Sepehr A, Aghamohammad S, Ghanavati R, Bavandpour AK, Talebi M, Rohani M, Pourshafie MR. The inhibitory effects of the novel
Lactobacillus cocktail on colorectal cancer development through modulating BMP signaling pathway:
In vitro and in
vivo study.
Heliyon 2024;
10:e36554. [PMID:
39281652 PMCID:
PMC11402137 DOI:
10.1016/j.heliyon.2024.e36554]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
This study investigates the impact of a five-strain Lactobacillus cocktail (comprising two strains of L. plantarum, and one strain each of L. brevis, L. reuteri, and L. rhamnosus) on colorectal cancer (CRC) modulation by targeting the bone morphogenetic proteins (BMP) signaling pathway. Both in vitro and in vivo (models were employed. The antiproliferative effects of the Lactobacillus cocktail on HT-29 cells were assessed via the MTT assay. Mice were divided into three groups: a negative control (treated with PBS), a positive control (treated with azoxymethane (AOM)/dextran sulfate sodium (DSS) + PBS), and a test group (treated with AOM/DSS + Lactobacillus cocktail in PBS). The role of the Lactobacillus cocktail in inhibiting the BMP signaling pathway was evaluated using qRT-PCR for gene expression analysis and western blotting for β-catenin protein assessment in both models. The MTT assay results demonstrated a significant, time-dependent reduction in HT-29 cell proliferation. qRT-PCR indicated downregulation of the BMP signaling pathway in treated cells, which subsequently led to decreased expression of the hes1 gene, crucial for cell differentiation and proliferation control. This inhibitory effect was corroborated in the mice model, showing significant downregulation of BMP pathway genes and hes1 in the AOM/DSS/Lactobacillus cocktail-treated group. Additionally, western blotting revealed a marked decrease in β-catenin expression in both in vitro and in vivo experiments. Collectively, these findings suggest that the Lactobacillus cocktail may aid in CRC prevention by downregulating the BMP signaling pathway.
Collapse