1
|
Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med 2013; 65:1174-1194. [PMID: 24036104 DOI: 10.1016/j.freeradbiomed.2013.09.001] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 02/07/2023]
Abstract
Production of minute concentrations of superoxide (O2(*-)) and nitrogen monoxide (nitric oxide, NO*) plays important roles in several aspects of cellular signaling and metabolic regulation. However, in an inflammatory environment, the concentrations of these radicals can drastically increase and the antioxidant defenses may become overwhelmed. Thus, biological damage may occur owing to redox imbalance-a condition called oxidative and/or nitrosative stress. A complex interplay exists between iron metabolism, O2(*-), hydrogen peroxide (H2O2), and NO*. Iron is involved in both the formation and the scavenging of these species. Iron deficiency (anemia) (ID(A)) is associated with oxidative stress, but its role in the induction of nitrosative stress is largely unclear. Moreover, oral as well as intravenous (iv) iron preparations used for the treatment of ID(A) may also induce oxidative and/or nitrosative stress. Oral administration of ferrous salts may lead to high transferrin saturation levels and, thus, formation of non-transferrin-bound iron, a potentially toxic form of iron with a propensity to induce oxidative stress. One of the factors that determine the likelihood of oxidative and nitrosative stress induced upon administration of an iv iron complex is the amount of labile (or weakly-bound) iron present in the complex. Stable dextran-based iron complexes used for iv therapy, although they contain only negligible amounts of labile iron, can induce oxidative and/or nitrosative stress through so far unknown mechanisms. In this review, after summarizing the main features of iron metabolism and its complex interplay with O2(*-), H2O2, NO*, and other more reactive compounds derived from these species, the potential of various iron therapies to induce oxidative and nitrosative stress is discussed and possible underlying mechanisms are proposed. Understanding the mechanisms, by which various iron formulations may induce oxidative and nitrosative stress, will help us develop better tolerated and more efficient therapies for various dysfunctions of iron metabolism.
Collapse
|
Review |
12 |
307 |
2
|
Wang YQ, Chang SY, Wu Q, Gou YJ, Jia L, Cui YM, Yu P, Shi ZH, Wu WS, Gao G, Chang YZ. The Protective Role of Mitochondrial Ferritin on Erastin-Induced Ferroptosis. Front Aging Neurosci 2016; 8:308. [PMID: 28066232 PMCID: PMC5167726 DOI: 10.3389/fnagi.2016.00308] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/06/2016] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis, a newly identified form of regulated cell death, is characterized by overwhelming iron-dependent accumulation of lethal lipid reactive oxygen species (ROS). Preventing cellular iron overload by reducing iron uptake and increasing iron storage may contribute to inhibit ferroptosis. Mitochondrial ferritin (FtMt) is an iron-storage protein that is located in the mitochondria, which has a significant role in modulating cellular iron metabolism. Recent studies showed that FtMt played inhibitory effects on oxidative stress-dependent neuronal cell damage. However, the potential role of FtMt in the progress of ferroptosis in neuronal cells has not been studied. To explore this, we established ferroptosis models of cell and drosophila by erastin treatment. We found that overexpression of FtMt in neuroblastoma SH-SY5Y cells significantly inhibited erastin-induced ferroptosis, which very likely was achieved by regulation of iron homeostasis. Upon erastin treatment, significant increases of cellular labile iron pool (LIP) and cytosolic ROS were observed in wild-type SH-SY5Y cells, but not in the FtMt-overexpressed cells. Consistent with that, the alterations of iron-related proteins in FtMt-overexpressed cells were different from that of the control cells. We further investigated the role of FtMt in erastin-induced ferroptosis in transgenic drosophila. We found that the wild-type drosophilas fed an erastin-containing diet didn't survive more than 3 weeks. In contrast, the FtMt overexpressing drosophilas fed the same diet were survival very well. These results indicated that FtMt played a protective role in erastin-induced ferroptosis.
Collapse
|
Journal Article |
9 |
211 |
3
|
Fiebelkorn IC, Pinsk MA, Kastner S. A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention. Neuron 2019; 99:842-853.e8. [PMID: 30138590 DOI: 10.1016/j.neuron.2018.07.038] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/28/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
Classic studies of spatial attention assumed that its neural and behavioral effects were continuous over time. Recent behavioral studies have instead revealed that spatial attention leads to alternating periods of heightened or diminished perceptual sensitivity. Yet, the neural basis of these rhythmic fluctuations has remained largely unknown. We show that a dynamic interplay within the macaque frontoparietal network accounts for the rhythmic properties of spatial attention. Neural oscillations characterize functional interactions between the frontal eye fields (FEF) and the lateral intraparietal area (LIP), with theta phase (3-8 Hz) coordinating two rhythmically alternating states. The first is defined by FEF-dominated beta-band activity, associated with suppressed attentional shifts, and LIP-dominated gamma-band activity, associated with enhanced visual processing and better behavioral performance. The second is defined by LIP-specific alpha-band activity, associated with attenuated visual processing and worse behavioral performance. Our findings reveal how network-level interactions organize environmental sampling into rhythmic cycles.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
196 |
4
|
LEVIN ML, GOLDSTEIN H, GERHARDT PR. Cancer and tobacco smoking; a preliminary report. JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION 1950; 143:336-8. [PMID: 15415261 DOI: 10.1001/jama.1950.02910390008002] [Citation(s) in RCA: 169] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
|
75 |
169 |
5
|
ARCHARD HO, HECK JW, STANLEY HR. FOCAL EPITHELIAL HYPERPLASIA: AN UNUSUAL ORAL MUCOSAL LESION FOUND IN INDIAN CHILDREN. ACTA ACUST UNITED AC 1996; 20:201-12. [PMID: 14322615 DOI: 10.1016/0030-4220(65)90192-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
Journal Article |
29 |
132 |
6
|
Abstract
Decisions are often made by accumulating evidence for and against the alternatives. The momentary evidence represented by sensory neurons is accumulated by downstream structures to form a decision variable, linking the evolving decision to the formation of a motor plan. When decisions are communicated by eye movements, neurons in the lateral intraparietal area (LIP) represent the accumulation of evidence bearing on the potential targets for saccades. We now show that reach-related neurons from the medial intraparietal area (MIP) exhibit a gradual modulation of their firing rates consistent with the representation of an evolving decision variable. When decisions were communicated by saccades instead of reaches, decision-related activity was attenuated in MIP, whereas LIP neurons were active while monkeys communicated decisions by saccades or reaches. Thus, for decisions communicated by a hand movement, a parallel flow of sensory information is directed to parietal areas MIP and LIP during decision formation.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
108 |
7
|
Chaisangmongkon W, Swaminathan SK, Freedman DJ, Wang XJ. Computing by Robust Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions. Neuron 2017; 93:1504-1517.e4. [PMID: 28334612 DOI: 10.1016/j.neuron.2017.03.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/30/2016] [Accepted: 02/27/2017] [Indexed: 10/19/2022]
Abstract
Decision making involves dynamic interplay between internal judgements and external perception, which has been investigated in delayed match-to-category (DMC) experiments. Our analysis of neural recordings shows that, during DMC tasks, LIP and PFC neurons demonstrate mixed, time-varying, and heterogeneous selectivity, but previous theoretical work has not established the link between these neural characteristics and population-level computations. We trained a recurrent network model to perform DMC tasks and found that the model can remarkably reproduce key features of neuronal selectivity at the single-neuron and population levels. Analysis of the trained networks elucidates that robust transient trajectories of the neural population are the key driver of sequential categorical decisions. The directions of trajectories are governed by network self-organized connectivity, defining a "neural landscape" consisting of a task-tailored arrangement of slow states and dynamical tunnels. With this model, we can identify functionally relevant circuit motifs and generalize the framework to solve other categorization tasks.
Collapse
|
Journal Article |
8 |
101 |
8
|
|
Journal Article |
29 |
62 |
9
|
WITKOP CJ, NISWANDER JD. FOCAL EPITHELIAL HYPERPLASIA IN CENTRAL AND SOUTH AMERICAN INDIANS AND LADINOS. ACTA ACUST UNITED AC 1996; 20:213-7. [PMID: 14319596 DOI: 10.1016/0030-4220(65)90193-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
Journal Article |
29 |
62 |
10
|
|
|
61 |
56 |
11
|
PINDBORG JJ, CHAWLA TN, SRIVASTAVA AN, GUPTA D, MEHROTRA ML. CLINICAL ASPECTS OF ORAL SUBMUCOUS FIBROSIS. Acta Odontol Scand 1964; 22:679-91. [PMID: 14280849 DOI: 10.3109/00016356409058581] [Citation(s) in RCA: 51] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
Journal Article |
61 |
51 |
12
|
Maglione PJ, Ko HM, Beasley MB, Strauchen JA, Cunningham-Rundles C. Tertiary lymphoid neogenesis is a component of pulmonary lymphoid hyperplasia in patients with common variable immunodeficiency. J Allergy Clin Immunol 2013; 133:535-42. [PMID: 24131823 DOI: 10.1016/j.jaci.2013.08.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/09/2013] [Accepted: 08/16/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Despite reducing pneumonia and other infections, antibody replacement does not appear to treat pulmonary lymphoid hyperplasia (PLH) in patients with common variable immunodeficiency (CVID). The pathogenesis and optimal treatments remain to be clarified. OBJECTIVE We aimed to better understand the pathology of CVID-associated lung disease. Tertiary lymphoneogenesis, although a component of interstitial lung disease associated with autoimmune diseases, has not previously been explored in patients with CVID. METHODS We examined the clinical characteristics and pathologic findings of 6 patients with CVID with nodular/infiltrative lung disease who had biopsy specimens demonstrating PLH. RESULTS In these subjects regions of PLH contained distinct B- and T-cell zones, with B-cell predominance in 1 patient and T-cell predominance in the others. Colocalization of Ki67, Bcl6, and CD23 within this ectopic lymphoid architecture demonstrated tertiary lymphoneogenesis with active centers of cellular proliferation. One patient received rituximab with improved pulmonary radiologic findings. CONCLUSION Ectopic lymphoid tissue forming germinal centers suggest tertiary lymphoneogenesis in CVID-associated lung disease. B cell-targeted therapy might disrupt CVID-associated lymphoid hyperplasia.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
46 |
13
|
Hart E, Huk AC. Recurrent circuit dynamics underlie persistent activity in the macaque frontoparietal network. eLife 2020; 9:e52460. [PMID: 32379044 PMCID: PMC7205463 DOI: 10.7554/elife.52460] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/23/2020] [Indexed: 01/28/2023] Open
Abstract
During delayed oculomotor response tasks, neurons in the lateral intraparietal area (LIP) and the frontal eye fields (FEF) exhibit persistent activity that reflects the active maintenance of behaviorally relevant information. Despite many computational models of the mechanisms of persistent activity, there is a lack of circuit-level data from the primate to inform the theories. To fill this gap, we simultaneously recorded ensembles of neurons in both LIP and FEF while macaques performed a memory-guided saccade task. A population encoding model revealed strong and symmetric long-timescale recurrent excitation between LIP and FEF. Unexpectedly, LIP exhibited stronger local functional connectivity than FEF, and many neurons in LIP had longer network and intrinsic timescales. The differences in connectivity could be explained by the strength of recurrent dynamics in attractor networks. These findings reveal reciprocal multi-area circuit dynamics in the frontoparietal network during persistent activity and lay the groundwork for quantitative comparisons to theoretical models.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
45 |
14
|
Fan Y, Zhang J, Cai L, Wang S, Liu C, Zhang Y, You L, Fu Y, Shi Z, Yin Z, Luo L, Chang Y, Duan X. The effect of anti-inflammatory properties of ferritin light chain on lipopolysaccharide-induced inflammatory response in murine macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2775-83. [PMID: 24983770 DOI: 10.1016/j.bbamcr.2014.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
Ferritin light chain (FTL) reduces the free iron concentration by forming ferritin complexes with ferritin heavy chain (FTH). Thus, FTL competes with the Fenton reaction by acting as an antioxidant. In the present study, we determined that FTL influences the lipopolysaccharide (LPS)-induced inflammatory response. FTL protein expression was regulated by LPS stimulation in RAW264.7 cells. To investigate the role of FTL in LPS-activated murine macrophages, we established stable FTL-expressing cells and used shRNA to silence FTL expression in RAW264.7 cells. Overexpression of FTL significantly decreased the LPS-induced production of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, overexpression of FTL decreased the LPS-induced increase of the intracellular labile iron pool (LIP) and reactive oxygen species (ROS). Moreover, FTL overexpression suppressed the LPS-induced activation of MAPKs and nuclear factor-κB (NF-κB). In contrast, knockdown of FTL by shRNA showed the reverse effects. Therefore, our results indicate that FTL plays an anti-inflammatory role in response to LPS in murine macrophages and may have therapeutic potential for treating inflammatory diseases.
Collapse
|
Journal Article |
11 |
41 |
15
|
Piloni NE, Fermandez V, Videla LA, Puntarulo S. Acute iron overload and oxidative stress in brain. Toxicology 2013; 314:174-82. [PMID: 24120471 DOI: 10.1016/j.tox.2013.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/09/2013] [Accepted: 09/30/2013] [Indexed: 12/11/2022]
Abstract
An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A)/ascorbate (AH(-)) ratio, taken as oxidative stress index, was assessed. The A/AH(-) ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6h after Fe administration. CAT activity was significantly increased after 8h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR generation rate after 6h of Fe overload. This information has potential clinical relevance, as it could be the key to understand specific brain damage occurring in conditions of Fe overload.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
41 |
16
|
Della Latta V, Cabiati M, Rocchiccioli S, Del Ry S, Morales MA. The role of the adenosinergic system in lung fibrosis. Pharmacol Res 2013; 76:182-9. [PMID: 23994158 DOI: 10.1016/j.phrs.2013.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/05/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022]
Abstract
Adenosine (ADO) is a retaliatory metabolite that is expressed in conditions of injury or stress. During these conditions ATP is released at the extracellular level and is metabolized to adenosine. For this reason, adenosine is defined as a "danger signal" for cells and organs, in addition to its important role as homeostatic regulator. Its physiological functions are mediated through interaction with four specific transmembrane receptors called ADORA1, ADORA2A, ADORA2B and ADORA3. In the lungs of mice and humans all four adenosine receptors are expressed with different roles, having pro- and anti-inflammatory roles, determining bronchoconstriction and regulating lung inflammation and airway remodeling. Adenosine receptors can also promote differentiation of lung fibroblasts into myofibroblasts, typical of the fibrotic event. This last function suggests a potential involvement of adenosine in the fibrotic lung disease processes, which are characterized by different degrees of inflammation and fibrosis. Idiopathic pulmonary fibrosis (IPF) is the pathology with the highest degree of fibrosis and is of unknown etiology and burdened by lack of effective treatments in humans.
Collapse
Key Words
- 1-deoxy-1,6[[(3-iodophenyl)methyl]amino]-9H-purin-9yl-N-methyl-B-d-ribofuronamide
- 1-propyl-8-p-sulfophenulxanthine
- 2 hexynyl-5′-N ethylcarboxamidoadenosine
- 2-(2-phenyl)ethynyl-N-ethylcarboxamido-adenosine
- 2-CI-IB MECA
- 2-chloro-N6-cyclopentyladenosine
- 2-cloro-N6-(3-iodobenzyl)-adenosine-50-N methyluronamide
- 2-methyl-6-phenyl-4-phenylethynyl-1,4-dihydro-pyridine-3,5-dicarboxylicacid-3-ethyl ester-5-(4-nitro-benzyl)ester
- 2-p-(2-carboxyethyl) phenethylamino-50-N-ethyl-carboxamidoadenosine
- 2-phenyl hydroxypropynyl-5′-N-ethylcarboxamido adenosine phosphoinositide 3
- 3-ethyl-1-propyl-8-(1-(3-(trifluoromethyl) benzyl)-1H-pyrazol-4-yl)-1H-purine-2,6(3H,7H)-dione
- 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate
- 3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridinecarboxylate
- 4-(2-[7-amino-2-(2-furyl)-{1,2,4}-triazolo{2,3-a}{1,3,5}triazin-5-ylamino]ethyl)pieno
- 5-[[(4-methoxyphenyl)amino]carbonyl]amino-8-methyl-2-(2-furyl)pyra-zolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine
- 7-methyl-[11C]-(E)-8-(3-bromostyryl)-3,7-dimethyl-1-propargylxanthin
- 8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]oxy]phenyl]-l,3-dipropylxanthine
- 8-cyclopentyl-1,3-dipropylxanthine
- 9-chloro-2-(2-furanyl)-5-[(phenylacetyl) amino] [1,2,4]-triazolo[1,5-c]quinazoline
- 9-chloro-2-(2-furanyl)-[1,2,4]triazolo[1,5-c]quinazolin-5-amine
- A(1)R
- A(2A)R
- A(2B)R
- A(3)R
- AB-MECA
- ADA
- ADO
- ADORA 1 receptor
- ADORA 2A receptor
- ADORA 2B receptor
- ADORA 3 receptor
- ADP
- AIP
- AK
- AMP
- ARs
- ATP
- Adenosine
- Adenosine receptors
- Bleomycin
- CCPA
- CD39
- CD73
- CGS 15943
- CGS21680
- CHA
- CNS
- CNT-1
- CNT-2
- COP
- COPD
- CPA
- CVT6883
- DAG
- DIP
- DPCPX
- E-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine
- ECM
- ENT-1
- ENT-2
- ET-1
- FITC
- HE-NECA
- IB-MECA
- IIPs
- ILD
- INO
- IPF
- Idiopathic pulmonary fibrosis
- KF17837
- LIP
- Lung disease
- MAP
- MRE3008-F207
- MRS 1191
- MRS 1220
- MRS 1334
- MRS 1523
- MRS 1754
- N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)-phenoxy]acetamide
- N-ethylcarboxamido-adenosine
- N6-(2-phenylisopropyl)adenosine
- N6-(4-aminobenzyl)-adenosine-5′-N-methyluronamidedihydrochloride
- N6-cyclohexyl adenosine
- N6-cyclopentyladenosine
- NECA
- NSPI
- PAH
- PENECA
- PHPNECA
- PIA
- PKC
- PLA2
- PLC
- PLD
- PSB1115
- RB-ILD
- ROS
- SCH-58261
- UIP
- XAC
- ZM 241385
- [11C]BS-DMPX
- [7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-(4,3-e)-1,2,4-triazolo(1,5-c) pyrimidine]
- acute interstitial pneumonia
- adenosine
- adenosine deaminase
- adenosine diphosphate
- adenosine kinase
- adenosine monophosphate
- adenosine receptors
- adenosine triphosphate
- cAMP
- central nervous system
- chronic obstructive pulmonary diseases
- concentrative nucleoside transporters-1
- concentrative nucleoside transporters-2
- cryptogenic organizing pneumonia
- cyclic adenosine monophosphate
- desquamative interstitial pneumonia
- diacylglycerol
- ecto-5′-nucleotidase
- ectonucleoside triphosphate diphosphohydrolase
- endothelin 1
- equilibrative nucleoside transporters-1
- equilibrative nucleoside transporters-2
- extracellular matrix
- fluorescein isothiocyanate
- idiopathic interstitial pneumonias
- idiopathic pulmonary fibrosis
- inosine
- interstitial lung disease
- lymphocytic interstitial pneumonia
- mitogen-activated protein
- nonspecific interstitial pneumonia
- phospholipase A2
- phospholipase C
- phospholipase D
- protein kinase C
- pulmonary arterial hypertension
- reactive oxygen specie
- respiratory bronchiolitis-associated interstitial lung disease
- usual interstitial pneumonia
Collapse
|
Review |
12 |
34 |
17
|
|
Journal Article |
29 |
32 |
18
|
ANDREASEN JO. ORAL MANIFESTATIONS IN DISCOID AND SYSTEMIC LUPUS ERYTHEMATOSUS. I. CLINICAL INVESTIGATION. Acta Odontol Scand 1964; 22:295-310. [PMID: 14197662 DOI: 10.3109/00016356409028206] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
61 |
31 |
19
|
Abstract
Parietal cortex is central to spatial cognition. Lesions of parietal cortex often lead to hemispatial neglect, an impairment of choices of targets in space. It has been unclear whether parietal cortex implements target choice at the general cognitive level, or whether parietal cortex subserves the choice of targets of particular actions. To address this question, monkeys engaged in choice tasks in two distinct action contexts--eye movements and arm movements. We placed focused reversible lesions into specific parietal circuits using the GABAA receptor agonist muscimol and validated the lesion placement using MRI. We found that lesions on the lateral bank of the intraparietal sulcus [lateral intraparietal area (LIP)] specifically biased choices made using eye movements, whereas lesions on the medial bank of the intraparietal sulcus [parietal reach region (PRR)] specifically biased choices made using arm movements. This double dissociation suggests that target choice is implemented in dedicated parietal circuits in the context of specific actions. This finding emphasizes a motor role of parietal cortex in spatial choice making and contributes to our understanding of hemispatial neglect.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
27 |
20
|
Mirpour K, Bisley JW. Remapping, Spatial Stability, and Temporal Continuity: From the Pre-Saccadic to Postsaccadic Representation of Visual Space in LIP. Cereb Cortex 2015; 26:3183-95. [PMID: 26142462 DOI: 10.1093/cercor/bhv153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As our eyes move, we have a strong percept that the world is stable in space and time; however, the signals in cortex coming from the retina change with each eye movement. It is not known how this changing input produces the visual percept we experience, although the predictive remapping of receptive fields has been described as a likely candidate. To explain how remapping accounts for perceptual stability, we examined responses of neurons in the lateral intraparietal area while animals performed a visual foraging task. When a stimulus was brought into the response field of a neuron that exhibited remapping, the onset of the postsaccadic representation occurred shortly after the saccade ends. Whenever a stimulus was taken out of the response field, the presaccadic representation abruptly ended shortly after the eyes stopped moving. In the 38% (20/52) of neurons that exhibited remapping, there was no more than 30 ms between the end of the presaccadic representation and the start of the postsaccadic representation and, in some neurons, and the population as a whole, it was continuous. We conclude by describing how this seamless shift from a presaccadic to postsaccadic representation could contribute to spatial stability and temporal continuity.
Collapse
|
Journal Article |
10 |
23 |
21
|
Pang Y, Li C, Wang S, Ba W, Yu T, Pei G, Bi D, Liang H, Pan X, Zhu T, Gou M, Han Y, Li Q. A novel protein derived from lamprey supraneural body tissue with efficient cytocidal actions against tumor cells. Cell Commun Signal 2017; 15:42. [PMID: 29037260 PMCID: PMC5644163 DOI: 10.1186/s12964-017-0198-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/05/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND In previous research, we found that cell secretion from the adult lamprey supraneural body tissues possesses cytocidal activity against tumor cells, but the protein with cytocidal activity was unidentified. METHODS A novel lamprey immune protein (LIP) as defense molecule was first purified and identified in jawless vertebrates (cyclostomes) using hydroxyapatite column and Q Sepharose Fast Flow column. After LIP stimulation, morphological changes of tumor cells were analysed and measured whether in vivo or in vitro. RESULTS LIP induces remarkable morphological changes in tumor cells, including cell blebbing, cytoskeletal alterations, mitochondrial fragmentation and endoplasmic reticulum vacuolation, and most of the cytoplasmic and organelle proteins are released following treatment with LIP. LIP evokes an elevation of intracellular calcium and inflammatory molecule levels. Our analysis of the cytotoxic mechanism suggests that LIP can upregulate the expression of caspase 1, RIPK1, RIP3 to trigger pyroptosis and necroptosis. To examine the effect of LIP in vivo, tumor xenograft experiments were performed, and the results indicated that LIP inhibits tumor growth without damage to mice. In addition, the cytotoxic action of LIP depended on the phosphatidylserine (PS) content of the cell membrane. CONCLUSIONS These observations suggest that LIP plays a crucial role in tumor cell survival and growth. The findings will also help to elucidate the mechanisms of host defense in lamprey.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
23 |
22
|
Smith MJ, Fowler M, Naftalin RJ, Siow RCM. UVA irradiation increases ferrous iron release from human skin fibroblast and endothelial cell ferritin: Consequences for cell senescence and aging. Free Radic Biol Med 2020; 155:49-57. [PMID: 32387586 DOI: 10.1016/j.freeradbiomed.2020.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
UVA irradiation of human dermal fibroblasts and endothelial cells induces an immediate transient increase in cytosolic Fe(II), as monitored by the fluorescence Fe(II) reporters, FeRhonox1 in cytosol and MitoFerroGreen in mitochondria. Both superoxide dismutase (SOD) inhibition by tetrathiomolybdate (ATM) and catalase inhibition by 3-amino-1, 2, 4-triazole (ATZ) increase and prolong the cytosolic Fe(II) signal after UVA irradiation. SOD inhibition with ATM also increases mitochondrial Fe(II). Thus, mitochondria do not source the UV-dependent increase in cytosolic Fe(II), but instead reflect and amplify raised cytosolic labile Fe(II) concentration. Hence control of cytosolic ferritin iron release is key to preventing UVA-induced inflammation. UVA irradiation also increases dermal endothelial cell H2O2, as monitored by the adenovirus vector Hyper-DAAO-NES(HyPer). These UVA-dependent changes in intracellular Fe(II) and H2O2 are mirrored by increases in cell superoxide, monitored with the luminescence probe L-012. UV-dependent increases in cytosolic Fe(II), H2O2 and L-012 chemiluminescence are prevented by ZnCl2 (10 μM), an effective inhibitor of Fe(II) transport via ferritin's 3-fold channels. Quercetin (10 μM), a potent membrane permeable Fe(II) chelator, abolishes the cytosolic UVA-dependent FeRhonox1, Fe(II) and HyPer, H2O2 and increase in MitoFerroGreen Fe(II) signals. The time course of the quercetin-dependent decrease in endothelial H2O2 correlates with the decrease in FeRhox1 signal and both signals are fully suppressed by preloading cells with ZnCl2. These results confirm that antioxidant enzyme activity is the key factor in controlling intracellular iron levels, and hence maintenance of cell antioxidant capacity is vitally important in prevention of skin aging and inflammation initiated by labile iron and UVA.
Collapse
|
|
5 |
21 |
23
|
Abstract
Recordings in the lateral intraparietal area (LIP) reveal that parietal cortex encodes variables related to spatial decision-making, the selection of desirable targets in space. It has been unclear whether parietal cortex is involved in spatial decision-making in general, or whether specific parietal compartments subserve decisions made using specific actions. To test this, we engaged monkeys (Macaca mulatta) in a reward-based decision task in which they selected a target based on its desirability. The animals' choice behavior in this task followed the molar matching law, and in each trial was governed by the desirability of the choice targets. Critically, animals were instructed to make the choice using one of two actions: eye movements (saccades) and arm movements (reaches). We recorded the discharge activity of neurons in area LIP and the parietal reach region (PRR) of the parietal cortex. In line with previous studies, we found that both LIP and PRR encode a reward-based decision variable, the target desirability. Crucially, the target desirability was encoded in LIP at least twice as strongly when choices were made using saccades compared with reaches. In contrast, PRR encoded target desirability only for reaches and not for saccades. These data suggest that decisions can evolve in dedicated parietal circuits in the context of specific actions. This finding supports the hypothesis of an intentional representation of developing decisions in parietal cortex. Furthermore, the close link between the cognitive (decision-related) and bodily (action-related) processes presents a neural contribution to the theories of embodied cognition.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
21 |
24
|
Fiebelkorn IC, Kastner S. Spike Timing in the Attention Network Predicts Behavioral Outcome Prior to Target Selection. Neuron 2020; 109:177-188.e4. [PMID: 33098762 DOI: 10.1016/j.neuron.2020.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/08/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
There has been little evidence linking changes in spiking activity that occur prior to a spatially predictable target (i.e., prior to target selection) to behavioral outcomes, despite such preparatory changes being widely assumed to enhance the sensitivity of sensory processing. We simultaneously recorded from frontal and parietal nodes of the attention network while macaques performed a spatial cueing task. When anticipating a spatially predictable target, different patterns of coupling between spike timing and the oscillatory phase in local field potentials-but not changes in spike rate-were predictive of different behavioral outcomes. These behaviorally relevant differences in local and between-region synchronization occurred among specific cell types that were defined based on their sensory and motor properties, providing insight into the mechanisms underlying enhanced sensory processing prior to target selection. We propose that these changes in neural synchronization reflect differential anticipatory engagement of the network nodes and functional units that shape attention-related sampling.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
19 |
25
|
Huk AC, Meister MLR. Neural correlates and neural computations in posterior parietal cortex during perceptual decision-making. Front Integr Neurosci 2012; 6:86. [PMID: 23087623 PMCID: PMC3467999 DOI: 10.3389/fnint.2012.00086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/11/2012] [Indexed: 11/13/2022] Open
Abstract
A recent line of work has found remarkable success in relating perceptual decision-making and the spiking activity in the macaque lateral intraparietal area (LIP). In this review, we focus on questions about the neural computations in LIP that are not answered by demonstrations of neural correlates of psychological processes. We highlight three areas of limitations in our current understanding of the precise neural computations that might underlie neural correlates of decisions: (1) empirical questions not yet answered by existing data; (2) implementation issues related to how neural circuits could actually implement the mechanisms suggested by both extracellular neurophysiology and psychophysics; and (3) ecological constraints related to the use of well-controlled laboratory tasks and whether they provide an accurate window on sensorimotor computation. These issues motivate the adoption of a more general "encoding-decoding framework" that will be fruitful for more detailed contemplation of how neural computations in LIP relate to the formation of perceptual decisions.
Collapse
|
review-article |
13 |
18 |