1
|
Jin C, Wang T, Zhang D, Yang P, Zhang C, Peng W, Jin K, Wang L, Zhou J, Peng C, Tan Y, Ji J, Chen Z, Sun Q, Yang S, Tang J, Feng Y, Sun Y. Acetyltransferase NAT10 regulates the Wnt/β-catenin signaling pathway to promote colorectal cancer progression via ac 4C acetylation of KIF23 mRNA. J Exp Clin Cancer Res 2022; 41:345. [PMID: 36522719 PMCID: PMC9753290 DOI: 10.1186/s13046-022-02551-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND N4-acetylcytidine (ac4C) as a significant RNA modification has been reported to maintain the stability of mRNA and to regulate the translation process. However, the roles of both ac4C and its 'writer' protein N-acetyltransferase 10 (NAT10) played in the disease especially colorectal cancer (CRC) are unclear. At this point, we discover the underlying mechanism of NAT10 modulating the progression of CRC via mRNA ac4C modification. METHODS The clinical significance of NAT10 was explored based on the TCGA and GEO data sets and the 80 CRC patients cohort of our hospital. qRT-PCR, dot blot, WB, and IHC were performed to detect the level of NAT10 and ac4C modification in CRC tissues and matched adjacent tissues. CCK-8, colony formation, transwell assay, mouse xenograft, and other in vivo and in vitro experiments were conducted to probe the biological functions of NAT10. The potential mechanisms of NAT10 in CRC were clarified by RNA-seq, RIP-seq, acRIP-seq, luciferase reporter assays, etc. RESULTS: The levels of NAT10 and ac4C modification were significantly upregulated. Also, the high expression of NAT10 had important clinical values like poor prognosis, lymph node metastasis, distant metastasis, etc. Furthermore, the in vitro experiments showed that NAT10 could inhibit apoptosis and enhance the proliferation, migration, and invasion of CRC cells and also arrest them in the G2/M phase. The in vivo experiments discovered that NAT10 could promote tumor growth and liver/lung metastasis. In terms of mechanism, NAT10 could mediate the stability of KIF23 mRNA by binding to its mRNA 3'UTR region and up-regulating its mRNA ac4c modification. And then the protein level of KIF23 was elevated to activate the Wnt/β-catenin pathway and more β-catenin was transported into the nucleus which led to the CRC progression. Besides, the inhibitor of NAT10, remodelin, was applied in vitro and vivo which showed an inhibitory effect on the CRC cells. CONCLUSIONS NAT10 promotes the CRC progression through the NAT10/KIF23/GSK-3β/β-catenin axis and its expression is mediated by GSK-3β which forms a feedback loop. Our findings provide a potential prognosis or therapeutic target for CRC and remodelin deserves more attention.
Collapse
|
research-article |
3 |
72 |
2
|
Li T, Li Y, Gan Y, Tian R, Wu Q, Shu G, Yin G. Methylation-mediated repression of MiR-424/503 cluster promotes proliferation and migration of ovarian cancer cells through targeting the hub gene KIF23. Cell Cycle 2019; 18:1601-1618. [PMID: 31135262 PMCID: PMC6619937 DOI: 10.1080/15384101.2019.1624112] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one type of gynecological malignancies with extremely high lethal rate. Abnormal proliferation and metastasis are regarded to play important roles in patients' death, whereas we know little about the underlying molecular mechanisms. Under this circumstance, our current study aims to investigate the role of hub genes in ovarian cancer. Bioinformatics analysis of the data from GEO and analyses of ovarian cancer samples were performed. Then, the results showed that KIF23, a hub gene, was mainly related to cell cycle and positively associated with poor prognosis. Meanwhile, both miR-424-5p and miR-503-5p directly targeted to 3'UTR of KIF23 to suppress the expression of KIF23 and inhibit ovarian cancer cell proliferation and migration. Furthermore, we discovered that miR-424/503 was epigenetically repressed by hypermethylation in the promoter regions, which directly modulated the expression of KIF23 to improve the oncogenic performance of cancer cells in vitro. Together, our research certifies that miR-424/503 cluster is silenced by DNA hypermethylation, which promotes the expression of KIF23, thereby regulating the proliferation and migration of ovarian cancer cells. Interposing this process might be a novel approach in cancer therapy.
Collapse
|
research-article |
6 |
36 |
3
|
Liu Y, Chen H, Dong P, Xie G, Zhou Y, Ma Y, Yuan X, Yang J, Han L, Chen L, Shen L. KIF23 activated Wnt/β-catenin signaling pathway through direct interaction with Amer1 in gastric cancer. Aging (Albany NY) 2020; 12:8372-8396. [PMID: 32365332 PMCID: PMC7244035 DOI: 10.18632/aging.103146] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Increased expression of the kinesin family member 23 (KIF23) has been verified in gastric cancer (GC) and its upregulation contributes to cell proliferation. Even though, the role of KIF23 has not been fully elucidated in GC, and the mechanisms of KIF23 as an oncogene remain unknown. To further identify its potential role in GC, we analyzed gene expression data from GC patients in GEO and TCGA datasets. KIF23 was upregulated in GC, and increased expression of KIF23 correlated with poor prognosis. Importantly, KIF23 inhibition not only suppressed GC cell proliferation, tumorigenesis, but also migration and invasion, and arrested the cell cycle in the G2/M phase. Mechanistic investigations confirmed that KIF23 activated the Wnt/β-catenin signaling pathway by directly interacting with APC membrane recruitment 1 (Amer1). Furthermore, KIF23 exhibited competitive binding with Amer1 to block the association of Amer1 with adenomatous polyposis coli (APC), thus relocating Amer1 from the membrane and cytoplasm to the nucleus and attenuating the ability of Amer1 to negatively regulate Wnt/β-catenin signaling, resulting in activation of this signaling pathway. Collectively, our findings demonstrated that KIF23 promoted GC cell proliferation by directly interacting with Amer1 and activating the Wnt/β-catenin signaling pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
27 |
4
|
Sun L, Zhang C, Yang Z, Wu Y, Wang H, Bao Z, Jiang T. KIF23 is an independent prognostic biomarker in glioma, transcriptionally regulated by TCF-4. Oncotarget 2017; 7:24646-55. [PMID: 27013586 PMCID: PMC5029730 DOI: 10.18632/oncotarget.8261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/04/2016] [Indexed: 02/01/2023] Open
Abstract
Kinesin family member 23 (KIF23), a nuclear protein and a key regulator of cellular cytokinesis, has been found to be overexpressed as an oncogene in glioma. However, the prognostic and clinicopathological features of glioma with KIF23 expression was not clear yet. Here, we analyzed KIF23 expression pattern by using whole genome mRNA expression microarray data from Chinese Glioma Genome Atlas (CGGA) database (http://www.cgga.org.cn), and found that KIF23 overexpression was significantly associated with high grade glioma as well as the higher mortality in survival analysis (log-rank test, p<0.01). The results of the three other validation datasets showed similar findings. Furthermore, KIF23 also served as an independent prognostic biomarker in glioma patients. Finally, functional assay showed that reduction of KIF23 suppressed glioma cell proliferation both in vivo and vitro. Additionally, we found that KIF23 was regulated by TCF-4 at transcriptionally level. Therefore, this evidence indicates KIF23 over-expression is associated with glioma malignancy and conferred a worse survival time in glioma, which suggests KIF23 is a new novel prognostic biomarker with potential therapeutic implications in glioma.
Collapse
|
Journal Article |
8 |
25 |
5
|
Cheng C, Wu X, Shen Y, Li Q. KIF14 and KIF23 Promote Cell Proliferation and Chemoresistance in HCC Cells, and Predict Worse Prognosis of Patients with HCC. Cancer Manag Res 2020; 12:13241-13257. [PMID: 33380832 PMCID: PMC7767722 DOI: 10.2147/cmar.s285367] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common human malignant tumors. The prognosis of HCC patients is still unsatisfying. In this study, we performed the integrated bioinformatics analysis to identify potential biomarkers and biological pathways in HCC. Methods Gene expression profiles were obtained from the Gene Expression Omnibus database (GSE55048, GSE55758, and GSE56545) for the screening of the common differentially expressed genes (DEGs) between HCC tissues and matched non-tumor tissues. DEGs were subjected to Gene Ontology, KEGG pathway, and Reactome pathway analysis. The hub genes were identified by using protein–protein interaction (PPI) network analysis. The hub genes in HCC were further subjected to overall survival analysis of HCC patients. The hub genes were further validated by in vitro functional assays. Results A total of 544 common differentially expressed genes were screened from three datasets. Gene Ontology, KEGG and Reactome analysis results showed that DEGs are significantly associated with the biological process of cell cycle, cell division, and DNA replication. PPI network analysis identified 20 hub genes from the DEGs. These hub genes except CENPE were all significantly up-regulated in the HCC tissues when compared to non-tumor tissues. The Kaplan–Meier survival analysis results showed that the high expression of the 20 hub genes was associated with shorter survival of the HCC patients. Further validation studies showed that knockdown of KIF14 and KIF23 both suppressed the proliferative potential, increased the caspase-3/-7 activity, up-regulated Bax expression, and promoted the invasive and migratory abilities in the HCC cells. In addition, knockdown of KIF14 and KIF23 enhanced chemosensitivity to cisplatin and sorafenib in the HCC cells. Finally, the high expression of KIF14 and KIF23 was associated with shorter progression-free survival, recurrence-free survival, and disease-specific survival of patients with HCC. Conclusion In conclusion, the present study performed the integrated bioinformatics analysis and showed that KIF14 and KIF23 silence attenuated cell proliferation, invasion, and migration, and promoted chemosensitivity of HCC cells. KIF14 and KIF23 may serve as potential biomarkers for predicting the worse prognosis of patients with HCC.
Collapse
|
Journal Article |
5 |
20 |
6
|
Jian W, Deng XC, Munankarmy A, Borkhuu O, Ji CL, Wang XH, Zheng WF, Yu YH, Zhou XQ, Fang L. KIF23 promotes triple negative breast cancer through activating epithelial-mesenchymal transition. Gland Surg 2021; 10:1941-1950. [PMID: 34268078 DOI: 10.21037/gs-21-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Background KIF23 is a member of kinesin family, recent researches indicate KIF23 plays an important role in the proliferation and migration of malignant cancer cells. While the function and specific molecule mechanism of KIF23 in triple negative breast cancer remains unclear. Methods QRT-PCR and immunohistochemistry were conducted to analyze expression of KIF23 in triple negative breast cancer tissues and paired paracancer tissues. CCK-8 assay, colony formation assay, wound healing assay and transwell assay were applied for exploring phenotype changing of triple negative breast cancer cell lines MDA-MB-231 and BT549 after siRNA-induced knockdown of KIF23. Several bioinformatic databases were used for predicting miRNAs that combing with KIF23 mRNA and verified by dual luciferase reporter assay. Western blot assay was performed to explore downstream signaling pathway of KIF23. Results KIF23 was overexpressed in triple negative breast cancer, knockdown of KIF23 by siRNA inhibited proliferation and migration of TNBC cell lines MDA-MB-231 and BT549. Mechanistically, knockdown of KIF23 resulted in the suppression of Epithelial-Mesenchymal Transition. Meanwhile, miR-195-5p was downregulated in TNBC, and dual luciferase reporter assay indicated miR-195-5p could combine with 3'UTR of KIF23 thus promoting degradation of KIF23. Conclusions KIF23 is a potential oncogene in triple negative breast cancer, miR-195-5p could combine with 3'UTR of KIF23. Our study reveals a new sight into triple negative breast cancer.
Collapse
|
Journal Article |
4 |
17 |
7
|
Vikberg AL, Vooder T, Lokk K, Annilo T, Golovleva I. Mutation analysis and copy number alterations of KIF23 in non-small-cell lung cancer exhibiting KIF23 over-expression. Onco Targets Ther 2017; 10:4969-4979. [PMID: 29066916 PMCID: PMC5644594 DOI: 10.2147/ott.s138420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
KIF23 was recently suggested to be a potential molecular target for the treatment of lung cancer. This proposal is based on elevated expression of KIF23 in several tumors affecting breast, lung, brain, and liver, and also on the presence of KIF23 mutations in melanoma and colorectal cancer. Recently, we identified a mutation in the KIF23 gene causing a rare hereditary form of dyserythropoietic anemia (CDA III) with predisposition to blood cancer. We suggested that KIF23 overexpression in tumors might be due to the presence of activating somatic mutations, and therefore, mutation screening of the KIF23 in 15 non-small-cell lung cancer (NSCLC) cases with elevated expression level of KIF23 was undertaken. Eight sequence variants were found in all samples. Furthermore, one variant was present in two cases, and one variant was case specific. Nine variants were previously reported while one variant lacks frequency information. Nine of ten cases available for single nucleotide polymorphism-array analysis demonstrated aberrant karyotypes with additional copy of entire chromosome 15. Thus, no activating somatic mutations in coding regions of the KIF23 were found. Furthermore, no mutations were detected in cell cycle genes homology region in KIF23 promoter responsible for p53-dependent repression of KIF23 expression. We showed that the elevated level of KIF23 could be due to additional copy of chromosome 15 demonstrated in 90% of NSCLC cases analyzed in this study. Considering the crucial role of KIF23 in the final step of mitosis, the gene is a potential molecular marker, and for better understanding of its role in cancer development, more tumors should be analyzed.
Collapse
|
Journal Article |
8 |
15 |
8
|
Wu H, Tian X, Zhu C. Knockdown of lncRNA PVT1 inhibits prostate cancer progression in vitro and in vivo by the suppression of KIF23 through stimulating miR-15a-5p. Cancer Cell Int 2020; 20:283. [PMID: 32624708 PMCID: PMC7330980 DOI: 10.1186/s12935-020-01363-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) greatly threatens men's lives, with high incidence and mortality. Recently, the research of long non-coding RNAs (lncRNAs) has made breakthroughs in the development of human cancers. This study aimed to figure out the role and action mechanism of lncRNA PVT1 (PVT1) in PCa. METHODS The expression of PVT1, microRNA-15a-5p (miR-15a-5p) and kinesin family member 23 (KIF23) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, migration and invasion were assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry and transwell assays, respectively. The protein levels of KIF23 and proliferation, apoptosis, and epithelial-mesenchymal transition (EMT)-related markers were quantified by western blot. The relationship between miR-15a-5p and PVT1 or KIF23 was predicted by starBase v2.0 and verified by dual-luciferase reporter assay. Xenograft assay was conducted to determine the role of PVT1 in vivo. RESULTS The expression of PVT1 and KIF23 was enhanced, while miR-15a-5p expression was reduced in PCa tissues and cells. PVT1 interference inhibited proliferation, migration and invasion but promoted apoptosis of PCa cells. MiR-15a-5p was a target of PVT1, and KIF23 was a target of miR-15a-5p. The inhibition of miR-15a-5p reversed the effects of PVT1 interference and suppressed the roles of KIF23 knockdown. KIF23 expression was regulated by PVT1 through miR-15a-5p. PVT1 interference blocked PCa progression in vivo. CONCLUSION PVT1 knockdown had effects on the progression of PCa by inhibiting the expression of KIF23 via enriching miR-15a-5p in vitro and in vivo, suggesting that PVT1 might be a novel biomarker for the treatment of PCa.
Collapse
|
research-article |
5 |
14 |
9
|
Moreno-Carralero MI, Horta-Herrera S, Morado-Arias M, Ricard-Andrés MP, Lemes-Castellano A, Abio-Calvete M, Cedena-Romero MT, González-Fernández FA, Llorente-González L, Periago-Peralta AM, de-la-Iglesia-Íñigo S, Méndez M, Morán-Jiménez MJ. Clinical and genetic features of congenital dyserythropoietic anemia (CDA). Eur J Haematol 2018; 101:368-378. [PMID: 29901818 DOI: 10.1111/ejh.13112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Congenital dyserythropoietic anemias (CDA) are characterized by hyporegenerative anemia with inadequate reticulocyte values, ineffective erythropoiesis, and hemolysis. Distinctive morphology of bone marrow erythroblasts and identification of causative genes allow classification into 4 types caused by variants in CDAN1, c15orf41, SEC23B, KIF23, and KLF1 genes. OBJECTIVE Identify pathogenic variants in CDA patients. METHODS Massive parallel sequencing with a targeted gene panel, Sanger sequencing, Comparative Genome Hybridization (CGH), and in silico predictive analysis of pathogenicity. RESULTS Pathogenic variants were found in 21 of 53 patients studied from 44 unrelated families. Six variants were found in CDAN1: two reported, p.Arg714Trp and p.Arg725Trp and, four novel, p.Arg623Trp, p.Arg946Trp, p.Phe1125Ser and p.Ser1227Gly. Twelve variants were found in SEC23B: seven reported, p.Arg14Trp, p.Glu109Lys, p.Arg217Ter, c.835-2A>G, p.Arg535Ter, p.Arg550Ter and p.Arg718Ter and, five novel, p.Val164Leu, p.Arg190Gln, p.Gln521Ter, p.Arg546Trp, and p.Arg611Gln. The variant p.Glu325Lys in KLF1 was found in one patient and p.Tyr365Cys in ALAS2 in an other. Moreover, we identified genomic rearrangements by CGH in some SEC23B-monoallelic patients. CONCLUSIONS New technologies for genetic studies will help to find variants in other genes, in addition to those known, that contribute to or modulate the CDA phenotype or support the correct diagnosis.
Collapse
|
Journal Article |
7 |
14 |
10
|
Ji Z, Mi A, Li M, Li Q, Qin C. Aberrant KIF23 expression is associated with adverse clinical outcome and promotes cellular malignant behavior through the Wnt/β-catenin signaling pathway in Colorectal Cancer. J Cancer 2021; 12:2030-2040. [PMID: 33754001 PMCID: PMC7974518 DOI: 10.7150/jca.51565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/29/2020] [Indexed: 01/11/2023] Open
Abstract
Purpose: The aim of the present study was to reveal the clinicopathological significance and prognostic role of kinesin family member 23 (KIF23) in colorectal cancer (CRC) and characterize its biological function and the underlying mechanisms. Methods: Bioinformatics analysis, immunohistochemistry, Western blot and qRT-PCR were utilized to investigate the expression of KIF23 in CRC tissues. The CCK-8 assay, wound healing assay and Matrigel assay were used to detect cell proliferation, migration and invasion in vitro. Western blot, immunofluorescence staining and cell function experiment were performed to explore the underlying mechanism. Results: The overexpression of KIF23 was associated with T stage, N stage, M stage and TNM stage, and CRC patients with high KIF23 expression had a worse prognosis. KIF23 knockdown inhibits CRC cells proliferation, migration and invasion in vitro. The mechanism study determined that KIF23 activates the Wnt/β-catenin signaling pathway by promoting the nuclear translocation of β-catenin to regulate the malignant behavior of CRC cells. Conclusion: These results suggest that KIF23 may act as a putative oncogene and a potential therapeutic target in CRC.
Collapse
|
Journal Article |
4 |
10 |
11
|
Wang Q, He Z, Chen Y. Comprehensive Analysis Reveals a 4-Gene Signature in Predicting Response to Temozolomide in Low-Grade Glioma Patients. Cancer Control 2019; 26:1073274819855118. [PMID: 31167546 PMCID: PMC6558750 DOI: 10.1177/1073274819855118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Low-grade gliomas (LGGs) are a highly heterogeneous group of slow-growing,
lethal, diffusive brain tumors. Temozolomide (TMZ) is a frequently used primary
chemotherapeutic agent for LGGs. Currently there is no consensus as to the
optimal biomarkers to predict the efficacy of TMZ, which calls for
decision-making for each patient while considering molecular profiles. Low-grade
glioma data sets were retrieved from The Cancer Genome Atlas. Cox regression and
survival analyses were applied to identify clinical features significantly
associated with survival. Subsequently, Ordinal logistic regression,
co-expression, and Cox regression analyses were applied to identify genes that
correlate significantly with response rate, disease-free survival, and overall
survival of patients receiving TMZ as primary therapy. Finally, gene expression
and methylation analyses were exploited to explain the mechanism between these
gene expression and TMZ efficacy in LGG patients. Overall survival was
significantly correlated with age, Karnofsky Performance Status score, and
histological grade, but not with IDH1 mutation status. Using 3
distinct efficacy end points, regression and co-expression analyses further
identified a novel 4-gene signature of ASPM, CCNB1, EXO1, and
KIF23 which negatively correlated with response to TMZ
therapy. In addition, expression of the 4-gene signature was associated with
those of genes involved in homologous recombination. Finally, expression and
methylation profiling identified a largely unknown olfactory receptor
OR51F2 as potential mediator of the roles of the 4-gene
signature in reducing TMZ efficacy. Taken together, these findings propose the
4-gene signature as a novel panel of efficacy predictors of TMZ therapy, as well
as potential downstream mechanisms, including homologous recombination, OR51F2,
and DNA methylation independent of MGMT.
Collapse
|
Journal Article |
6 |
8 |
12
|
Chen X, Gu L, Cheng X, Xing J, Zhang M. MiR-17-5p downregulation alleviates apoptosis and fibrosis in high glucose-induced human mesangial cells through inactivation of Wnt/β-catenin signaling by targeting KIF23. ENVIRONMENTAL TOXICOLOGY 2021; 36:1702-1712. [PMID: 34014023 DOI: 10.1002/tox.23280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Diabetic nephropathy (DN) remains the major cause of end-stage renal disease. MicroRNAs (miRNAs) have been reported to perform biological functions in many diseases. This investigation elucidated the biological role of miR-17-5p in DN. In this study, high glucose-cultured human mesangial cells (HMCs) were used as a cell model of DN. The miR-17-5p and KIF23 expression was measured by RT-qPCR. Cell apoptosis was detected by flow cytometry. The protein levels of apoptosis markers, fibrosis markers, and Wnt/β-catenin signaling-related genes were assessed using western blotting. The interaction of miR-17-5p with KIF23 was tested by a luciferase reporter assay. We found that miR-17-5p was upregulated in both DN patients and high glucose-treated HMCs. Silencing miR-17-5p attenuated the apoptosis and fibrosis in high glucose-treated HMCs. MiR-17-5p binds to KIF23 3'UTR and negatively regulates KIF23 expression. KIF23 knockdown could suppress the role of miR-17-5p inhibition in high glucose-treated HMCs. Additionally, inhibition of miR-17-5p activated Wnt/β-catenin signaling in HMCs through upregulating KIF23 expression. Suppression of Wnt/β-catenin signaling antagonized the effect of miR-17-5p in HMCs. In conclusion, miR-17-5p inhibition alleviates the apoptosis and fibrosis in high glucose-treated HMCs by targeting KIF23 activating Wnt/β-catenin signaling.
Collapse
|
|
4 |
8 |
13
|
Inhibition of KIF23 Alleviates IPAH by Targeting Pyroptosis and Proliferation of PASMCs. Int J Mol Sci 2022; 23:ijms23084436. [PMID: 35457254 PMCID: PMC9032390 DOI: 10.3390/ijms23084436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a progressive vascular disease with high mortality and heritability. Pyroptosis is a novel form of programmed cell death, and it is closely associated with IPAH. However, the roles of pyroptosis-related genes (PRGs) in IPAH are still largely unknown. In this study, we identified KIF23 as the most relevant gene for IPAH and pyroptosis, and its expression was significantly increased in pulmonary arterial smooth muscle cells (PASMCs) of IPAH. Besides, the pyroptosis level of PASMCs was also considerably upregulated in IPAH. Knockdown of KIF23 in PASMCs could significantly suppress the PASMCs’ pyroptosis and proliferation and then alleviate the increase in pulmonary arterial pressure, right ventricular hypertrophy, and pulmonary vascular resistance in IPAH. KIF23 regulated the expression of Caspase3, NLRP3, and HMGB1, and they were all involved in the PI3K/AKT and MAPK pathways, indicating that PI3K/AKT and MAPK pathways might participate in regulating PASMCs pyroptosis by KIF23. In conclusion, our study suggests that KIF23 may be a new therapeutic target for IPAH, which can alleviate the symptoms of IPAH by inhibiting the pyroptosis and proliferation of PASMCs.
Collapse
|
|
3 |
6 |
14
|
Shen E, Zhang J, Lu Y. DEP domain containing 1B (DEPDC1B) exerts the tumor promoter in hepatocellular carcinoma through activating p53 signaling pathway via kinesin family member 23 ( KIF23). Bioengineered 2022; 13:1103-1114. [PMID: 34983303 PMCID: PMC8805966 DOI: 10.1080/21655979.2021.2017629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is closely associated with chronic liver disease and possesses a high incidence. DEP domain containing 1B (DEPDC1B) expression has been found to be upregulated in HCC according to bioinformatics analysis. This paper sought to study the specific role of DEPDC1B in HCC. The data of DEPDC1B expression and individual overall survival in HCC and normal liver tissues were acquired from UALCAN database. The association between DEPDC1B and the downstream signal, kinesin family member 23 (KIF23), was determined using LinkedOmics and STRING database, and subsequently confirmed by co-immunoprecipitation assay. The expression levels of DEPDC1B and KIF23 in normal hepatic epithelial cells and HCC cell lines were assessed by RT-qPCR and Western blotting, respectively. Following transfection with small interference RNA-DEPDC1B, the influences of DEPDC1B knockdown on cell proliferation, colony formation, cell cycle, cell invasion, migration, and KIF23 expression were evaluated. In addition, the effects of KIF23 overexpression on the above aspects of HCC cells were also determined, as well as the expression level of p53 signaling-related proteins. The results indicated that DEPDC1B was highly expressed in HCC cells. DEPDC1B knockdown inhibited the proliferation, migration, invasion, cycle, and KIF23 expression in HCC cells. Moreover, KIF23 overexpression reversed the inhibitory effect of DEPDC1B knockdown in HCC cells and the activation of the p53 signaling. In conclusion, DEPDC1B knockdown exerts anti-cancer role in HCC by activating the p53 signaling through KIF23.
Collapse
|
research-article |
3 |
5 |
15
|
Zhu C, Guo H, Ma Z, Shi S, Zhao X, Zhai D, Zhou X, Jiang P, Xu Q, Cai J. FOXM1 augments sorafenib resistance and promotes progression of hepatocellular carcinoma by epigenetically activating KIF23 expression. Biochem Biophys Res Commun 2023; 656:1-9. [PMID: 36940637 DOI: 10.1016/j.bbrc.2023.03.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Sorafenib has been used to enhance the survival outcome of hepatocellular carcinoma (HCC) patients. But, occurrence resistance to sorafenib subtracts from its therapeutic benefits. Herein, we identified that FOXM1 was markedly upregulated in both tumor samples and sorafenib-resistant HCC tissues. We also demonstrated that patients with decreased FOXM1 expression had longer overall survival (OS) and progression-free survival (PFS) in the cohort of sorafenib-treated patients. For HCC cells resistant to sorafenib, the IC50 value of sorafenib and the expression of FOXM1 were increased. In addition, Downregulation of FOXM1 expression alleviated the occurrence of resistance to sorafenib and reduced the proliferative potential and viability of HCC cells. Mechanically, the suppression of the FOXM1 gene resulted in the downregulation of KIF23 levels. Moreover, downregulation of FOXM1 expression reduced the levels of RNA polymerase II (RNA pol II) and histone H3 lysine 27 acetylation (H3K27ac) on the KIF23 promoter, further epigenetically silencing the production of KIF23. More intriguingly, our results similarly revealed that FDI-6, a specific inhibitor of FOXM1, suppressed the proliferation of HCC cells resistant to sorafenib, as well as upregulation of FOXM1 or KIF23 abolished this effect. In addition, we found that FDI-6 combined with sorafenib significantly improved the therapeutic effect of sorafenib. Collectively, the present results revealed that FOXM augments sorafenib resistance and enhances HCC progression by upregulating KIF23 expression via an epigenetic mechanism, and targeting FOXM1 can be an effective treatment for HCC.
Collapse
|
|
2 |
5 |
16
|
He X, Wang J, Zhou R, Yu S, Jiang J, Zhou Q. Kinesin family member 23 exerts a protumor function in breast cancer via stimulation of the Wnt/β-catenin pathway. Toxicol Appl Pharmacol 2021; 435:115834. [PMID: 34933054 DOI: 10.1016/j.taap.2021.115834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023]
Abstract
Kinesin family member 23 (KIF23) has been described as one of the main genes that are associated with malignant transformation in numerous cancers. However, the exact significance of KIF23 in breast cancer has not been well-addressed. The present study was dedicated to the comprehensive investigation of KIF23 in breast cancer. Initial expression analysis through The Cancer Genome Atlas (TCGA) demonstrated high KIF23 levels in breast cancer compared with normal controls. These in silico data showing high levels of KIF23 in breast cancer were verified by assessing clinical specimens using real-time quantitative PCR and immunoblot assays. Moreover, a high KIF23 level was correlated with adverse clinical outcomes in breast cancer patients. Cellular functional experiments showed that the down-regulation of KIF23 affected the malignant behaviors of breast cancer cells in vitro, whereas the forced expression of KIF23 stimulated them. Mechanistic studies revealed that KIF23 restraint down-regulated the levels of phosphorylated glycogen synthetase kinase-3β (GSK-3β), β-catenin, cyclin D1 and c-myc in breast cancer cells, showing an inhibitory effect on the Wnt/β-catenin pathway. The suppression of GSK-3β was able to reverse KIF23-silencing-induced inactivation of the Wnt/β-catenin pathway. Inhibition of the Wnt/β-catenin pathway abolished KIF23 overexpression-mediated protumor effects in breast cancer. A xenograft assay confirmed the in vivo antitumor function of KIF23 inhibition. In conclusion, these findings suggest that KIF23 may exert a protumor function in breast cancer by stimulating the Wnt/β-catenin pathway. This work suggests that KIF23 has potential values for targeted therapy and prognosis in breast cancer.
Collapse
|
|
4 |
3 |
17
|
Zhao Z, Wang Z, Bao ZS, Gao WZ, Zhang YD, Ruan CJ, Lv T, Wang Y, Sun LH. Mutation and Copy Number Alterations Analysis of KIF23 in Glioma. Front Genet 2021; 12:646929. [PMID: 34017355 PMCID: PMC8129563 DOI: 10.3389/fgene.2021.646929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
In glioma, kinesin family member 23 (KIF23) is up-regulated and plays a vital role in oncogenesis. However, the mechanism underlying KIF23 overexpression in malignant glioma remains to be elucidated. This study aims to find potential causes of KIF23 high expression at genome level. To clarify this issue, we obtained point mutation and copy number alterations (CNAs) of KIF23 in 319 gliomas using whole-exome sequencing. Only two glioma samples with missense mutations in KIF23 coding region were identified, while 7 patients were detected with amplification of KIF23. Additional analysis showed that KIF23 amplification was significantly associated with higher expression of KIF23. Gene ontology analysis indicated that higher copy number of KIF23 was associated TNF-α signaling pathway and mitotic cell circle checkpoint, which probably caused by subsequent upregulated expression of KIF23. Moreover, pan-cancer analysis showed that gaining of copy number was significantly associated with higher expression of KIF23, consolidating our findings in glioma. Thus, it was deduced that elevated KIF23 expression in glioma tended to be caused by DNA copy number amplification, instead of mutation.
Collapse
|
Journal Article |
4 |
2 |
18
|
Sun Y, Pan H, He Y, Hu C, Gu Y. Functional roles of the SHCBP1 and KIF23 interaction in modulating the cell-cycle and cisplatin resistance of head and neck squamous cell carcinoma. Head Neck 2021; 44:591-605. [PMID: 34918847 DOI: 10.1002/hed.26961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/08/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This study aimed to explore the functional roles of Shc SH2-domain-binding protein 1 (SHCBP1) and Kinesin Family Member 23 (KIF23) in HPV-negative head and neck squamous cell carcinoma (HNSCC). METHODS Bioinformatic analysis was conducted using data from The Cancer Genome Atlas (TCGA) and GSE103322. HNSCC cell lines were used for in vitro and in vivo analysis. RESULTS SHCBP1 upregulation was associated with unfavorable survival. SHCBP1 knockdown reduced cell proliferation and increased the cisplatin sensitivity of SCC9/SCC25 cells. SHCBP1 interacted with KIF23 via its Nesd homology domain (NHD) domain, which was important for its nucleus localization. SHCBP1 positively modulated KIF23 expression and activated phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), extracellular signal regulated kinase (ERK)1/2, nuclear factor kappa B (NF/κB)-p65, and Wnt/β-catenin signaling. KIF23 knockdown abrogated cisplatin resistance induced by SHCBP1 overexpression. CONCLUSION SHCBP1 interacts with KIF23 and cooperatively regulates cell-cycle progression and cisplatin resistance of HNSCC tumor cells.
Collapse
|
|
4 |
1 |
19
|
Poulos A, Budaitis BG, Verhey KJ. Single-motor and multi-motor motility properties of kinesin-6 family members. Biol Open 2022; 11:276958. [PMID: 36178151 PMCID: PMC9581516 DOI: 10.1242/bio.059533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/22/2022] [Indexed: 12/31/2022] Open
Abstract
Kinesin motor proteins are responsible for orchestrating a variety of microtubule-based processes including intracellular transport, cell division, cytoskeletal organization, and cilium function. Members of the kinesin-6 family play critical roles in anaphase and cytokinesis during cell division as well as in cargo transport and microtubule organization during interphase, however little is known about their motility properties. We find that truncated versions of MKLP1 (HsKIF23), MKLP2 (HsKIF20A), and HsKIF20B largely interact statically with microtubules as single molecules but can also undergo slow, processive motility, most prominently for MKLP2. In multi-motor assays, all kinesin-6 proteins were able to drive microtubule gliding and MKLP1 and KIF20B were also able to drive robust transport of both peroxisomes, a low-load cargo, and Golgi, a high-load cargo, in cells. In contrast, MKLP2 showed minimal transport of peroxisomes and was unable to drive Golgi dispersion. These results indicate that the three mammalian kinesin-6 motor proteins can undergo processive motility but differ in their ability to generate forces needed to drive cargo transport and microtubule organization in cells.
Collapse
|
research-article |
3 |
|
20
|
Bai M, Liu X. Diagnostic biomarker KIF23 is associated with immune infiltration and immunotherapy response in gastric cancer. Front Oncol 2023; 13:1191009. [PMID: 37483517 PMCID: PMC10361780 DOI: 10.3389/fonc.2023.1191009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Kinesin family member 23 (KIF23), an index of tumor proliferation, can serve as a prognostic marker in numerous tumors. However, the relationship between KIF23 expression and diagnostic value, immune infiltration, and immunotherapy response remains unclear in gastric cancer(GC). We primarily demonstrated that GC tissue had higher levels of KIF23 expression than the adjacent normal tissue on mRNA and protein levels. The ROC analysis revealed KIF23 had an outstanding diagnostic value of GC in the training and validation set (AUC = 0.958, and AUC = 0.86793, respectively). We discovered that KIF23 was positively associated with age, histological type, and H. pylori infection of GC. Subsequently, the KIF23 expression level was correlated with the gene mutation, function enrichment, immune cell infiltration, and immune cell marker of GC based on multiple online websites and R software. KIF23 expression was related to the infiltration of CD8+ T cells, CD4+T cells, macrophages, and dendritic cells in GC. Especially, KIF23 expression was positively significantly associated with the Th1 cell marker STAT1 (Signal transducer and activator of transcription 1). Patients with high KIF23 expression exhibited greater immune cell infiltrates, including T cell CD4+ memory helper, Treg, and M1 cells, which indicated that high KIF23 expression is more conducive to immunosuppression. Finally, KIF23 expression had a positive relationship with TMB and MSI, and affected the immune microenvironment in GC tissues by increased expression of ICPs such as CD274(PD-L1), CTLA4, HAVCR2, and LAG3. Our study uncovered that KIF23 can serve as an immune-related biomarker for diagnosis and immunotherapy response of GC.
Collapse
|
research-article |
2 |
|
21
|
Wang X, Wang W, Zeng H, Hu X, Chen F, Shen L, Tao J. Molecular structure of polysaccharide mediated autophagy markers KIF23 and PRC1 proteins and their regulatory role in triple negative cancer through the p53 signaling pathway. Int J Biol Macromol 2025; 291:139155. [PMID: 39725112 DOI: 10.1016/j.ijbiomac.2024.139155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
As a process of intracellular degradation and recycling of its own components, abnormal regulation of autophagy has been strongly associated with the development of multiple cancer types, including triple-negative breast cancer. The amino acid sequences of KIF23 and PRC1 proteins were analyzed by bioinformatics method, their three-dimensional structures were predicted, and their interactions with polysaccharides were studied by molecular docking technology. The localization and expression patterns of KIF23 and PRC1 in cells were studied by cell biology techniques. By constructing breast cancer cell lines that stably overexpress or knock down KIF23 and PRC1, we evaluated the effect of these proteins on autophagy activity. Finally, molecular biological methods such as Western blot and real-time quantitative PCR were used to detect the expression changes of proteins related to p53 signaling pathway and the levels of autophagy markers such as LC3 and p62, thereby revealing the regulatory effects of KIF23 and PRC1 on autophagy of triple-negative breast cancer cells through p53 signaling pathway. The study found that the KIF23 and PRC1 proteins have complex three-dimensional structures, and their interactions with polysaccharides may affect their function during cell division and autophagy. In triple-negative breast cancer cells, overexpression of KIF23 and PRC1 significantly enhanced autophagy activity, while knockdown of these proteins inhibited autophagy. Further experiments showed that KIF23 and PRC1 regulate the expression of autophagy related proteins by influencing the activity of p53 signaling pathway. Overexpression of KIF23 and PRC1 led to inhibition of the p53 signaling pathway, while knocking down these proteins activated the p53 signaling pathway, which was consistent with reduced autophagy activity.
Collapse
|
|
1 |
|
22
|
Li Y, Zhou M, Hu X, Xie T, Peng W, Zhang L, Tang M, Hu R, He Y. Cancer-associated fibroblast-derived exosomal FAM83F regulates KIF23 expression to promote the malignant progression and reduce radiosensitivity in non-small cell lung cancer. Cytotechnology 2025; 77:50. [PMID: 39867833 PMCID: PMC11759729 DOI: 10.1007/s10616-025-00713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) have been shown to play a crucial role in the progression of non-small cell lung cancer (NSCLC). Exosomes derived from CAFs have emerged as important mediators of intercellular communication in the tumor microenvironment, contributing to cancer progression. Therefore, it is essential to further investigate the mechanisms by which CAF-derived exosomes regulate NSCLC. CAFs promoted NSCLC cell proliferation, invasion, and migration, while also suppressing radiosensitivity. We observed an upregulation of FAM83F expression in both NSCLC cells and NSCLC cells treated with conditioned medium from CAFs. Notably, CAF-derived exosomes were found to transfer FAM83F to NSCLC cells, thereby enhancing the malignant properties of the cancer cells. In contrast, FAM83F-deficient CAF-derived exosomes exerted inhibitory effects on NSCLC cell proliferation, invasion, and migration, while also sensitizing the cells to radiotherapy. FAM83F was found to interact with KIF23 in NSCLC cells, and the overexpression of KIF23 attenuated the effects induced by FAM83F-deficient exosomes in NSCLC cells. Moreover, FAM83F-deficient CAF-derived exosomes were effective in inhibiting tumor formation in vivo. Our findings highlight the crucial role of CAF-derived exosomal FAM83F in promoting NSCLC progression and conferring resistance to radiotherapy. Targeting this signaling pathway may offer promising therapeutic strategies for combating NSCLC progression and improving patient outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00713-x.
Collapse
|
research-article |
1 |
|
23
|
Wu Y, Chen W, Miao H, Xu T. SIRT7 promotes the proliferation and migration of anaplastic thyroid cancer cells by regulating the desuccinylation of KIF23. BMC Cancer 2024; 24:210. [PMID: 38360598 PMCID: PMC10870498 DOI: 10.1186/s12885-024-11965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE This study was designed to investigate the regulatory effects of kinesin family member (KIF) 23 on anaplastic thyroid cancer (ATC) cell viability and migration and the underlying mechanism. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to analyze the levels of KIF23 in ATC cells. Besides, the effects of KIF23 and sirtuin (SIRT) 7 on the viability and migration of ATC cells were detected using cell counting kit-8, transwell and wound healing assays. The interaction between SIRT7 and KIF23 was evaluated by co-immunoprecipitation (Co-IP) assay. The succinylation (succ) of KIF23 was analyzed by western blot. RESULTS The KIF23 expression was upregulated in ATC cells. Silencing of KIF23 suppressed the viability and migration of 8505C and BCPAP cells. The KIF23-succ level was decreased in ATC cells. SIRT7 interacted with KIF23 to inhibit the succinylation of KIF23 at K537 site in human embryonic kidney (HEK)-293T cells. Overexpression of SIRT7 enhanced the protein stability of KIF23 in HEK-293T cells. Besides, overexpression of KIF23 promoted the viability and migration of 8505C and BCPAP cells, which was partly blocked by silenced SIRT7. CONCLUSIONS SIRT7 promoted the proliferation and migration of ATC cells by regulating the desuccinylation of KIF23.
Collapse
|
research-article |
1 |
|
24
|
Liu X, Xie X, Li Q, Xie X, Xiong M, Han W, Xie W. KIF23 promotes cervical cancer progression via inhibiting NLRP3-mediated pyroptosis. FASEB J 2024; 38:e23685. [PMID: 38780518 DOI: 10.1096/fj.202400281r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Cervical cancer (CC), closely linked to persistent human papillomavirus infection, represents a major health problem for women worldwide. The objective of this study is to elucidate KIF23's role in the development of CC and its regulatory mechanism. METHODS The bioinformatics methods were utilized to extract pyroptosis-associated differentially expressed genes (DEGs) and pivot genes from the GSE9750 and GSE63678 datasets, followed by immune infiltration analysis and quantification of these genes' expression. The effects of kinesin family member 23 (KIF23) were verified through functional experiments in vitro and a mouse xenograft model. The NLPR3 activator, nigericin, was applied for further analyzing the potential regulatory mechanism of KIF23 in CC. RESULTS A total of 8 pyroptosis-related DEGs were screened out, among which 4 candidate core genes were identified as candidate hub genes and confirmed upregulation in CC tissues and cells. These genes respectively showed a positive correlation with the infiltration of distinct immune cells or tumor purity. Downregulation of KIF23 could suppress the proliferation, migration, and invasion abilities in CC cells and tumorigenesis through enhancing pyroptosis. Conversely, KIF23 overexpression accelerated the malignant phenotypes of CC cells and inhibited pyroptosis activation, which was blocked by nigericin treatment. CONCLUSIONS KIF23 may play an oncogenic role in CC progression via inhibition of the NLRP3-mediated pyroptosis pathway.
Collapse
|
|
1 |
|
25
|
Di Y, Zhang H, Zhang B, Li T, Li D. CCNA2 and KIF23 are molecular targets for the prognosis of adenoid cystic carcinoma. Aging (Albany NY) 2024; 16:205703. [PMID: 38568110 DOI: 10.18632/aging.205703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Adenoid cystic carcinoma (ACC) is a tumor type derived from glands. However, relationship between CCNA2 and KIF23, and adenoid cystic carcinoma remains unclear. METHODS GSE36820 and GSE88804 profiles for ACC were obtained from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified, and Weighted Gene Co-expression Network Analysis (WGCNA) was conducted. Subsequently, the construction and analysis of protein-protein interaction (PPI) network, functional enrichment analysis, and Gene Set Enrichment Analysis (GSEA) were performed. A gene expression heat map was generated to visually depict the expression difference of core genes between adenoid cystic carcinoma and normal samples. TargetScan was employed to identify miRNAs that regulated central DEGs. Western blotting (WB) was conducted for cell verification. RESULTS A total of 885 DEGs were identified. GO and KEGG analyses revealed their main enrichment in responses to chemical stimuli, cell proliferation, tissue development, and regulation of cell proliferation. The GO and KEGG results indicated significant enrichment in aldosterone-regulated sodium reabsorption, the cell cycle, and the PPAR signaling pathway. Notably, core genes (CCNA2 and KIF23) were found to be highly expressed in Adenoid Cystic Carcinoma samples and expressed at low levels in normal samples. WB validated the overexpression of CCNA2 and KIF23 in the Adenoid Cystic Carcinoma group, confirming the protein-level changes associated with cell cycle, metastasis, apoptosis, and inflammatory factors in Adenoid Cystic Carcinoma groups with gene overexpression and knockout. CONCLUSIONS CCNA2 and KIF23 exhibit high expression levels in ACC, suggesting their potential role as molecular targets for this malignancy.
Collapse
|
Retracted Publication |
1 |
|