1
|
Leo JC, Oberhettinger P, Schütz M, Linke D. The inverse autotransporter family: intimin, invasin and related proteins. Int J Med Microbiol 2014; 305:276-82. [PMID: 25596886 DOI: 10.1016/j.ijmm.2014.12.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Intimin and invasin are adhesins and central virulence factors of attaching and effacing bacteria, such as enterohaemorrhagic Escherichia coli, and enteropathogenic Yersiniae, respectively. These proteins are prototypes of a large family of adhesins distributed widely in Gram-negative bacteria. It is now evident that this protein family represents a previously unrecognized autotransporter secretion system, termed type Ve secretion. In contrast to classical autotransport, where the transmembrane β-barrel domain or translocation unit is C-terminal to the extracellular region or passenger domain, type Ve-secreted proteins have an inverted topology with the passenger domain C-terminal to the translocation unit; hence the term inverse autotransporter. This minireview covers the recent advances in elucidating the structure and biogenesis of inverse autotransporters.
Collapse
|
Review |
11 |
54 |
2
|
Gillenius E, Urban CF. The adhesive protein invasin of Yersinia pseudotuberculosis induces neutrophil extracellular traps via β1 integrins. Microbes Infect 2015; 17:327-36. [PMID: 25576025 DOI: 10.1016/j.micinf.2014.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 11/15/2022]
Abstract
Yersinia pseudotuberculosis adhesive protein invasin is crucial for the bacteria to cross the intestine epithelium by binding to β1 integrins on M-cells and gaining access to the underlying tissues. After the crossing invasin can bind to β1 integrins on other cell surfaces, however effector proteins delivered by the type III secretion system Y. pseudotuberculosis efficiently inhibit potential immune responses induced by this interaction. Here, we use mutant Y. pseudotuberculosis strains lacking the type III secretion system and additionally invasin-expressing Escherichia coli to analyze neutrophil responses towards invasin. Our data reveals that invasin induces production of reactive oxygen species and release of chromatin into the extracellular milieu, which we confirmed to be neutrophil extracellular traps by immunofluorescence microscopy. This was mediated through β1 integrins and was dependent on both the production of reactive oxygen species and signaling through phosphoinositide 3-kinase. We therefore have gained insight into a potential role of integrins in inflammation and infection clearance that has not previously been described, suggesting that targeting of β1 integrins could be utilized as an adjunctive therapy against yersiniosis.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
23 |
3
|
Wrobel A, Ottoni C, Leo JC, Gulla S, Linke D. The repeat structure of two paralogous genes, Yersinia ruckeri invasin (yrInv) and a "Y. ruckeri invasin-like molecule", (yrIlm) sheds light on the evolution of adhesive capacities of a fish pathogen. J Struct Biol 2017; 201:171-183. [PMID: 28888816 DOI: 10.1016/j.jsb.2017.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022]
Abstract
Inverse autotransporters comprise the recently identified type Ve secretion system and are exemplified by intimin from enterohaemorrhagic Escherichia coli and invasin from enteropathogenic Yersiniae. These proteins share a common domain architecture and promote bacterial adhesion to host cells. Here, we identified and characterized two putative inverse autotransporter genes in the fish pathogen Yersinia ruckeri NVH_3758, namely yrInv (for Y. ruckeri invasin) and yrIlm (for Y. ruckeri invasin-like molecule). When trying to clone the highly repetitive genes for structural and functional studies, we experienced problems in obtaining PCR products. PCR failures and the highly repetitive nature of inverse autotransporters prompted us to sequence the genome of Y. ruckeri NVH_3758 using PacBio sequencing, which produces some of the longest average read lengths available in the industry at this moment. According to our sequencing data, YrIlm is composed of 2603 amino acids (7812bp) and has a molecular mass of 256.4kDa. Based on the new genome information, we performed PCR analysis on four non-sequenced Y. ruckeri strains as well as the sequenced. Y. ruckeri type strain. We found that the genes are variably present in the strains, and that the length of yrIlm, when present, also varies. In addition, the length of the gene product for all strains, including the type strain, was much longer than expected based on deposited sequences. The internal repeats of the yrInv gene product are highly diverged, but represent the same bacterial immunoglobulin-like domains as in yrIlm. Using qRT-PCR, we found that yrIlm and yrInv are differentially expressed under conditions relevant for pathogenesis. In addition, we compared the genomic context of both genes in the newly sequenced Y. ruckeri strain to all available PacBio-sequenced Y. ruckeri genomes, and found indications of recent events of horizontal gene transfer. Taken together, this study demonstrates and highlights the power of Single Molecule Real-Time technology for sequencing highly repetitive proteins, and sheds light on the genetic events that gave rise to these highly repetitive genes in a commercially important fish pathogen.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
19 |
4
|
Role of β1 integrins and bacterial adhesins for Yop injection into leukocytes in Yersinia enterocolitica systemic mouse infection. Int J Med Microbiol 2015; 306:77-88. [PMID: 26718660 DOI: 10.1016/j.ijmm.2015.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/19/2015] [Accepted: 12/13/2015] [Indexed: 11/22/2022] Open
Abstract
Injection of Yersinia outer proteins (Yops) into host cells by a type III secretion system is an important immune evasion mechanism of Yersinia enterocolitica (Ye). In this process Ye invasin (Inv) binds directly while Yersinia adhesin A (YadA) binds indirectly via extracellular matrix (ECM) proteins to β1 integrins on host cells. Although leukocytes turned out to be an important target of Yop injection by Ye, it was unclear which Ye adhesins and which leukocyte receptors are required for Yop injection. To explain this, we investigated the role of YadA, Inv and β1 integrins for Yop injection into leukocytes and their impact on the course of systemic Ye infection in mice. Ex vivo infection experiments revealed that adhesion of Ye via Inv or YadA is sufficient to promote Yop injection into leukocytes as revealed by a β-lactamase reporter assay. Serum factors inhibit YadA- but not Inv-mediated Yop injection into B and T cells, shifting YadA-mediated Yop injection in the direction of neutrophils and other myeloid cells. Systemic Ye mouse infection experiments demonstrated that YadA is essential for Ye virulence and Yop injection into leukocytes, while Inv is dispensable for virulence and plays only a transient and minor role for Yop injection in the early phase of infection. Ye infection of mice with β1 integrin-depleted leukocytes demonstrated that β1 integrins are dispensable for YadA-mediated Yop injection into leukocytes, but contribute to Inv-mediated Yop injection. Despite reduced Yop injection into leukocytes, β1 integrin-deficient mice exhibited an increased susceptibility for Ye infection, suggesting an important role of β1 integrins in immune defense against Ye. This study demonstrates that Yop injection into leukocytes by Ye is largely mediated by YadA exploiting, as yet unknown, leukocyte receptors.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
16 |
5
|
Abstract
The human and animal pathogens Yersinia pestis, which causes bubonic and pneumonic plague, and Yersinia pseudotuberculosis and Yersinia enterocolitica, which cause gastroenteritis, share a type 3 secretion system which injects effector proteins, Yops, into host cells. This system is critical for virulence of all three pathogens in tissue infection. Neutrophils are rapidly recruited to infected sites and all three pathogens frequently interact with and inject Yops into these cells during tissue infection. Host receptors, serum factors, and bacterial adhesins appear to collaborate to promote neutrophil- Yersinia interactions in tissues. The ability of neutrophils to control infection is mixed depending on the stage of infection and points to the efficiency of Yops and other bacterial factors to mitigate bactericidal effects of neutrophils. Yersinia in close proximity to neutrophils has higher levels of expression from yop promoters, and neutrophils in close proximity to Yersinia express higher levels of pro-survival genes than migrating neutrophils. In infected tissues, YopM increases neutrophil survival and YopH targets a SKAP2/SLP-76 signal transduction pathway. Yet the full impact of these and other Yops and other Yersinia factors on neutrophils in infected tissues has yet to be understood.
Collapse
|
Review |
6 |
9 |
6
|
Identification and localization of a Novel Invasin of Plasmodium falciparum. Mol Biochem Parasitol 2015; 202:38-43. [PMID: 26431890 DOI: 10.1016/j.molbiopara.2015.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 11/24/2022]
Abstract
Plasmodium falciparum is the causative organism for the most severe form of malaria among humans. The clinical symptoms are accredited to the asexual stage of parasite life cycle, involving merozoite invasion of erythrocyte, development and re-invasion into the new erythrocyte. Interaction of parasite proteins present on the surface or secreted from apical organelles with the host receptors is indispensable for the invasion process. Identification and elucidation of precise localization and function of these proteins will not only enhance our understanding of this process but will also aid in the progress of development of treatment strategies against malaria. Here we report the identification and localization of a novel protein, PfAEP (P. falciparum Apical Exonemal Protein) (PF3D7_1137200/ PF11_0383) which is conserved across Plasmodium species. Transcription and translation analysis have confirmed its expression in the schizont stage of P. falciparum. Super-resolution microscopy in schizonts and merozoites revealed its localization in the exonemes of P. falciparum.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
1 |
7
|
Han Y, Wei L, Xiao J, Zhang Y, Wang Q, Zhou M. Identification and study of InV as an inverse autotransporter family representative in Edwardsiella piscicida. Arch Microbiol 2020; 202:1107-1116. [PMID: 32052095 PMCID: PMC7223825 DOI: 10.1007/s00203-019-01804-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/15/2022]
Abstract
Invasins and intimins, members of virulence-related adhesin family which is involved in attachment and adherence to epithelial cells during infection, are found in various pathogens. These pathogens can attach to enterocytes and lead to the formation of a pedestal-like structure. Invasins and intimins belong to type Ve secretion systems, and the N-terminal β-barrel domain acts as a translocation pore to secrete the C-terminal passenger domain. However, the relationship between invasins/intimins and type III secretion system (T3SS) has been poorly studied. Based on the transposon insertion mutant library of Edwardsiella piscicida, we got a transposon insertion mutant with significant T3SS defect and identified the mutated gene ETAE_0323 (named inV later). This gene encoded a protein with 2359 amino acid residues and was predicted to be an invasin. To study the relationship between InV and T3SS, strains with N-terminus or C-terminus deleted InV fragments were made. However, none of them was able to copy the phenotype of the transposon insertion mutant previously identified. The localization of InV in ΔT3SS strain was not significantly different from WT, suggesting that the T3SS defect in the transposon insertion mutant was likely to be caused by polar effect. Nevertheless, depletion of inV still showed dramatic internalization and virulence defect in HeLa cell and zebrafish model, respectively, suggesting InV as a virulence related protein.
Collapse
|
|
5 |
1 |
8
|
Munjal A, Kannan D, Singh S. A C2 domain containing plasma membrane protein of Plasmodium falciparum merozoites mediates calcium-dependent binding and invasion to host erythrocytes. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:139-149. [PMID: 35995671 DOI: 10.1016/j.jmii.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Invasion of red blood cells by Plasmodium falciparum merozoites is governed by multiple receptor-ligand interactions which are critical for bridging the two cells together. The critical function of these ligands for invasion and their direct exposure to the host immune system makes them lucrative vaccine candidates. This necessitates the discovery of new adhesins with less redundancy that mediates the binding of merozoite to the red cell, and furthermore invasion into it. Here we have identified a novel membrane associated antigen (PfC2DMA) that is conserved throughout the Plasmodium species and has a membrane targeting C2 domain at its extreme N-terminal region. METHODS Recombinant C2dom was expressed heterologously in bacteria and purified to homogeneity. Mice antisera against C2dom was raised and used to check the expression and intraparasitic localization of the protein. RBC and Ca2+ ion binding activity of C2dom was also checked. RESULTS C2dom exhibited specific binding to Ca2+ ions and not to Mg2+ ions. PfC2DMA localized to the surface of merozoite and recombinant C2dom bound to the surface of human RBCs. RBC receptor modification by treatment with different enzymes showed that binding of C2dom to RBC surface is neuraminidase sensitive. Mice antisera raised against C2dom of Pf C2DMA showed invasion inhibitory effects. CONCLUSION Our findings suggest that C2dom of PfC2DMA binds to surface of red cell in a Ca2+-dependent manner, advocating a plausible role in invasion and can serve as a potential novel blood stage vaccine candidate.
Collapse
|
|
2 |
1 |
9
|
Sarma A, Gunasekaran D, Phukan H, Baby A, Hariharan S, De AK, Bhattacharya D, Natesan S, Tennyson J, Madanan MG. Leptospiral imelysin (LIC_10713) is secretory, immunogenic and binds to laminin, fibronectin, and collagen IV. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12573-6. [PMID: 37227474 DOI: 10.1007/s00253-023-12573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira. Early and accurate diagnosis is the prime step in managing the disease. Secretory proteins of Leptospira remain distinguished for diagnosis due to their availability as soluble proteins in the serum and their interaction with the host immune response due to their extracellular presence. This study presents the cloning, expression, purification, and characterization of imelysin or LruB (LIC_10713), a putative leptospiral protein. We report that the localization of imelysin showed its presence in the inner membrane and in the culture supernatant. The imelysin was upregulated under in vitro physiological conditions of infection. The LIC_10713 interacted significantly with laminin, fibronectin, collagen type I, and collagen type IV in a dose-dependent manner. Phylogenetic analysis showed that LIC_10713 is predominately found in the pathogenic species of Leptospira, and the GxHxxE motif of imelysin-like proteins is represented as the amino acid sequence GWHAIE. Also, immunoglobulins in leptospirosis-infected patients recognize recombinant-LIC_10713 with 100% specificity and 90.9% sensitivity. The secretion nature, abundance, upregulation, binding to ECM components, and immunogenicity determine LIC_10713 as an important molecule that can be used as an anti-leptospirosis measure. KEY POINTS: • The imelysin-like protein (LIC_10713) of Leptospira is a secretory protein • The protein LIC_10713 can bind ECM molecules • The LIC_10713 is mainly found in pathogenic leptospires • The anti-LIC_10713 antibody from human serum can detect the r-LIC_10713.
Collapse
|
|
2 |
|
10
|
Wijnakker JJ, van Son GJ, Krueger D, van de Wetering WJ, Lopez-Iglesias C, Schreurs R, van Rijt F, Lim S, Lin L, Peters PJ, Isberg RR, Janda CY, de Lau W, Clevers H. Integrin-activating Yersinia protein Invasin sustains long-term expansion of primary epithelial cells as 2D organoid sheets. Proc Natl Acad Sci U S A 2025; 122:e2420595121. [PMID: 39793062 PMCID: PMC11725944 DOI: 10.1073/pnas.2420595121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/14/2024] [Indexed: 01/12/2025] Open
Abstract
Matrigel®/BME®, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato et al., Nature 459, 262-265 (2009); T. Sato et al., Gastroenterology 141, 1762-1772 (2011)]. Here, we show that interaction between Matrigel's major component laminin-111 with epithelial α6β1-integrin is crucial for this process. The outer membrane protein Invasin of Yersinia is known to activate multiple integrin-β1 complexes, including integrin α6β1. A C-terminal integrin-binding fragment of Invasin, coated on culture plates, mediated gut epithelial cell adhesion. Addition of organoid growth factors allowed multipassage expansion in 2D. Polarization, junction formation, and generation of enterocytes, goblet cells, Paneth cells, and enteroendocrine cells were stable over time. Sustained expansion of other human, mouse, and even snake epithelia was accomplished under comparable conditions. The 2D "organoid sheet" format holds advantages over the 3D "in gel" format in terms of imaging, accessibility of basal and apical domains, and automation for high-throughput screening. Invasin represents a fully defined, affordable, versatile, and animal-free complement to Matrigel®/BME®.
Collapse
|
research-article |
1 |
|