1
|
Jiang LX, Liu QY, Li XN, He SG. Design and Application of a High-Temperature Linear Ion Trap Reactor. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:78-84. [PMID: 29080205 DOI: 10.1007/s13361-017-1828-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
A high-temperature linear ion trap reactor with hexapole design was homemade to study ion-molecule reactions at variable temperatures. The highest temperature for the trapped ions is up to 773 K, which is much higher than those in available reports. The reaction between V2O6- cluster anions and CO at different temperatures was investigated to evaluate the performance of this reactor. The apparent activation energy was determined to be 0.10 ± 0.02 eV, which is consistent with the barrier of 0.12 eV calculated by density functional theory. This indicates that the current experimental apparatus is prospective to study ion-molecule reactions at variable temperatures, and more kinetic details can be obtained to have a better understanding of chemical reactions that have overall barriers. Graphical Abstract.
Collapse
|
|
7 |
16 |
2
|
Mou LH, Li ZY, Liu QY, He SG. Size-Dependent Association of Cobalt Deuteride Cluster Anions Co 3D n- (n = 0-4) with Dinitrogen. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1956-1963. [PMID: 31236780 DOI: 10.1007/s13361-019-02226-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Dinitrogen (N2) activation by metal hydride species is of fundamental interest and practical importance while the role of hydrogen in N2 activation is not well studied. Herein, the structures of Co3Dn- (n = 0-4) clusters and their reactions with N2 have been studied by using a combined experimental and computational approach. The mass spectrometry experiments identified that the Co3Dn- (n = 2-4) clusters could adsorb N2 while the Co3Dn- (n = 0 and 1) clusters were inert. The photoelectron imaging spectroscopy indicated that the electron detachment energies of Co3D2-4- are smaller than those of Co3D0,1-, which characterized that it is easier to transfer electrons from Co3D2-4- than from Co3D0,1- to activate N2. The density functional theory calculations generally supported the experimental observations. Further analysis revealed that the H atoms in the Co3Hn- (n = 2-4) clusters generally result in higher energies of the Co 3d orbitals in comparison with the Co3Hn- (n = 0 and 1) systems. By forming chemical bonds with H atoms, the Co atoms of Co3H2-4- are less negatively charged with respect to the naked Co3- system, which leads to higher N2 binding energies of Co3H2-4N2- than that of Co3N2-.
Collapse
|
|
6 |
13 |
3
|
Zhu H, Ma X, Kong JY, Zhang M, Kenttämaa HI. Identification of Carboxylate, Phosphate, and Phenoxide Functionalities in Deprotonated Molecules Related to Drug Metabolites via Ion-Molecule Reactions with water and Diethylhydroxyborane. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2189-2200. [PMID: 28741125 DOI: 10.1007/s13361-017-1713-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Tandem mass spectrometry based on ion-molecule reactions has emerged as a powerful tool for structural elucidation of ionized analytes. However, most currently used reagents were designed to react with protonated analytes, making them suboptimal for acidic analytes that are preferentially detected in negative ion mode. In this work we demonstrate that the phenoxide, carboxylate, and phosphate functionalities can be identified in deprotonated molecules by use of a combination of two reagents, diethylmethoxyborane (DEMB) and water. A novel reagent introduction setup that allowed DEMB and water to be separately introduced into the ion trap region of the mass spectrometer was developed to facilitate fundamental studies of this reaction. A new reagent, diethylhydroxyborane (DEHB), was generated inside the ion trap by hydrolysis of DEMB on introduction of water. Most carboxylates and phenoxides formed a DEHB adduct, followed by addition of one water molecule and subsequent ethane elimination (DEHB adduct +H2O - CH3CH3) as the major product ion. Phenoxides with a hydroxy group adjacent to the deprotonation site and phosphates formed a DEHB adduct, followed by ethane elimination (DEHB adduct - CH3CH3). Deprotonated molecules with strong intramolecular hydrogen bonds or without the aforementioned functionalities, including sulfates, were unreactive toward DEHB/H2O. Reaction mechanisms were explored via isotope labeling experiments and quantum chemical calculations. The mass spectrometry method allowed the differentiation of phenoxide-, carboxylate-, phosphate-, and sulfate-containing analytes. Finally, it was successfully coupled with high-performance liquid chromatography for the analysis of a mixture containing hymecromone, a biliary spasm drug, and its three possible metabolites. Graphical Abstract ᅟ.
Collapse
|
|
8 |
7 |
4
|
Wittrig AM, Archibold EF, Sheng H, Nash JJ, Kenttämaa HI. Polar Effects Control the Gas-phase Reactivity of Charged para-Benzyne Analogs. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 377:39-43. [PMID: 25838787 PMCID: PMC4378589 DOI: 10.1016/j.ijms.2014.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The gas-phase reactivity of charged para-benzynes is entirely unexplored as they and/or their precursors tend to undergo ring-opening upon their generation. We report here a gas-phase reactivity study of two such benzynes, the 2,5-didehydropyridinium and 5,8-didehydroisoquinolinium cations, generated in a modified dual-linear quadrupole ion trap (DLQIT) mass spectrometer. Both biradicals were found to form diagnostic products with organic molecules, indicating the presence of two radical sites. As opposed to earlier predictions that the singlet-triplet (S-T) splitting controls the radical reactivity of such species, the 2,5-didehydropyridinium cation reacts much faster in spite of its larger S-T splitting. Calculated vertical electron affinities of the radical sites of the para-benzynes, a parameter related to the polarity of the transition states of their reactions, appears to be the most important reactivity controlling factor.
Collapse
|
research-article |
10 |
6 |
5
|
Williams PE, Marshall DL, Poad BLJ, Narreddula VR, Kirk BB, Trevitt AJ, Blanksby SJ. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1848-1860. [PMID: 29869328 DOI: 10.1007/s13361-018-1988-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.
Collapse
|
|
7 |
5 |
6
|
González-Méndez R, Watts P, Howse DC, Procino I, McIntyre H, Mayhew CA. Ion Mobility Studies on the Negative Ion-Molecule Chemistry of Isoflurane and Enflurane. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:939-946. [PMID: 28224395 PMCID: PMC5393067 DOI: 10.1007/s13361-017-1616-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/09/2017] [Accepted: 01/24/2017] [Indexed: 05/17/2023]
Abstract
In the present work we present an investigation of the negative ion-molecule chemistry of the anaesthetics isoflurane, ISOF, and enflurane, ENF, in an ion mobility spectrometry/mass spectrometry (IMS/MS), in both air and nitrogen. Hexachloroethane (HCE) was introduced in both air and nitrogen to produce Cl- as a reactant ion. This study was undertaken owing to uncertainties in the chemical processes, which lead to the cluster ions reported in other work (Eiceman et al. Anal. Chem. 61, 1093-1099, 1). In particular for ISOF the product ion observed was ISOF.Cl-, and it was suggested that the Cl- was formed by dissociative electron attachment (DEA) although there was mention of a chlorine containing contaminant. We show in this study that ISOF and ENF do not produce Cl- in an IMS system either by capture of free electrons or reaction with O2-. This demonstrates that the Cl- containing ions, reported in the earlier study, must have been the result of a chlorine containing contaminant as suggested. The failure of ISOF and ENF to undergo DEA was initially surprising given the high calculated electron affinities, but further calculations showed that this was a result of the large positive vertical attachment energies (VAEs). This experimental work has been supported by electronic structure calculations at the B3LYP level, and is consistent with those obtained in a crossed electron-molecular beam two sector field mass spectrometer. An unusual observation is that the monomer complexes of ISOF and ENF with O2- are relatively unstable compared with the dimer complexes. Graphical Abstract ᅟ.
Collapse
|
research-article |
8 |
5 |
7
|
Cosma C, Suciu I, Jäntschi L, Bolboacă SD. Ion-molecule reactions and chemical composition of emanated from herculane spa geothermal sources. Int J Mol Sci 2008; 9:1024-1033. [PMID: 19325844 PMCID: PMC2658782 DOI: 10.3390/ijms9061024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 11/16/2022] Open
Abstract
The paper presents a chemical composition analysis of the gases emanated from geothermal sources in the Herculane Spa area (Romania). The upper homologues of methane have been identified in these gases. An ion-molecule reaction mechanism could be implicated in the formation of the upper homologues of methane. The CH(4) (+) ions that appear under the action of radiation are the starting point of these reactions. The presence of hydrogen in the emanated gases may be also a result of these reactions.
Collapse
|
Journal Article |
17 |
5 |
8
|
Miladi M, Olaitan AD, Zekavat B, Solouki T. Competing noncovalent host-guest interactions and H/D exchange: reactions of benzyloxycarbonyl-proline glycine dipeptide variants with ND3. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1938-1949. [PMID: 26289383 DOI: 10.1007/s13361-015-1218-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/26/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
A combination of density functional theory calculations, hydrogen/deuterium exchange (HDX) reactions, ion mobility-mass spectrometry, and isotope labeling tandem mass spectrometry was used to study gas-phase "host-guest" type interactions of a benzyloxycarbonyl (Z)-capped proline (P) glycine (G) model dipeptide (i.e., Z-PG) and its various structural analogues with ND3. It is shown that in a solvent-free environment, structural differences between protonated and alkali metal ion (Na(+), K(+), or Cs(+))-complexed species of Z-PG affect ND3 adduct formation. Specifically, [Z-PG + H](+) and [Z-PG-OCH3 + H](+) formed gas-phase ND3 adducts ([Z-PG (or Z-PG-OCH3) + H + ND3](+)) but no ND3 adducts were observed for [Z-PG + alkali metal](+) or [Z-PG + H - CO2](+). Experimentally measured and theoretically calculated collision cross sections (CCSs) of protonated and alkali metal ion-complexed Z-PG species showed similar trends that agreed with the observed structural differences from molecular modeling results. Moreover, results from theoretical ND3 affinity calculations were consistent with experimental HDX observations, indicating a more stable ND3 adduct for [Z-PG + H](+) compared to [Z-PG + alkali metal](+) species. Molecular modeling and experimental MS results for [Z-PG + H](+) and [Z-PG + alkali metal](+) suggest that optimized cation-π and hydrogen bonding interactions of carbonyl groups in final products are important for ND3 adduct formation. Graphical Abstract ᅟ.
Collapse
|
|
10 |
3 |
9
|
Troiani A, Salvitti C, de Petris G. Gas-Phase Reactivity of Carbonate Ions with Sulfur Dioxide: an Experimental Study of Clusters Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1964-1972. [PMID: 31286448 DOI: 10.1007/s13361-019-02228-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
The reactivity of carbonate cluster ions with sulfur dioxide has been investigated in the gas phase by mass spectrometric techniques. SO2 promotes the displacement of carbon dioxide from carbonate clusters through a stepwise mechanism, leading to the quantitative conversion of the carbonate aggregates into the corresponding sulfite cluster ions. The kinetic study of the reactions of positive, negative, singly, and doubly charged ions reveals very fast and efficient processes for all the carbonate ions.
Collapse
|
|
6 |
3 |
10
|
Zymak I, Žabka J, Polášek M, Španěl P, Smith D. A Pilot Study of Ion - Molecule Reactions at Temperatures Relevant to the Atmosphere of Titan. ORIGINS LIFE EVOL B 2016; 46:533-538. [PMID: 27108425 DOI: 10.1007/s11084-016-9499-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/16/2015] [Indexed: 11/27/2022]
Abstract
Reliable theoretical models of the chemical kinetics of the ionosphere of Saturn's moon, Titan, is highly dependent on the precision of the rates of the reactions of ambient ions with hydrocarbon molecules at relevant temperatures. A Variable Temperature Selected Ions Flow Tube technique, which has been developed primarily to study these reactions at temperatures within the range of 200-330 K, is briefly described. The flow tube temperature regulation system and the thermalisation of ions are also discussed. Preliminary studies of two reactions have been carried out to check the reliability and efficacy of kinetics measurements: (i) Rate constants of the reaction of CH3+ ions with molecular oxygen were measured at different temperatures, which indicate values in agreement with previous ion cyclotron resonance measurements ostensibly made at 300 K. (ii) Formation of CH3+ ions in the reaction of N2+ ions with CH4 molecules were studied at temperatures within the range 240-310 K which showed a small but statistically significant decrease of the ratio of product CH3+ ions to reactant N2+ ions with reaction temperature.
Collapse
|
|
9 |
2 |
11
|
Koszinowski K, Auth T. Modulation of Gas-Phase Lithium Cation Basicities by Microsolvation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1857-1866. [PMID: 31502224 DOI: 10.1007/s13361-019-02312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
In contrast to the extensive knowledge of lithium cation affinities and basicities, the thermochemistry of microsolvated lithium cations is much less explored. Here, we determine the relative stabilities of Li(A,B)n+ complexes, n = 2 and 3, by monitoring their gas-phase reactions with A and B substrate molecules, A/B = Me2O, Et2O, tetrahydrofuran, and MeCN, in a three-dimensional quadrupole-ion trap mass spectrometer. Kinetic analysis of the observed ligand displacement reactions affords equilibrium constants, which are then converted into Gibbs reaction energies. In addition, we use high-level quantum chemical calculations to predict the structures and sequential ligand dissociation energies of the homoleptic Li(A)n+ complexes, n = 1-3. As expected, the ligands dissociate more easily from complexes in higher coordination states. However, the very nature of the ligand also matters. Ligands with different steric demands can, thus, invert their relative Li+ affinities depending on the coordination state of the metal center. This finding shows that microsolvation of Li+ can result in specific effects, which are not recognized if the analysis takes into account only simple lithium cation affinities and basicities.
Collapse
|
|
6 |
|
12
|
Zhi Y, Guo Q, Zheng M, Hu J, Tian SX. Inverse Isotope Kinetic Effect of the Charge Transfer Reactions of Ar + with H 2O and D 2O. Chemphyschem 2024; 25:e202400487. [PMID: 38946221 DOI: 10.1002/cphc.202400487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Hydrogen isotopic effect, as the key to revealing the origin of Earth's water, arises from the H/D mass difference and quantum dynamics at the transition state of reaction. The ion-molecule charge-exchange reaction between water (H2O/D2O) and argon ion (Ar+) proceeds spontaneously and promptly, where there is no transition-state or intermediate complex. In this energetically resonant process, we find an inverse kinetic isotope effect (KIE) leading to the higher charge transfer rate for D2O, by the velocity map imaging measurements of H2O+/D2O+ products. Using the average dipole orientation capture model, we estimate the orientation angles of C2v axis of H2O/D2O relative to the Ar+ approaching direction and attribute to the difference of stereodynamics. According to the long-distance Landau-Zener charge transfer model, this inverse KIE could be also attributed to the density-of-state difference of molecular bending motion between H2O+ and D2O+ around the resonant charge transfer.
Collapse
|
|
1 |
|
13
|
Paliwal P, Popov M, Sunil Kumar N, Willitsch S. Exploring and Controlling Chemistry Using Quantum Logic. Chimia (Aarau) 2024; 78:654-658. [PMID: 39488751 DOI: 10.2533/chimia.2024.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 11/04/2024] Open
Abstract
Over the past years, the development of experimental techniques for the coherent manipulation and control of isolated quantum systems has made impressive progress. Such 'quantum-logic' methods are also highly attractive in a chemical context in view of unravelling and controlling the quantum dynamics of molecular collisions and chemical reactions. Quantum technologies have the potential to transform the way chemical dynamics are investigated - by providing highly sensitive methods for state readout and spectroscopy, by opening up new pathways for the quantum-state preparation of molecules and by enabling an improved control of their microscopic behavior on the single-particle level. However, for complex quantum systems like molecules, these techniques are still in their infancy and their considerable potential remains to be unlocked. The aim of the present research program supported by an Advanced Grant of the Swiss National Science Foundation is to merge the fields of quantum science and chemical dynamics by advancing quantum technologies to polyatomic molecular ions and by applying them to the study of ion-molecule collisions and chemical reactions. In this article, we review the salient experimental methods as well as prospects and challenges in the development of molecular quantum technologies and their applications to chemistry.
Collapse
|
|
1 |
|