synthesis of Cu(II) metal-organic gel as recyclable material for rapid, efficient and size selective cationic dyes adsorption.
J Environ Sci (China) 2019;
86:203-212. [PMID:
31787185 DOI:
10.1016/j.jes.2019.06.006]
[Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Efficient removal of non-biodegradable and hazardous dyes from wastewater remains a hot research topic. Herein, a rationally designed a Cu(II)-based metal-organic gel (Cu-MOG) with a nanoporous 3D network structure prepared via a simple one-step mixing method was successfully employed for the removal of cationic dyes. The Cu-MOG exhibited high efficiency, with an adsorption capacity of up to 650.32 mg/g, and rapid adsorption efficiency, with the ability to adsorb 80% of Neutral Red within 1 min. The high adsorption efficiency was attributed to its large specific surface area, which enabled it to massively bind cationic dyes through electrostatic interaction, and a nanoporous structure that promoted intra-pore diffusion. Remarkably, the Cu-MOG displayed size-selective adsorption, based on adsorption studies concerning dyes of different sizes as calculated by density functional theory. Additionally, the adsorption performance of the Cu-MOG still maintained removal efficiency of 100% after three regeneration cycles. These results suggested that the Cu-MOG could be expected to be a promising and competitive candidate to conveniently process wastewater.
Collapse