1
|
Shi M, Kong D, Zhang H, Rao D, Zhao T, Yang J, Liu Z, Chen S, Zhang F, Wu J, Wang L. Enhancing the heterologous expression of latex clearing protein from Streptomyces sp. strain K30 in Escherichia coli through fermentation condition optimization and molecular modification. Int J Biol Macromol 2024; 254:127995. [PMID: 37949282 DOI: 10.1016/j.ijbiomac.2023.127995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Latex clearing protein from Streptomyces sp. strain K30 (LcpK30) is a natural oxidoreductase that can catalyse the cleavage of rubber through dioxygenation. It has significant potential applications in polymer degradation. However, its limited expression in engineered strains restricts its utility. This study aimed to enhance the soluble expression and enzyme activity of LcpK30 in E. coli BL21 (DE3) by optimizing fermentation conditions and making molecular modifications. The enzyme activity reached 5.05 U·mL-1 by optimizing the induction conditions, adding cofactors, and using chemical chaperones, which was 237.1 % of the initial case. Further enhancements in soluble expression were achieved through site mutations guided by the PROSS server, resulting in 8 out of 13 mutants with increased protein expression, a high positive mutation rate of 61.5 %. Subsequently, combined mutants were created by merging single mutants with enhanced protein expression and enzyme activity. The top three double mutants, G91D/S149A, G91D/A210H, and G91D/H296P, displayed expression levels at 173.3 %, 173.3 %, and 153.3 % of the wild-type LcpK30, respectively. These mutants also exhibited enhanced fermentation enzyme activity, reaching 149.5 %, 250.0 %, and 420.2 % compared to the wild-type, along with improved specific activities. This study provides insights for the efficient production of LcpK30 and a practical foundation for its application.
Collapse
|
2
|
Andler R, Guajardo C, Sepúlveda C, Pino V, Sanhueza V, D'Afonseca V. Biodegradation of rubber in cultures of Rhodococcus rhodochrous and by its enzyme latex clearing protein. Biodegradation 2022; 33:609-620. [PMID: 36197531 DOI: 10.1007/s10532-022-09998-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
Abstract
The biodegradation of rubber materials is considered as a sustainable recycling alternative, highlighting the use of microorganisms and enzymes in oxidative processes of natural rubber. Currently, the main challenge is the treatment of rubber materials such as waste tyres, where the mixture of rubber polymers with different additives and the cross-linked structure obtained due to the vulcanisation process positions them as highly persistent materials. This study characterises the degradation of different rubber-containing substrates in in vivo and in vitro processes using the bacterium Rhodococcus rhodochrous and the oxygenase latex clearing protein (Lcp) from the same strain. For the first time, the degradation of polyisoprene particles in liquid cultures of R. rhodochrous was analysed, obtaining up to 19.32% mass loss of the polymer when using it as the only carbon source. Scanning electron microscopy analysis demonstrated surface alteration of pure polyisoprene and vulcanised rubber particles after 2 weeks of incubation. The enzyme LcpRR was produced in bioreactors under rhamnose induction and its activity characterised in oxygen consumption assays at different enzyme concentrations. A maximum consumption of 28.38 µmolO2/min was obtained by adding 100 µg/mL LcpRR to a 2% (v/v) latex emulsion as substrate. The bioconversion of natural rubber into reaction degradation products or oligoisoprenoids was calculated to be 32.54%. Furthermore, the mass distribution of the oligoisoprenoids was analysed by liquid chromatography coupled to mass spectrometry (LC-MS) and 17 degradation products, ranging from C20 to C100 oligoisoprenoids, were identified. The multi-enzymatic degradation capacity of R. rhodochrous positions it as a model microorganism in complex degradation processes such as in the case of tyre waste.
Collapse
|
3
|
Altenhoff AL, Thierbach S, Steinbüchel A. In vitro studies on the degradation of common rubber waste material with the latex clearing protein (Lcp1 VH2) of Gordonia polyisoprenivorans VH2. Biodegradation 2021; 32:113-125. [PMID: 33677743 DOI: 10.1007/s10532-020-09920-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
The enzymatic degradation of the rubber polymer poly(cis-1,4-isoprene), e.g. by the latex clearing protein Lcp1VH2 of Gordonia polyisoprenivorans VH2 has been demonstrated with latex milk or pure isoprene-rubber particles, recently. Unfortunately, carbon black filled vulcanized rubber (CFVR) making the biggest part of worldwide rubber wastes, contains several harmful additives making microbial and enzymatic rubber degradation challenging. However, this study demonstrates the successful enzymatic cleavage of industrially produced CFVR. The formation of the cleavage products, oligo(cis-1,4-isoprenoids), from incubating CFVR particles with Lcp1VH2 was detected by HPLC-MS. Various organic solvents were tested to remove harmful or inhibiting additives like antioxidants to enhance product formation. The pretreatment of CFVR particles, especially with chloroform or cyclohexane, significantly improved the degradation. It was also demonstrated that reducing the particles size and thus increasing the enzymatically accessible surface area of the particles led to a strong acceleration of the degradation process. Furthermore, ATR-IR analyses showed that Lcp1VH2 led to the functionalization of the rubber particle surface with carbonyl groups by cleaving isoprene chains, still linked to the particle. Both, the oligo(cis-1,4-isoprenoids) as well as the functionalized rubber particles, are potentially important products, which can be reused as fine chemicals or as additives in rubber production. The present study, showing the enzymatic degradation of common CFVR for the first time, takes an important step towards a new way of rubber waste disposal and indicates the economic feasibility of an efficient and environmentally friendly recycling process by using the rubber oxygenase Lcp1VH2.
Collapse
|
4
|
High yield production of the latex clearing protein from Gordonia polyisoprenivorans VH2 in fed batch fermentations using a recombinant strain of Escherichia coli. J Biotechnol 2019; 309:92-99. [PMID: 31881242 DOI: 10.1016/j.jbiotec.2019.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/23/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
The enzymatic degradation of rubber with the latex clearing protein (Lcp1VH2) from Gordonia polyisoprenivorans VH2, is a promising option as an environmentally friendly and economical solution to treat the enormous amount of rubber waste. Here we present a fed batch fermentation process on a 10 L scale, using E.coli C41 pET23a(+)::Hislcp1VH2 and a modified defined mineral salt medium, designed for high cell densities, for a proper synthesis of Lcp1VH2. Particularly, providing complex media components, as well as hemin, as precursor of the essential heme b cofactor, resulted in a 2.9-fold higher yield of active Lcp1VH2 with increased specific activity, due to a better occupancy of the enzyme with the cofactor. Based on this optimization, the fed batch fermentation with an initial glucose feed, followed by a lactose-glycerol feed, finally gained a cell dry weight of 60 g L-1 and a yield of 223 mg L-1 of soluble, active Lcp1VH2. Compared to a recently published fermentation process, which used a complex auto-induction medium, we significantly increased the biomass up to nearly 10-fold and the total Lcp1VH2 yield up to 3.7-fold. Thereby we reduced the costs for the medium by 75 %, taking the next step towards industrial production of rubber degrading enzymes.
Collapse
|
5
|
Coenen A, Oetermann S, Steinbüchel A. Identification of LcpRB A3(2), a novel regulator of lcp expression in Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2019; 103:5715-5726. [PMID: 31119350 DOI: 10.1007/s00253-019-09896-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
Streptomyces coelicolor A3(2) is a rubber-degrading actinomycete that harbors one gene coding for a latex clearing protein (lcpA3(2)). Within the genome of S. coelicolor A3(2), we identified a gene coding for a novel protein of the TetR family (LcpRBA3(2)) downstream of lcpA3(2) and demonstrated its binding upstream of lcpA3(2). This indicates a role of LcpRBA3(2) in the regulation of lcp expression. LcpRBA3(2) shows no homology to LcpRVH2, a putative regulator of lcp expression in Gordonia polyisoprenivorans VH2. Additionally, LcpRVH2 homologs did not occur in the genome of S. coelicolor A3(2). Reverse transcriptase (RT) experiments showed that the expression of lcpA3(2) and lcpRBA3(2) is induced with poly(cis-1,4-isoprene) as sole carbon source. For further experiments, we heterologously expressed lcpRBA3(2) in Escherichia coli, purified the protein, and subsequently verified a binding of LcpRBA3(2) upstream of lcpA3(2). The operator site was examined by a DNase I footprinting assay: it comprises 31 bp and exhibits an inverted repeat of nine bases for the putative binding region. Interestingly, two N-terminal DNA-binding HTH domains of the TetR-type (PF00440) were identified within the sequence of LcpRBA3(2). The native molecular weight of LcpRBA3(2) was determined as 44 kDa by size exclusion chromatography which correlates to the molecular weight of a monomer. Normally, proteins of the TetR family occur as dimers so that the monomeric state is a novelty. Furthermore, LcpRBA3(2) homologs were identified in silico in several Lcp-containing actinomycetes, suspecting a conserved regulation mechanism. Apparently, the expression of lcps is regulated either by an LcpRB or by an LcpR.
Collapse
|
6
|
Oetermann S, Jongsma R, Coenen A, Keller J, Steinbüchel A. LcpRVH2 - regulating the expression of latex-clearing proteins in Gordonia polyisoprenivorans VH2. MICROBIOLOGY-SGM 2019; 165:343-354. [PMID: 30628882 DOI: 10.1099/mic.0.000755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gordonia polyisoprenivorans VH2 harbours two latex clearing proteins, which are responsible for the cleavage of poly(cis-1,4-isoprene) into oligoisoprenes, thereby allowing growth in presence of, e.g. natural rubber. A gene coding for a putative regulator of the TetR-family (lcpRVH2) is located 131 bp upstream of lcp1VH2. We heterologously expressed lcpRVH2 in Escherichia coli, and purified and characterized the protein with respect to its ability to bind to the operator region of lcp1VH2. LcpRVH2 forms a dimer in its native state. The size of the dimer was determined to be 52.7 kDa by size exclusion chromatography, whereas the calculated size of a monomer was 24.1 kDa. Electrophoretic mobility shift assays (EMSAs) with the purified protein revealed a shift upon binding to the intergenic region between lcpRVH2 and lcp1VH2. Within this region, an inverted repeat was identified in silico, probably being the binding site of LcpRVH2. This binding sequence was confirmed by a DNase I footprinting assay. A shift also occurred in EMSAs with this 44 bp sequence only. Interestingly, no regulator was detected upstream of the second lcp (lcp2VH2). Therefore, we performed EMSA studies with LcpRVH2 and the putative operator region upstream of lcp2VH2, and discovered by DNase I footprinting another binding sequence upstream of lcp2VH2. Hence, we concluded that LcpRVH2 binds the operator region of both lcps and, most likely, regulates their expression in G. polyisoprenivorans VH2.
Collapse
|
7
|
Jendrossek D, Birke J. Rubber oxygenases. Appl Microbiol Biotechnol 2019; 103:125-142. [PMID: 30377752 PMCID: PMC6311187 DOI: 10.1007/s00253-018-9453-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 11/11/2022]
Abstract
Natural rubber (NR), poly(cis-1,4-isoprene), is used in an industrial scale for more than 100 years. Most of the NR-derived materials are released to the environment as waste or by abrasion of small particles from our tires. Furthermore, compounds with isoprene units in their molecular structures are part of many biomolecules such as terpenoids and carotenoids. Therefore, it is not surprising that NR-degrading bacteria are widespread in nature. NR has one carbon-carbon double bond per isoprene unit and this functional group is the primary target of NR-cleaving enzymes, so-called rubber oxygenases. Rubber oxygenases are secreted by rubber-degrading bacteria to initiate the break-down of the polymer and to use the generated cleavage products as a carbon source. Three main types of rubber oxygenases have been described so far. One is rubber oxygenase RoxA that was first isolated from Xanthomonas sp. 35Y but was later also identified in other Gram-negative rubber-degrading species. The second type of rubber oxygenase is the latex clearing protein (Lcp) that has been regularly found in Gram-positive rubber degraders. Recently, a third type of rubber oxygenase (RoxB) with distant relationship to RoxAs was identified in Gram-negative bacteria. All rubber oxygenases described so far are haem-containing enzymes and oxidatively cleave polyisoprene to low molecular weight oligoisoprenoids with terminal CHO and CO-CH3 functions between a variable number of intact isoprene units, depending on the type of rubber oxygenase. This contribution summarises the properties of RoxAs, RoxBs and Lcps.
Collapse
|
8
|
Altenhoff AL, de Witt J, Andler R, Steinbüchel A. Impact of additives of commercial rubber compounds on the microbial and enzymatic degradation of poly(cis-1,4-isoprene). Biodegradation 2018; 30:13-26. [PMID: 30324341 DOI: 10.1007/s10532-018-9858-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
Much fundamental research has already been performed to understand the mechanism of microbial rubber degradation. Due to the increasing amount of rubber waste, biotechnical methods to degrade that particular waste are strongly needed. The present study evaluates whether a microbial or an enzymatic process is more suitable for efficient biodegradation, due to less sensitivity towards rubber additives. Therefore we investigated the impact of 15 different frequently used rubber additives on cells of the potent rubber degrader Gordonia polyisoprenivorans VH2 and the enzyme Lcp1VH2. For this, cells were grown on poly(cis-1,4-isoprene) in presence of these rubber additives. Furthermore, the effect of those additives on the enzymatic cleavage of poly(cis-1,4-isoprene) by Lcp1VH2 was determined by in vitro studies. It was observed that additives, used to accelerate the vulcanization process, like N-cyclohexyl-2-benzothiazolesulfenamide and zinc-bis(N,N-dibenzyl-dithiocarbamate), are diminishing the growth of the microorganism depending on their concentration-higher toxicity with increasing concentration. In contrast, sulfur prevents cell growth, but does not affect Lcp1VH2. Stearic acid and paraffin wax were found to be consumed by G. polyisoprenivorans VH2. Plasticizers mainly prevent growth, but do not interfere with the enzyme activity. This study identified antioxidants as the most interfering group of additives for microbial and enzymatic rubber degradation. It was found that the in vitro degradation by Lcp1VH2 is much more resistant and less sensitive towards the investigated rubber additives, when compared to the in vivo approach. Therefore, an enzymatic process might be a promising method to enhance rubber degradation.
Collapse
|
9
|
Birke J, Röther W, Jendrossek D. Rhizobacter gummiphilus NS21 has two rubber oxygenases (RoxA and RoxB) acting synergistically in rubber utilisation. Appl Microbiol Biotechnol 2018; 102:10245-10257. [PMID: 30215127 DOI: 10.1007/s00253-018-9341-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 11/27/2022]
Abstract
Biodegradation of poly(cis-1,4-isoprene) (rubber) by Gram-negative bacteria has been investigated on the enzymatic level only in Steroidobacter cummioxidans 35Y (previously Xanthomonas sp. 35Y). This species produces two kinds of rubber oxygenases, RoxA35Y and RoxB35Y, one of which (RoxB35Y) cleaves polyisoprene to a mixture of C20- and higher oligoisoprenoids while the other (RoxA35Y) cleaves polyisoprene and RoxB35Y-derived oligoisoprenoids to the C15-oligoisoprenoid 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). ODTD can be taken up by S. cummioxidans and used as a carbon source. Gram-positive rubber-degrading bacteria employ another type of rubber oxygenase, latex clearing protein (Lcp), for the initial oxidative attack of the polyisoprene molecule. In this contribution, we examined which type of rubber oxygenase is present in the only other well-documented Gram-negative rubber-degrading species, Rhizobacter gummiphilus NS21. No homologue for an Lcp protein but homologues for a putative RoxA and a RoxB protein (the latter identical to a previously postulated LatA-denominated rubber cleaving enzyme) were identified in the genome of strain NS21. The roxANS21 and roxBNS21 genes were separately expressed in a ∆roxA35Y/∆roxB35Y background of S. cummioxidans 35Y and restored the ability of the mutant to produce oligoisoprenoids. The RoxANS21 and RoxBNS21 proteins were each purified and biochemically characterised. The results-in combination with in silico analysis of databases-indicate that Gram-negative rubber-degrading bacteria generally utilise two synergistically acting rubber oxygenases (RoxA/RoxB) for efficient cleavage of polyisoprene to ODTD.
Collapse
|
10
|
Andler R, Hiessl S, Yücel O, Tesch M, Steinbüchel A. Cleavage of poly(cis-1,4-isoprene) rubber as solid substrate by cultures of Gordonia polyisoprenivorans. N Biotechnol 2018. [PMID: 29530668 DOI: 10.1016/j.nbt.2018.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Potential biotechnological recycling processes for rubber products include the bacterial degradation of poly(cis-1,4-isoprene) (IR) in order to achieve its total biodegradation or its biotransformation into useful products. The actinomycete Gordonia polyisoprenivorans strain VH2 catalyzes the degradation of IR and enables its use as a sole carbon source via β-oxidation. The initial cleavage reaction is catalyzed by the extracellular latex clearing protein (Lcp). This dioxygenase is the key enzyme for the formation of oligo(cis-1,4-isoprene) molecules with different lengths, i.e., numbers of isoprene units. For the first time, IR was used as a solid substrate in 2-l fermenters. Two different particle size fractions (63-500 and 500-1000 μm) and three stirring rates (300, 400 and 500 rpm) were evaluated in the process. An increase of the cell concentration was achieved by using smaller particles and by using lower stirring rates, reaching a final biomass concentration of 0.52 g l-1 at 300 rpm after 12 days of cultivation. In order to enhance the formation of oligo(cis-1,4-isoprene) molecules, a transposon insertion mutant (TH5) of G. polyisoprenivorans strain VH2 that has lost the ability to transport the partial degradation products into the cells was used, thereby allowing the accumulation of the degradation products in the culture supernatants. Propionate, glucose and glycerol were evaluated as additional carbon sources besides IR, and the highest yields were observed on propionate. In 2-l bioreactors with pH control, different feeding regimes were performed during cultivation by the addition of propionate every 24 or 48 h for 16 days. After liquid-liquid extraction and a derivatization with Girard's T reagent, the oligo(cis-1,4-isoprene) molecules were detected by ESI-MS. The mass distribution of the degradation products was affected by the selection of the extraction solvent, but no influence of longer cultivation periods was detected.
Collapse
|
11
|
Andler R, Steinbüchel A. A simple, rapid and cost-effective process for production of latex clearing protein to produce oligopolyisoprene molecules. J Biotechnol 2016; 241:184-192. [PMID: 27940293 DOI: 10.1016/j.jbiotec.2016.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022]
Abstract
Aiming at finding feasible alternatives for rubber waste disposal, the partial enzymatic degradation of poly(cis-1,4-isoprene)-containing materials represents a potential solution. The use of rubber-degrading enzymes and the biotransformation of rubber into new materials is limited by the high costs associated with the production and purification of the enzyme and the complexity of the process. This study presents a simple and low-cost procedure to obtain purified latex clearing protein (Lcp), an enzyme capable of cleaving the double bonds of poly(cis-1,4-isoprene) in presence of oxygen to produce different size of oligomers with terminal aldehyde and ketone groups, respectively. The gene coding for Lcp1VH2 from Gordonia polyisoprenivorans strain VH2 was overexpressed in Escherichia coli C41 (DE3), and by using an auto-induction medium high protein yields were obtained. The cultivation process was described and compared with an IPTG-inducible medium previously used. Purification of the enzyme was performed using salting out precipitation with ammonium sulfate. Different salt concentrations and pH were tested in order to find the optimal for purification, obtaining a concentration of 60mg Lcp per l. The enzymatic activity of the purified enzyme was measured by an oxygen consumption assay in the presence of polyisoprene latex. Volumetric activities of 0.16Uml-1 were obtained at optimal conditions of temperature and pH. The results showed an active and partial purified fraction of Lcp1VH2, able to cleave the backbone of poly(cis-1,4-isoprene) and to produce degradation products that were identified with staining methodologies (Schiff reagent for aldehyde groups and 2,4-DNPH for carbonyl groups) and characterized using nuclear magnetic resonance (NMR). Thirteen different storage conditions were tested for the purified enzyme analyzing the enzymatic activity after 1 and 3 months. Lcp1VH2, as an ammonium sulfate precipitate, was stable, easy to handle and sufficiently active for further analysis. The described methodology offers the possibility to upscale the process and to produce large amounts of this protein.
Collapse
|