1
|
Brunetti G, Rizzi R, Storlino G, Bortolotti S, Colaianni G, Sanesi L, Lippo L, Faienza MF, Mestice A, Curci P, Specchia G, Grano M, Colucci S. LIGHT/TNFSF14 as a New Biomarker of Bone Disease in Multiple Myeloma Patients Experiencing Therapeutic Regimens. Front Immunol 2018; 9:2459. [PMID: 30405638 PMCID: PMC6206078 DOI: 10.3389/fimmu.2018.02459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
We have previously shown that through the production of high LIGHT levels, immune cells contribute to both osteoclastogenesis and bone destruction in Multiple Myeloma (MM)-related bone disease. With the aim of further exploring the mechanisms underlying the development of MM-related bone disease, here we focused on a possible role of LIGHT in MM patients with active bone disease despite the treatment received. We detected LIGHT over-expression by circulating CD14+ monocytes from MM patients still showing active bone disease, despite the treatment. In addition, we found over-expression of receptor activator of nuclear factor kappa-B ligand (RANKL), whose pro-osteoclastogenic role is well-known, in T-lymphocytes isolated from the same patients. Although the percentages of circulating osteoclast progenitors, CD14+CD16+ monocytes, were higher in all the MM patients than in the controls spontaneous osteoclastogenesis occurred only in the cultures derived from PBMCs of MM patients with unresponsive bone disease. Of note, in the same cultures osteoclastogenesis was partially or completely inhibited, in a dose-dependent manner, by the addition of RANK-Fc or anti-LIGHT neutralizing antibody, demonstrating the contribution of both LIGHT and RANKL to the enhanced osteoclast formation observed. In addition, high serum levels of TRAP5b and CTX, the two markers of osteoclast activity, were detected in MM patients with bone disease not responsive to treatment. In conclusion, our study indicates a prominent role of LIGHT in the crosstalk among osteoclasts and immune cells, co-involved together with RANKL in the pathophysiological mechanisms leading to MM-related bone disease. This TNF superfamily member may thus be a possible new therapeutic target in MM-related bone disease.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
16 |
2
|
Brunetti G, Storlino G, Oranger A, Colaianni G, Faienza MF, Ingravallo G, Di Comite M, Reseland JE, Celi M, Tarantino U, Passeri G, Ware CF, Grano M, Colucci S. LIGHT/TNFSF14 regulates estrogen deficiency-induced bone loss. J Pathol 2020; 250:440-451. [PMID: 31990039 DOI: 10.1002/path.5385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022]
Abstract
Bone loss induced by ovariectomy is due to the direct activity on bone cells and mesenchymal cells and to the dysregulated activity of bone marrow cells, including immune cells and stromal cells, but the underlying mechanisms are not completely known. Here, we demonstrate that ovariectomy induces the T-cell co-stimulatory cytokine LIGHT, which stimulates both osteoblastogenesis and osteoclastogenesis by modulating osteoclastogenic cytokine expression, including TNF, osteoprotegerin, and the receptor activator of nuclear factor-κB ligand (RANKL). Predictably, LIGHT-deficient (Tnfsf14-/- ) mice are protected from ovariectomy-dependent bone loss, whereas trabecular bone mass increases in mice deficient in both LIGHT and T and B lymphocytes (Rag -/- Tnfsf14 -/- ) and is associated with an inversion of the TNF and RANKL/OPG ratio. Furthermore, women with postmenopausal osteoporosis display high levels of LIGHT in circulating T cells and monocytes. Taken together, these results indicate that LIGHT mediates bone loss induced by ovariectomy, suggesting that patients with postmenopausal osteoporosis may benefit from LIGHT antagonism. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
13 |
3
|
Kasperska-Zając A, Damasiewicz-Bodzek A, Grzanka R, Skrzypulec-Frankel A, Bieniek K, Sikora-Żydek A, Jochem J. Circulating soluble LIGHT/TNFSF14 is increased and associated with IL-8 concentration in chronic spontaneous urticaria. Int J Immunopathol Pharmacol 2018; 32:2058738418784431. [PMID: 29952668 PMCID: PMC6073820 DOI: 10.1177/2058738418784431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
LIGHT (homologous to lymphotoxins, exhibiting inducible expression, and competing
with herpes simplex virus (HSV) glycoprotein D for herpes virus entry mediator
(HVEM), a receptor expressed by T lymphocytes) has been involved in various
autoimmune and inflammatory disorders. LIGHT induces the expression of
interleukin-8 (IL-8), which is up-regulated in chronic spontaneous urticaria
(CSU). To determine circulating soluble LIGHT concentration and its relationship
with IL-8 concentration in patients with CSU. Concentrations of LIGHT, IL-8, and
C-reactive protein (CRP) were determined in plasma or serum of CSU patients by
an enzyme-linked immunosorbent assay. LIGHT plasma concentration was
significantly higher in moderate–severe CSU patients as compared with the
healthy subjects, but not with mild CSU patients. There were significant
correlations between increased LIGHT and IL-8 concentrations, but not with
increased CRP in CSU patients. Enhanced plasma concentrations of soluble LIGHT
and its association with IL-8 concentration suggest the role of LIGHT in
systemic inflammatory activation in CSU patients. We hypothesize that
LIGHT-mediated immune–inflammatory response plays a role in severe phenotypes of
the disease.
Collapse
|
Journal Article |
7 |
9 |
4
|
Brunetti G, Faienza MF, Piacente L, Storlino G, Oranger A, D’Amato G, De Filippo G, Colucci S, Grano M. Shedding "LIGHT" on the Link between Bone and Fat in Obese Children and Adolescents. Int J Mol Sci 2020; 21:E4739. [PMID: 32635185 PMCID: PMC7370129 DOI: 10.3390/ijms21134739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity may affect bone health, but literature reports are contradictory about the correlation of body mass index (BMI) and bone markers. LIGHT, one of the immunostimulatory cytokines regulating the homeostasis of bone and adipose tissue, could be involved in obesity. The study involved 111 obese subjects (12.21 ± 3.71 years) and 45 controls. Patients underwent the evaluation of bone status by quantitative ultrasonography (QUS). LIGHT amounts were evaluated in sera by ELISA, whereas its expression on peripheral blood cells was evaluated by flow cytometry. Osteoclastogenesis was performed by culturing peripheral blood mononuclear cells (PBMCs) with or without anti-LIGHT antibodies. Obese patients showed significant high BMI-standard deviation score (SDS), weight-SDS, and Homeostatic model assessment for insulin resistance (HOMA-IR) that negatively correlated with the reduced Amplitude Dependent Speed of Sound (AD-SoS)-Z-score and Bone Transmission Time (BTT-Z)-score. They displayed significantly higher serum levels of LIGHT compared with controls (497.30 ± 363.45 pg/mL vs. 186.06 ± 101.41 pg/mL, p < 0.001). LIGHT expression on monocytes, CD3+-T-cells, and neutrophils was also higher in obese patients than in the controls. Finally, in PBMC cultures, the addition of anti-LIGHT antibodies induced a significant osteoclastogenesis inhibition. Our study highlighted the high serum levels of LIGHT in obese children and adolescents, and its relationship with both the grade of obesity and bone impairment.
Collapse
|
research-article |
5 |
5 |
5
|
LIGHT of pulmonary NKT cells annihilates tissue protective alveolar macrophages in augmenting severe influenza pneumonia. Sci Bull (Beijing) 2021; 66:2124-2134. [PMID: 36654270 DOI: 10.1016/j.scib.2021.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/20/2020] [Accepted: 01/19/2021] [Indexed: 02/03/2023]
Abstract
CD1d-restricted natural killer T (NKT) cells are innate-like T lymphocytes with protective or pathogenic roles in the development of influenza pneumonia. Here, we show that lung-infiltrated and activated NKT cells are the major cellular source of LIGHT/TNFSF14, which determines the severity of pulmonary pneumonia by highly deteriorative influenza A virus (IAV) infection. Compared to wild-type mice, LIGHT-/- mice exhibit much lower morbidity and mortality to IAV, due to alleviated lung damage and reduced apoptosis of alveolar macrophages (AMs). LIGHT preferentially promotes cell death of lymphotoxin β receptors positive (LTβR+) AMs but not herpesvirus entry mediator positive (HVEM+) AMs. Therefore, these results suggest that NKT-derived LIGHT augments cell death of the tissue protective AMs in exacerbating lung pathology and susceptibility to fatal influenza infection. Suppression of LIGHT signaling might be a viable option in the treatment of influenza-associated acute respiratory distress syndrome.
Collapse
|
|
4 |
3 |
6
|
Faienza MF, Brunetti G, Fintini D, Grugni G, Wasniewska MG, Crinò A, D'Amato G, Piacente L, Oranger A, Dicarlo M, Colucci S, Grano M. High levels of LIGHT/TNFSF14 in patients with Prader-Willi syndrome. J Endocrinol Invest 2023:10.1007/s40618-023-02050-2. [PMID: 36917420 PMCID: PMC10371899 DOI: 10.1007/s40618-023-02050-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE/METHODS Prader-Willi syndrome (PWS) is a rare genetic disorder displaying different clinical features, including obesity and bone impairment. LIGHT/TNFSF14 is a cytokine produced by immune cells affecting both fat and bone metabolism. The present study aimed to evaluate LIGHT serum levels in 28 children and 52 adult PWS patients compared to age and sex-matched controls, as well as correlations with parameters of bone and fat metabolism. RESULTS Median serum LIGHT levels were significantly increased in pediatric PWS with respect to controls [255.82 (284.43) pg/ml vs 168.11 (76.23) pg/ml, p ≤ 0.02] as well as in adult PWS compared to controls [296.85 (895.95) pg/ml vs 134.18 (141.18) pg/ml, p ≤ 0.001]. In pediatric PWS, LIGHT levels were positively correlated with weight-SDS, height-SDS, and glucose levels, and negatively with total 25 (OH) vitamin D, cholesterol, LDL cholesterol and triglycerides. Additionally, LIGHT levels were negatively correlated with total BMD and fat mass. In adult PWS, LIGHT levels were positively correlated with weight, HDL cholesterol and PTH, and negatively with glucose, insulin, HOMA-IR, total cholesterol, LDL cholesterol, triglycerides, calcium, phosphorus, 25(OH)Vitamin D as well as with instrumental parameters of bone and fat quality. Consistently, multiple regression analysis showed that LIGHT serum levels in pediatric and adult PWS were predicted by different parameters including 25 (OH) Vitamin D as well as DXA parameters of bone and fat quality. CONCLUSIONS In PWS children and adults the high levels of LIGHT could represent a marker of the altered bone and fat metabolism.
Collapse
|
|
2 |
3 |
7
|
Wang H, Yu Z, Liu S, Liu X, Sui A, Yao R, Luo Z, Li C. Lentivirus-mediated LIGHT overexpression inhibits human colorectal carcinoma cell growth in vitro and in vivo.. Oncol Lett 2013; 6:927-932. [PMID: 24137438 PMCID: PMC3796404 DOI: 10.3892/ol.2013.1505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/11/2013] [Indexed: 01/15/2023] Open
Abstract
Human LIGHT (lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator on T cells) is the 14th member of the tumor necrosis factor (TNF) superfamily and is therefore also known as TNFSF14. LIGHT has been proven to be a multifunctional molecule affecting cell proliferation, differentiation and a number of other biological processes, in particular, cell growth inhibition. However, the expression and molecular mechanisms of the LIGHT gene in human colorectal carcinoma cells remain largely unclear. In the present study, the LIGHT gene was overexpressed using a lentiviral expression vector in HCT116 human colorectal carcinoma cells in vitro and in vivo, in order to explore the mechanism by which the LIGHT gene inhibits cell growth and suppresses tumor formation. The results showed that the recombinant lentivirus with LIGHT overexpression inhibited the proliferative capacity of the HCT116 cells and significantly decreased the xenografted tumor volumes in nude mice. Furthermore, LIGHT treatment effectively initiated increased caspase-3 and decreased Bcl-2 activities in the HCT116 cells. This study provides a basis for the improved understanding of the role and molecular mechanisms of the LIGHT gene in human colorectal carcinoma cells and may facilitate further functional studies of LIGHT.
Collapse
|
Journal Article |
12 |
2 |
8
|
Zhang N, Liu X, Qin J, Sun Y, Xiong H, Lin B, Liu K, Tan B, Zhang C, Huang C, Ren S, Liu M, Du B. LIGHT/TNFSF14 promotes CAR-T cell trafficking and cytotoxicity through reversing immunosuppressive tumor microenvironment. Mol Ther 2023; 31:2575-2590. [PMID: 37408308 PMCID: PMC10491984 DOI: 10.1016/j.ymthe.2023.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) in tumor tissues facilitate immune cell trafficking and cytotoxicity, which benefits survival and favorable responses in immune therapy. Here, we observed a high correlation of tumor necrosis factor superfamily member 14 (LIGHT) expression with TLS signature genes, which are all markers for immune cell accumulation and better prognosis, through retrieving RNA sequencing (RNA-seq) data from patients with cancer, suggesting the potential of LIGHT in reconstituting a high immune-infiltrated tumor microenvironment. Accordingly, LIGHT co-expressed chimeric antigen receptor T (LIGHT CAR-T) cells not only showed enhanced cytotoxicity and cytokine production but also improved CCL19 and CCL21 expression by surrounding cells. And the supernatant of LIGHT CAR-T cells promoted T cell migration in a paracrine manner. Furthermore, LIGHT CAR-T cells showed superior anti-tumor efficacy and improved infiltration in comparison with conventional CAR-T cells in immunodeficient NSG mice. Accordingly, murine LIGHT-OT-1 T cells normalized tumor blood vessels and enforced intratumoral lymphoid structures in C57BL/6 syngeneic tumor mouse models, implying the potential of LIGHT CAR-T in clinical application. Taken together, our data revealed a straightforward strategy to optimize trafficking and cytotoxicity of CAR-T cells by redirecting TLSs through LIGHT expression, which has great potential to expand and optimize the application of CAR-T therapy in solid tumors.
Collapse
|
research-article |
2 |
1 |
9
|
Oranger A, Colaianni G, Ingravallo G, Scarcella VS, Faienza MF, Grano M, Colucci S, Brunetti G. LIGHT/TNFSF14 Affects Adipose Tissue Phenotype. Int J Mol Sci 2024; 25:716. [PMID: 38255789 PMCID: PMC10815871 DOI: 10.3390/ijms25020716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
LIGHT/TNFSF14 is linked to several signaling pathways as a crucial member of a larger immunoregulatory network. It is primarily expressed in inflammatory effector cells, and high levels of LIGHT have been reported in obesity. Thus, with the aim of deepening the knowledge of the role of LIGHT on adipose tissue phenotype, we studied wild-type (WT), Tnfsf14-/-, Rag-/- and Rag-/Tnfsf14- (DKO) mice fed a normal diet (ND) or high-fat diet (HFD). Our results show that, although there is no significant weight gain between the mice with different genotypes, it is significant within each of them. We also detected an increase in visceral White Adipose Tissue (vWAT) weight in all mice fed HFD, together with the lowest levels of vWAT weight in Tnfsf14-/- and DKO mice fed ND with respect to the other strain. Inguinal WAT (iWAT) weight is significantly affected by genotype and HFD. The least amount of iWAT was detected in DKO mice fed ND. Histological analysis of vWAT showed that both the genotype and the diet significantly affect the adipocyte area, whereas the number is affected only by the genotype. In iWAT, the genotype and the diet significantly affect mean adipocyte area and number; interestingly, the area with the least adipocyte was detected in DKO mice fed ND, suggesting a potential browning effect due to the simultaneous lack of mature lymphocytes and LIGHT. Consistently, Uncoupling Protein 1 (UCP1) staining of iWAT demonstrated that few positive brown adipocytes appeared in DKO mice. Furthermore, LIGHT deficiency is associated with greater levels of UCP1, highlighting the lack of its expression in Rag-/- mice. Liver examination showed that all mice fed HFD had a steatotic liver, but it was particularly evident for DKO mice. In conclusion, our study demonstrates that the adipose tissue phenotype is affected by LIGHT levels but also much more by mature lymphocytes.
Collapse
|
research-article |
1 |
|