1
|
Yang J, Wang K, Xu H, Yan W, Jin Q, Cui D. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review. Talanta 2019; 202:96-110. [PMID: 31171232 DOI: 10.1016/j.talanta.2019.04.054] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/03/2019] [Accepted: 04/20/2019] [Indexed: 12/14/2022]
Abstract
Along with the considerable potential and increasing demand of the point-of-care testing (POCT), corresponding detection platforms have attracted great interest in both academic and practical fields. The first few generations of conventional detection devices tend to be costly, complicated to operate and hard to move on account of early limitations in the level of technological development and relatively high requirement of performance. Owing to the requirements for rapidity, simplicity, accuracy and cost controlling in the POCT, reader systems are urgently needed to be developed, upgraded and modified constantly, realizing on-site testing and healthcare management without a specific place or cumbersome operation. Accordingly, numerous rapid detection platforms with diverse size and performance have emerged such as bench-top apparatuses, handheld devices and intelligent detection devices. This review discusses various devices developed mainly for the detection of lateral flow test strips (LFTSs) or microfluidic strips in the POCT and summarizes these devices by size and portability. Furthermore, on the basis of various detection methods and diverse probes usually containing specific nanoparticles composites, three most common aspects of detection rationale in the POCT are selected to elaborate each kind of detection platforms in this paper: colorimetric assay, luminescent detection and magnetic signal detection. Herein, we focus on their structures, detection mechanisms and assay results, accompany with discussions and comments on the performances, costs and potential application, as well as advantages and limitations of each technique. In addition, perspectives on the future advances of detection platforms and some conclusions are proposed.
Collapse
|
Review |
6 |
93 |
2
|
Wang XS, Li L, Yuan DQ, Huang YB, Cao R. Fast, highly selective and sensitive anionic metal-organic framework with nitrogen-rich sites fluorescent chemosensor for nitro explosives detection. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:283-290. [PMID: 29055832 DOI: 10.1016/j.jhazmat.2017.10.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Developing a highly efficient fluorescent sensor for detection of trace amounts of nitro explosives remains a great challenge. Porous metal-organic frameworks (MOFs) are one class of promising fluorescent sensors towards small molecules. Herein, we constructed an anionic Zn-based MOF FJI-C8 based on π-conjugated aromatic ligand H6TDPAT (2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine) containing nitrogen-rich sites. On account of the high density of uncoordinated N atoms, the high overlap between the emission spectrum of the anionic MOF FJI-C8 and the UV-vis absorption spectrum of the representative nitro explosive 2,4-dinitrophenol (2,4-DNP), and the porosity of the MOF, FJI-C8 is demonstrated to be an excellent chemosensor for 2,4-DNP with fast response time (less than 30s), high selectivity (Ksv=5.11×104M-1 for 2,4-DNP), extra sensitivity (LOD=0.002866mM for 2,4-DNP), low usage amount (0.04mg/mL), good stability and quantitative detection features. To the best of our knowledge, this is the first example for highly selective detection of 2,4-DNP. More importantly, theoretical calculation and control experiments unveiled that the energy transfer is the main mechanism for highly detection of 2,4-DNP. This work will pave the way for designing highly efficient luminescent chemosensors.
Collapse
|
|
7 |
82 |
3
|
Mohsenpour SF, Willoughby N. Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. BIORESOURCE TECHNOLOGY 2013; 142:147-53. [PMID: 23735796 DOI: 10.1016/j.biortech.2013.05.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 05/25/2023]
Abstract
Growth characteristics of two strains of microalgae in bubble column photobioreactors were investigated under different cultivation conditions. Chlorella vulgaris and Gloeothece membranacea were cultivated in luminescent acrylic photobioreactors at different seed culture densities. Luminescent acrylic photobioreactors in blue, green, yellow, orange, and red colours capable of spectral conversion of light were used. The results indicated that the red luminescent photobioreactor enhanced biomass production in both strains of microalgae while pigmentation was induced under different light colours. Green light promoted chlorophyll production in C. vulgaris however chlorophyll production in G. membranacea cultures was less influenced by the light condition or culture density. Phycobiliproteins were the dominant pigments in G. membranacea and red light favoured synthesis of these pigments.
Collapse
|
|
12 |
44 |
4
|
Hu ML, Joharian M, Razavi SAA, Morsali A, Wu DZ, Azhdari Tehrani A, Wang J, Junk PC, Guo ZF. Phenolic nitroaromatics detection by fluorinated metal-organic frameworks: Barrier elimination for selective sensing of specific group of nitroaromatics. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124501. [PMID: 33321315 DOI: 10.1016/j.jhazmat.2020.124501] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 05/10/2023]
Abstract
Many piesce of research have been performed to detect nitroaromatic-compounds (NACs) by metal-organic frameworks (MOFs). Despite extensive studies, there are still significant challenges like selective detection of specific NAC group in presence of other NACs. Here, we have integrated two functionalization strategies through decoration of pore-walls of the MOFs with trifluoromethyl groups and extension in π-conjugated system. Based on this idea, trifluoromethyl TMU-44 (with the formula [Zn2(hfipbb)2(L1)]n.DMF, H2hfipbb = 4,4'-(hexafluoroisopropylidene) bis(benzoic acid), L1 = N,N'-bis-pyridin-4-ylmethylene-benzene-1,4-diamine) and TMU-45 (with formula [Zn2(hfipbb)2(L2)]n.DMF, L2 = N,N'-bis-pyridin-4-ylmethylene-naphthalene-1,5-diamine) frameworks have been synthesized. The aromatic skeleton of TMU-44 is based on phenyl rings while TMU-45 aromatic skeleton is extended by replacement of phenyl with naphthyl core. Measurements reveal that these MOFs are highly sensitive to phenolic NACs especially 2,4,6-trinitrophenol (TNP) with high quenching efficiency of 90% for TMU-44 (KSV = 10,652 M-1, LOD = 6.9 ppm) and 99% for TMU-45 (KSV = 34,741 M-1, LOD = 2.07 ppm). The proposed detection mechanism can be associated with hydrogen bonding between OH group of phenolic NACs and trifluoromethyl groups of TMU-MOFs as well as π(rich)∙∙∙π(deficient) interaction between π-conjugated backbone of TMU-frameworks and π-deficient ring of NACs.
Collapse
|
|
4 |
39 |
5
|
Lou S, Xuan T, Liang Q, Huang J, Cao L, Yu C, Cao M, Xia C, Wang J, Zhang D, Li H. Controllable and facile synthesis of CsPbBr 3-Cs 4PbBr 6 perovskite composites in pure polar solvent. J Colloid Interface Sci 2018; 537:384-388. [PMID: 30458348 DOI: 10.1016/j.jcis.2018.11.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 11/28/2022]
Abstract
Here, we present a single atomic supersaturated recrystallization method to synthesize the green-emitting CsPbBr3-Cs4PbBr6 perovskite composites in solid state with the highest PLQY of 40.8% in pure polar solvent. The component, morphology, and optical properties of the microcrystals can be tuned by varying growth time, the content of ammonium bromide, and bromine source. The developed method provides a new route to large-scale synthesize high quality perovskite composites emitters for light-emitting diodes.
Collapse
|
Journal Article |
7 |
38 |
6
|
Mohan B, Singh G, Chauhan A, Pombeiro AJL, Ren P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131324. [PMID: 37080033 DOI: 10.1016/j.jhazmat.2023.131324] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
With the increasing population, food toxicity has become a prevalent concern due to the growing contaminants of food products. Therefore, the need for new materials for toxicant detection and food quality monitoring will always be in demand. Metal-organic frameworks (MOFs) based on luminescence and electrochemical sensors with tunable porosity and active surface area are promising materials for food contaminants monitoring. This review summarizes and studies the most recent progress on MOF sensors for detecting food contaminants such as pesticides, antibiotics, toxins, biomolecules, and ionic species. First, with the introduction of MOFs, food contaminants and materials for toxicants detection are discussed. Then the insights into the MOFs as emerging materials for sensing applications with luminescent and electrochemical properties, signal changes, and sensing mechanisms are discussed. Next, recent advances in luminescent and electrochemical MOFs food sensors and their sensitivity, selectivity, and capacities for common food toxicants are summarized. Further, the challenges and outlooks are discussed for providing a new pathway for MOF food contaminant detection tools. Overall, a timely source of information on advanced MOF materials provides materials for next-generation food sensors.
Collapse
|
Review |
2 |
33 |
7
|
Kwon S, Singh RK, Kim TH, Patel KD, Kim JJ, Chrzanowski W, Kim HW. Luminescent mesoporous nanoreservoirs for the effective loading and intracellular delivery of therapeutic drugs. Acta Biomater 2014; 10:1431-42. [PMID: 24239681 DOI: 10.1016/j.actbio.2013.10.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/29/2013] [Accepted: 10/24/2013] [Indexed: 01/15/2023]
Abstract
Development of biocompatible and multifunctional nanocarriers is important for the therapeutic efficacy of drug molecules in the treatment of disease and tissue repair. A novel nanocarrier of luminescent hollowed mesoporous silica (L-hMS) was explored for the loading and controlled delivery of drugs. For the synthesis of L-hMS, self-activated luminescence hydroxyapatite (LHA) was used as a template. Different thicknesses (∼ 7-62 nm) of mesoporous silica shell were obtained by varying the volume of silica precursor and the subsequent removal of the LHA core, which resulted in hollow-cored (size of ∼ 40 nm × 10 nm) mesoporous silica nanoreservoirs, L-hMS. While the silica shell provided a highly mesoporous structure, enabling an effective loading of drug molecules, the luminescent property of LHA was also well preserved in both the silica-shelled and the hollow-cored nanocarriers. Doxorubicin (DOX), used as a model drug, was shown to be effectively loaded onto the mesopore structure and within the hollow space of the nanoreservoir. The DOX release was fairly pH-dependent, occurring more rapidly at pH 5.3 than at pH 7.4, and a long-term sustainable delivery over the test period of 2weeks was observed. The nanoreservoir exhibited favorable cell compatibility with low cytotoxicity and excellent cell uptake efficiency (over 90%). Treatment of HeLa cells with DOX-loaded L-hMS elicited a sufficient degree of biological efficacy of DOX, as confirmed in the DOX-induced apoptotic behaviors, including stimulation in caspase-3 expression, and was even more effective than the direct DOX treatment. Overall, the newly developed L-hMS nanoreservoirs may be potentially useful as a multifunctional (luminescent, mesoporous and biocompatible) carrier system to effectively load and sustainably deliver small molecules, including anticancer drugs.
Collapse
|
|
11 |
32 |
8
|
Magnetic- luminescent cerium-doped gadolinium aluminum garnet nanoparticles for simultaneous imaging and photodynamic therapy of cancer cells. J Colloid Interface Sci 2018; 526:220-229. [PMID: 29734089 DOI: 10.1016/j.jcis.2018.04.100] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022]
Abstract
Nanoparticle (NP) and photosensitizer (PS) conjugates capable of X-ray photodynamic therapy (X-PDT) are a research focus due to their potential applications in cancer treatment. Combined with X-PDT, appropriate imaging properties of the nanocomposite will make it suitable for theranostics of deep lying tumors. In this work, we describe the development of magnetic-luminescent Gd2.98Ce0.02Al5O12 nanoparticles (GAG) coated with mesoporous silica (mSiO2) and loaded with rose bengal (RB) to yield a nanocomposite GAG@mSiO2@RB capable of X-PDT. GAG nanoparticles were synthesized using the sol-gel method. The synthesized GAG nanoparticles showed a strong visible yellow emission with a quantum yield of ∼32%. Moreover, the broad emission spectra of GAG nanoparticles centered at 585 nm showed a good overlap with the absorption of RB. Upon irradiation with X-rays (55 KV), the GAG@mSiO2@RB nanocomposite produced significantly higher singlet oxygen compared with RB alone, as confirmed by the 1,2-diphenylisobenzofuran (DPBF) assay. The developed GAG@mSiO2@RB nanocomposite significantly reduced the viability of human breast cancer (MDA-MB-231) cells upon irradiation with blue light (λ = 470 nm). The calculated LC50 of GAG@mSiO2@RB nanocomposites were 26.69, 11.2, and 6.56 µg/mL at a dose of ∼0.16, 0.33 and 0.5 J/cm2, respectively. Moreover, the nanocomposite showed paramagnetic properties with high magnetic mass susceptibility which are useful for high contrast T1 weighted magnetic resonance imaging (MRI). Together with X-PDT, the paramagnetic properties of the proposed GAG@mSiO2@RB nanocomposite system are promising for their future application in simultaneous detection and treatment of deep-lying tumors.
Collapse
|
Journal Article |
7 |
26 |
9
|
Liu H, Zhao X, Wang F, Wang Y, Guo L, Mei J, Tian C, Yang X, Zhao D. High-Efficient Excitation-Independent Blue Luminescent Carbon Dots. NANOSCALE RESEARCH LETTERS 2017; 12:399. [PMID: 28605883 PMCID: PMC5466853 DOI: 10.1186/s11671-017-2137-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/11/2017] [Indexed: 05/25/2023]
Abstract
Blue luminescent carbon dots (CDs) were synthesized by the hydrothermal method. Blue-shifts of the maximum emission wavelength from 480 to 443 nm were observed when the concentration of CD solution decreased. The photoluminescence (PL) spectra of CDs at low concentration showed an excitation-independent behaviour, which is very different from the previous reports. Two different emitting mechanisms might work: the intrinsic luminescence from sp2-carbon networks can be responsible for the shorter wavelength part of emission (excitation-independent) at low concentration and the high polarity of nanosized clusters led to the excitation-dependent behaviour of the longer wavelength part at high concentration of CD solution. The photophysical property and concentration-dependent behaviour of the CDs offered new insights into CDs from the viewpoints of both experiments and mechanisms, which will promote diverse potential applications of CDs in the near future.
Collapse
|
brief-report |
8 |
24 |
10
|
Wu H, Zhi M, Chen H, Singh V, Ma P, Wang J, Niu J. Well-tuned white-light-emitting behaviours in multicenter-Ln polyoxometalate derivatives: A photoluminescence property and energy transfer pathway study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117294. [PMID: 31252209 DOI: 10.1016/j.saa.2019.117294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
White light-emitting diodes (WLEDs) are of scientific significance in terms of their wide applications, and few uminescent materials based on white-light-emitting polyoxometalate (POM) derivatives have been reported till now. Herein, a series of organic chromophores modified POM derivatives [N(CH3)4]3K2Ln(C7H5O2)(H2O)2(α-PW11O39)]·11H2O (Ln3+ = Eu3+ (1), Tb3+ (2), Tm3+ (3), Lu3+ (4)) and multicenter-Ln analogues [N(CH3)4]3K2EuxTbyTm1-x-y(C7H5O2)(H2O)2(α-PW11O39)·11H2O (5-11) were synthesized successfully and were characterized by various physico-chemical analysis. The investigations indicate the white-light-emitting behavior can be well tuned by adjusting the molar ratio of Eu3+/Tb3+/Tm3+ = 0.06:0.10:0.84 in 9. The energy transfer process from organic benzoic and POM ligands to Eu3+, Tb3+ and Tm3+ emitting centers were detected through time-resolved emission spectroscopy (TRES) and the comparison of excitation of single-, double-, treble-Ln3+ mixed, indicating the energy can transfer from the photoexcitation O → M LMCT state of POM components and π → π* transition of organic ligand to sensitize the emissions of Ln3+ ions via intramolecular energy transition mechanism. The energy transfer between Eu3+ and Tb3+, Tm3+ and Eu3+, Tm3+ and Tb3+ ions also have been recorded and carefully studied by TRES and variations of Tm3+ luminescence lifetime in this context, and the results show a low-effectively process of energy transfer between Tm3+/Eu3+, Tm3+/Tb3+ ions and a relatively good energy transfer efficiency between Eu3+/Tb3+ ions.
Collapse
|
|
6 |
13 |
11
|
Leung KH, He HZ, Zhong HJ, Lu L, Chan DSH, Ma DL, Leung CH. A highly sensitive G-quadruplex-based luminescent switch-on probe for the detection of polymerase 3'-5' proofreading activity. Methods 2013; 64:224-8. [PMID: 23748144 DOI: 10.1016/j.ymeth.2013.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022] Open
Abstract
We report herein a luminescent switch-on label-free G-quadruplex-based assay for the rapid and sensitive detection of polymerase proofreading activity using a novel iridium(III) complex as a G-quadruplex-selective probe. The interaction of the iridium(III) complex with the G-quadruplex motif facilitates the highly sensitive switch-on detection of polymerase proofreading activity. Using T4 DNA polymerase (T4 pol) as a model enzyme, the assay achieved high sensitivity and selectivity for T4 pol over other tested enzymes.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
13 |
12
|
Zhang L, Dong B, Wang G, Gao R, Su G, Wang W, Cao L. Controllable synthesis and luminescent properties of rare earth doped Gd 2(MoO 4) 3 nanoplates. J Colloid Interface Sci 2017; 504:134-139. [PMID: 28535413 DOI: 10.1016/j.jcis.2017.04.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 02/07/2023]
Abstract
For the first time, we have successfully synthesized rare-earth doped Gd2(MoO4)3: RE3+ (RE=Eu, Tb) nanoplates by solvothermal method. The morphology of Gd2(MoO4)3 can be manipulated by changing the reaction times and reaction temperatures. The composition and surface morphology have been investigated by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM), respectively. Under the excitation of UV, Photoluminescence (PL) has been used to explore the excellent luminescence properties of the synthesized nanophosphors. The Gd2(MoO4)3: Eu3+ phosphors shows a hypersensitive red emission (612nm) when excitation wavelength within the scope of 200-350nm corresponding to a 5D0-7F2 transition. Similarly, the Gd2(MoO4)3: Tb3+ phosphors certificate a highly strong green emission at 544nm at an excitation wavelength of 298nm corresponding to a 5D4-7F5 transition. Furthermore, the characteristic spectrum peak of the Gd2(MoO4)3: Eu3+/Tb3+ nanophosphor exhibits the corresponding spectra position (green emission at 544nm and red emission at 612nm). Hence, the obtained Gd2(MoO4)3: RE3+ nanoplates may establish highly potentiality in light field applications.
Collapse
|
|
8 |
6 |
13
|
The theranostic potentialities of bioavailable nanocurcumin in oral cancer management. BMC Complement Med Ther 2022; 22:309. [PMID: 36424593 PMCID: PMC9685877 DOI: 10.1186/s12906-022-03770-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Oral cancer, one of the most common cancers, has unimproved 5-years survival rate in the last 30 years and the chemo/radiotherapy-associated morbidity. Therefore, intervention strategies that evade harmful side effects of the conventional treatment modalities are of need. Herbal therapy as a complementary preventive/therapeutic modality has gained attention. Curcumin is one of the herbal compounds possessing unique anticancer activity and luminescent optical properties. However, its low water solubility limits its efficacy. In contrast, curcumin at the nanoscale shows altered physical properties with enhancing bioavailability. METHODS The current study evaluated the impact of nanocurcumin as an anti-oral cancer herbal remedy, comparing its efficacy against the native curcumin complement and conventional chemotherapeutic. An optimized polymeric-stabilized nanocurcumin was synthesized using the solvent-antisolvent precipitation technique. After assuring the solubility and biocompatibility of nanocurcumin, we determined its cytotoxic dose in treating the squamous cell carcinoma cell line. We then evaluated the anti-tumorigenic activity of the nano-herb in inhibiting wound closure and the cytological alterations of the treated cancer cells. Furthermore, the cellular uptake of the nanocurcumin was assessed depending on its autofluorescence. RESULTS The hydrophilic optimized nanocurcumin has a potent cancerous cytotoxicity at a lower dose (60.8 µg/mL) than the native curcumin particles (212.4 µg/mL) that precipitated on high doses hindering their cellular uptake. Moreover, the nanocurcumin showed differential targeting of the cancer cells over the normal fibroblasts with a selectivity index of 4.5. With the confocal microscopy, the luminescent nanoparticles showed gradual nuclear and cytoplasmic uptake with apparent apoptotic cell death, over the fluorescent doxorubicin with its necrotic effect. Furthermore, the nanocurcumin superiorly inhibited the migration of cancer cells by -25%. CONCLUSIONS The bioavailable nanocurcumin has better apoptotic cytotoxicity. Moreover, its superior luminescence promotes the theranostic potentialities of the nano-herb combating oral cancer.
Collapse
|
research-article |
3 |
5 |
14
|
Filone CM, Miller D, Wahl-Jensen V. A Semi-automated High-Throughput Microtitration Assay for Filoviruses. Methods Mol Biol 2017; 1628:163-175. [PMID: 28573618 DOI: 10.1007/978-1-4939-7116-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The 50% tissue culture infectious dose (TCID50) endpoint dilution assay is one of the gold standard methods for measuring filovirus infectivity. We have increased virology microtitration assay throughput at biosafety level (BSL)-4 by implementing automated liquid handling and semi-automated assay endpoint readout. Utilization of automated liquid handling for cell plating and virus dilution along with optimization of the assay endpoint readout, using a luminescent-based cell viability assay and an automated plate reader, has improved workflow efficiency, reduced operator burden and assay time, decreased assay variability, and increased data return.
Collapse
|
|
8 |
2 |
15
|
Abstract
Intracellular lipolysis, the hydrolysis of stored triacylglycerol to fatty acids and glycerol, is a core metabolic function of brown and white adipocytes. In brown adipocytes, mobilized fatty acids directly activate uncoupling protein 1, provide fuel for heat generation, and ligands of nuclear receptors that expand the thermogenic gene expression program. Lipolysis in white adipocytes mobilizes lipid energy for systemic use, including both shivering and non-shivering thermogenesis. In addition, most metabolic tissues, including muscle and liver, have the ability to store triacylglycerol and release fatty acids; thus, there is a general interest in measuring lipolysis in a wide array of cell types. Here we describe detailed protocols for the enzymatic detection of cellular fatty acid and glycerol efflux via fluorescent and colorimetric means, respectively. In addition, we also describe a genetically encoded luminescent detection system for intracellular fatty acids that is amenable to high-throughput analysis.
Collapse
|
|
3 |
1 |
16
|
Li X, Qi J, Li Z, Fan M. Two Mixed-Ligand Co(II) Complexes as Luminescent Materials and Loaded with Temozolomide-gel Particles in Nursing Against Glioma. J Fluoresc 2024:10.1007/s10895-024-03721-w. [PMID: 38625573 DOI: 10.1007/s10895-024-03721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
By employing a mixed-ligand strategy, we synthesized two new coordination polymers (CPs) featuring Co(II): {Co(H2L)(bib)]·2H2O}n (1) and {Co(L)(bib)2]·2H2O}n (2), where H4L represents 5-(3,5-dicarboxybenzyloxy) isophthalic acid, and bib denotes 1,4-bis(1-imidazolyl)benzene. These CPs were obtained through the reaction of H4L, a flexible carboxylic acid ligand, with Co(NO3)2·6H2O in various solvent mixtures, along with the N-donor co-ligand bib. Complexes 1 and 2 are formed through distinct coordination modes, resulting in their distinct structural features and excellent fluorescent properties. Based on ligand-centered fluorescence emission and the blue shift (CP 1) along with red shift (CP 2) characteristics, both complexes show promise for applications in fields such as blue fluorescence sensing materials and luminescent materials. After successfully synthesizing two CPs, CP 1 was chosen as the carrier for loading temozolomide (TMZ). Subsequently, leveraging the unique advantages of hydrogels, we developed a novel metal gel formulation loaded with TMZ. The inhibitory effect of this formulation on the growth of glioblastoma was evaluated. Our results demonstrate a significant suppression of glioblastoma cell proliferation by this system, providing an effective avenue for glioblastoma treatment.
Collapse
|
|
1 |
|
17
|
Bakhache W, Shen A, Symonds-Orr W, Freeman MC, Dolan PT. Novel reporter constructs to accelerate antiviral and therapeutic discovery for Enterovirus-A71. Antiviral Res 2025; 235:106094. [PMID: 39900143 DOI: 10.1016/j.antiviral.2025.106094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Enterovirus A71 (EV-A71) is an important human pathogen and 'prototype pathogen' for studies of other Enteroviruses of pandemic potential. Understanding the biology of EV-A71 would inform generalizable strategies for antiviral drug, vaccine, and monoclonal antibody development. Such studies are accelerated by robust reagents to evaluate efficacy. Here, we describe and evaluate a suite of synthetic reporter constructs to accelerate EV-A71 research and therapeutic discovery. These constructs include replicons and infectious clones carrying luminescent and fluorescent reporter proteins. Among the reporters we tested were shorter luminescent and de novo-designed synthetic fluorescent proteins, which enhance genetic stability, reduce reporter gene loss and improve the utility of these reporters. This toolbox provides free access to robust and flexible assays for EV-A71 infection and replication through public repositories, promoting and accelerating open scientific discovery for this understudied emerging pathogen.
Collapse
|
|
1 |
|