1
|
Deshpande P, Gogia N, Singh A. Exploring the efficacy of natural products in alleviating Alzheimer's disease. Neural Regen Res 2019; 14:1321-1329. [PMID: 30964049 PMCID: PMC6524497 DOI: 10.4103/1673-5374.253509] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alzheimer’s disease (hereafter AD) is a progressive neurodegenerative disorder that affects the central nervous system. There are multiple factors that cause AD, viz., accumulation of extracellular Amyloid-beta 42 plaques, intracellular hyper-phosphorylated Tau tangles, generation of reactive oxygen species due to mitochondrial dysfunction and genetic mutations. The plaques and tau tangles trigger aberrant signaling, which eventually cause cell death of the neurons. As a result, there is shrinkage of brain, cognitive defects, behavioral and psychological problems. To date, there is no direct cure for AD. Thus, scientists have been testing various strategies like screening for the small inhibitor molecule library or natural products that may block or prevent onset of AD. Historically, natural products have been used in many cultures for the treatment of various diseases. The research on natural products have gained importance as the active compounds extracted from them have medicinal values with reduced side effects, and they are bioavailable. The natural products may target the proteins or members of signaling pathways that get altered in specific diseases. Many natural products are being tested in various animal model systems for their role as a potential therapeutic target for AD, and to address questions about how these natural products can rescue AD or other neurodegenerative disorders. Some of these products are in clinical trials and results are promising because of their neuroprotective, anti-inflammatory, antioxidant, anti-amyloidogenic, anticholinesterase activities and easy availability. This review summarizes the use of animal model systems to identify natural products, which may serve as potential therapeutic targets for AD.
Collapse
|
Review |
6 |
53 |
2
|
Montales MTE, Simmen RCM, Ferreira ES, Neves VA, Simmen FA. Metformin and soybean-derived bioactive molecules attenuate the expansion of stem cell-like epithelial subpopulation and confer apoptotic sensitivity in human colon cancer cells. GENES AND NUTRITION 2015; 10:49. [PMID: 26506839 DOI: 10.1007/s12263-015-0499-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is a disease whose genesis may include metabolic dysregulation. Cancer stem cells are attractive targets for therapeutic interventions since their aberrant expansion may underlie tumor initiation, progression, and recurrence. To investigate the actions of metabolic regulators on cancer stem cell-like cells (CSC) in CRC, we determined the effects of soybean-derived bioactive molecules and the anti-diabetes drug metformin (MET), alone and together, on the growth, survival, and frequency of CSC in human HCT116 cells. Effects of MET (60 μM) and soybean components genistein (Gen, 2 μM), lunasin (Lun, 2 μM), β-conglycinin (β-con, 3 μM), and glycinin (Gly, 3 μM) on HCT116 cell proliferation, apoptosis, and mRNA/protein expression and on the frequency of the CSC CD133(+)CD44(+) subpopulation by colonosphere assay and fluorescence-activated cell sorting/flow cytometry were evaluated. MET, Gen, and Lun, individually and together, inhibited HCT116 viability and colonosphere formation and, conversely, enhanced HCT116 apoptosis. Reductions in frequency of the CSC CD133(+)CD44(+) subpopulation with MET, Gen, and Lun were found to be associated with increased PTEN and reduced FASN expression. In cells under a hyperinsulinemic state mimicking metabolic dysregulation and without and with added PTEN-specific inhibitor SF1670, colonosphere formation and frequency of the CD133(+)CD44(+) subpopulation were decreased by MET, Lun and Gen, alone and when combined. Moreover, MET + Lun + Gen co-treatment increased the pro-apoptotic and CD133(+)CD44(+)-inhibitory efficacy of 5-fluorouracil under hyperinsulinemic conditions. Results identify molecular networks shared by MET and bioavailable soy food components, which potentially may be harnessed to increase drug efficacy in diabetic and non-diabetic patients with CRC.
Collapse
|
Journal Article |
10 |
32 |
3
|
Multifunctionality of lunasin and peptides released during its simulated gastrointestinal digestion. Food Res Int 2019; 125:108513. [PMID: 31554062 DOI: 10.1016/j.foodres.2019.108513] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
Oxidative stress, inflammation, and hypertension are recognized risk factors for non-communicable diseases. Because of the preventable character of these factors, the searching of dietary compounds with counteracting effects against them would provide a new framework for the development of novel multifunctional foods or nutraceuticals. Lunasin is a naturally occurring soybean peptide with chemopreventive and anti-inflammatory properties. Upon oral intake, lunasin is susceptible to the action of digestive enzymes during its transit through gastrointestinal tract. In spite of its cleavage into smaller peptides, these fragments have been suggested to contribute on the health beneficial effects attributed to lunasin. To confirm this hypothesis, the multifunctionality of lunasin derived-fragments was investigated. In vitro, peptides corresponding to the N-terminal and central regions of lunasin were demonstrated to inhibit angiotensin converting enzyme and to scavenge peroxyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radicals. Moreover, lunasin and fragments released during its gastrointestinal digestion exerted potent protective effects on cell viability and oxidative status in macrophages RAW264.7 challenged with chemicals tert-butylhydroperoxide and hydrogen peroxide. These peptides were also able to reduce the nitric oxide production in pro-inflammatory lipopolysaccharide-induced macrophages. These results confirm the promising role of lunasin and its derived-fragments as protective agents against oxidative damage and inflammation-associated diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
32 |
4
|
The soy-derived peptide Lunasin inhibits invasive potential of melanoma initiating cells. Oncotarget 2018; 8:25525-25541. [PMID: 28424421 PMCID: PMC5421948 DOI: 10.18632/oncotarget.16066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Lunasin is a 44 amino acid peptide with multiple functional domains including an aspartic acid tail, an RGD domain, and a chromatin-binding helical domain. We recently showed that Lunasin induced a phenotype switch of cancer initiating cells (CIC) out of the stem compartment by inducing melanocyte-associated differentiation markers while simultaneously reducing stem-cell-associated transcription factors. In the present study, we advance the hypothesis that Lunasin can reduce pools of melanoma cells with stem cell-like properties, and demonstrate that Lunasin treatment effectively inhibits the invasive potential of CICs in vitro as well as in vivo in a mouse experimental metastasis model. Mice receiving Lunasin treatment had significantly reduced pulmonary colonization after injection of highly metastatic B16-F10 melanoma cells compared to mice in the control group. Mechanistic studies demonstrate that Lunasin reduced activating phosphorylations of the intracellular kinases FAK and AKT as well as reduced histone acetylation of lysine residues in H3 and H4 histones. Using peptides with mutated activity domains, we functionally demonstrated that the RGD domain is necessary for Lunasin uptake and its ability to inhibit oncosphere formation by CICs, thus confirming that Lunasin's ability to affect CICs is at least in part due to the suppression of integrin signaling. Our studies suggest that Lunasin represents a unique anticancer agent that could be developed to help prevent metastasis and patient relapse by reducing the activity of CICs which are known to be resistant to current chemotherapies.
Collapse
|
Journal Article |
7 |
24 |
5
|
Fernández-Tomé S, Hernández-Ledesma B. Current state of art after twenty years of the discovery of bioactive peptide lunasin. Food Res Int 2019; 116:71-78. [PMID: 30716999 DOI: 10.1016/j.foodres.2018.12.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/08/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
Non-communicable diseases have become the medical challenge of the 21st century because of their high incidence and mortality rates. Accumulating evidence has suggested that the modulation of diet and other lifestyle habits is the best strategy for the prevention of these diseases. An increasing number of dietary compounds have been found to exert health promoting benefits beyond their nutritional effects. Among them, lunasin is considered one of the most studied bioactive peptides. Since its discovery in soybean twenty years ago, many researchers around the world have focused their studies on demonstrating the chemopreventive and chemotherapeutic activity of lunasin. Moreover, in the last years, promising protective effects of this peptide against hypercholesterolemia, obesity, metabolic syndrome and associated cardiovascular disorders, and inflammatory and immune-regulated diseases have been described. This review summarizes recent remarkable advances on the use of peptide lunasin as a potential functional ingredient to provide health benefits. Moreover, novel aspects related to the influence of lunasin's digestion and bioavailability, the mechanisms of action proposed to explain the underlying biological properties, and the incorporation of this peptide into nutritional supplements are critically discussed.
Collapse
|
Review |
6 |
22 |
6
|
Dinelli G, Bregola V, Bosi S, Fiori J, Gotti R, Simonetti E, Trozzi C, Leoncini E, Prata C, Massaccesi L, Malaguti M, Quinn R, Hrelia S. Lunasin in wheat: a chemical and molecular study on its presence or absence. Food Chem 2014; 151:520-5. [PMID: 24423565 DOI: 10.1016/j.foodchem.2013.11.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 12/27/2022]
Abstract
Lunasin is a peptide whose anticancer properties are widely reported. Originally isolated from soybean seeds, lunasin was also found in cereal (wheat, rye, barley and Triticale), Solanum and amaranthus seeds. However, it was recently reported that searches of transcript and DNA sequence databases for wheat and other cereals failed to identify sequences with similarity to those encoding the lunasin peptide in soy. In order to clarify the presence or absence of lunasin in wheat varieties, a broad investigation based on chemical (LC-ESI-MS) and molecular (PCR) analyses was conducted. Both approaches pointed out the absence of lunasin in the investigated wheat genotypes; in particular no compounds with a molecular weight similar to that of lunasin standard and no lunasin-related sequences were found in the analysed wheat samples. These findings confirm the hypothesis, reported in recent researches, that lunasin is not a wheat-derived peptide.
Collapse
|
|
11 |
19 |
7
|
Krishnan HB, Wang TTY. An effective and simple procedure to isolate abundant quantities of biologically active chemopreventive Lunasin Protease Inhibitor Concentrate (LPIC) from soybean. Food Chem 2015; 177:120-6. [PMID: 25660866 DOI: 10.1016/j.foodchem.2015.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/08/2014] [Accepted: 01/04/2015] [Indexed: 12/31/2022]
Abstract
Lunasin is a 5-kDa soybean bioactive peptide with demonstrated anti-cancer and anti-inflammatory properties. Recently, purification methods have been developed to obtain gram quantities of lunasin. However, these methods are cumbersome, time consuming and cost-prohibitive. To overcome these constrains we have developed a novel method which involves extraction of soybean flour with 30% ethanol followed by preferential precipitation of lunasin and protease inhibitors by calcium. The calcium precipitated protein fraction, which we termed as Lunasin Protease Inhibitor Concentrate (LPIC), contains three abundant proteins with molecular weights of 21, 14 and 5 kDa. This simple procedure yields 3.2g of LPIC from 100g of soybean flour and the entire isolation procedure can be completed in less than 2h. Treatment of THP-1 human monocyte cell lines with LPIC resulted in suppression of lipopolysaccharide-stimulated cytokine expression, demonstrating that the LPIC isolated by our simple procedure is biologically active.
Collapse
|
|
10 |
12 |
8
|
Hsieh CC, Wang YF, Lin PY, Peng SH, Chou MJ. Seed peptide lunasin ameliorates obesity-induced inflammation and regulates immune responses in C57BL/6J mice fed high-fat diet. Food Chem Toxicol 2020; 147:111908. [PMID: 33290807 DOI: 10.1016/j.fct.2020.111908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 11/15/2022]
Abstract
Obesity causes immune cells to infiltrate into adipose tissues and secrete proinflammatory mediators, promoting the development of chronic diseases. The seed peptide lunasin has been reported to have several bioactivities. We aimed to investigate the immunomodulatory properties of lunasin in obese models. Female and male C57BL/6J mice were divided into three groups: low-fat diet (LF), high-fat diet (HF), and HF with an intraperitoneal injection of lunasin (HFL). In females, lunasin decreased the levels of monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, and tumor necrosis factor (TNF-α) produced in peritoneal macrophages, indicating a decrease in F4/80+ macrophage infiltration, especially the CD11c + M1 phenotype. Serum leptin and tissue-oxidized lipid malondialdehyde levels were decreased in the HFL group. In males, lunasin normalized the obesity-induced increase in spleen size and splenocyte numbers. Moreover, lunasin inhibited IL-6 secretion while promoting interferon gamma (IFN-γ) and IL-2 production in the splenocytes. In vitro, lunasin increased EL-4 T-cell proliferation and IL-2 production in activated T cells under obese conditions. Thus, lunasin is a potential natural compound that promotes immunomodulation in both female and male obese mice in a sex-dependent manner. Furthermore, lunasin mediates the anti-inflammatory response and enhances the T helper type 1 cell response to obesity-related immune disorders.
Collapse
|
|
5 |
12 |
9
|
Zhu Y, Li H, Wang X. Lunasin abrogates monocytes to endothelial cells. Mol Immunol 2017; 92:146-150. [PMID: 29096169 DOI: 10.1016/j.molimm.2017.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 01/05/2023]
Abstract
The adherence of monocytes to endothelial cells plays a causal role in the early development of atherosclerosis and is driven by several inflammatory stimuli, which includes oxidized low-density lipoprotein (ox-LDL). Lunasin, a natural peptide identified in soybean seeds, soy-derived food products, other grains and herbal plants, has been found to exert numerous biological activities, including anti-inflammatory and antioxidant properties. However, little is known regarding the mechanism of action of lunasin in ox-LDL-induced endothelial inflammation. The results of the present study indicate that lunasin significantly ameliorated ox-LDL-induced adhesion of THP-1 monocytes to the surface of human umbilical vein endothelial cells (HUVECs). Lunasin also suppressed expression of the adhesion molecules VCAM-1 and E-selectin, but not ICAM-1. Notably, the inhibitory mechanism of lunasin is associated with its stimulatory effects on expression of the KLF2 transcriptional factor. In addition, lunasin treatment could reverse the effects of ox-LDL on the expression of eNOS and PAI-1, the direct target genes of KLF2. Mechanistically, it was proven that the MEK5/ERK5 pathway mediates the effects of lunasin on KLF2 expression. Taken together, the results of this study suggest that dietary or supplementary intake of lunasin may have a prophylactic or therapeutic capacity in cardiovascular diseases such as atherosclerosis.
Collapse
|
Journal Article |
8 |
12 |
10
|
Hao Y, Fan X, Guo H, Yao Y, Ren G, Lv X, Yang X. Overexpression of the bioactive lunasin peptide in soybean and evaluation of its anti-inflammatory and anti-cancer activities in vitro. J Biosci Bioeng 2020; 129:395-404. [PMID: 31784283 DOI: 10.1016/j.jbiosc.2019.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/15/2019] [Accepted: 11/03/2019] [Indexed: 12/16/2022]
Abstract
Lunasin, a bioactive peptide with a variety of physiological functions, was overexpressed in soybean to generate a transgenic soybean. Polymerase chain reaction (PCR) analysis suggested that lunasin was successfully inserted into the soybean genome, and three transgenic lines, L12, L43, and L45, were selected for further study. Lunasin expression was characterized in the lines by Western blot and ultra-performance liquid chromatography with tandem mass spectrometry. Enzyme-linked immunosorbent assay showed that lunasin content in L12, L43, and L45 lines was 1.47 mg g-1, 1.32 mg g-1 and 1.98 mg g-1, respectively; these values were significantly higher than that in wild-type soybean (0.94 mg g-1). Lunasin enrichments from transgenic soybean (LET) exhibited stronger DPPH, ABTS+, and oxygen radical scavenging activity than lunasin enrichments from wild-type soybean (LEW). Further, LET presented superior anti-inflammatory activity on lipopolysaccharide-induced macrophage cells compared to LEW, and it significantly suppressed the release of nitric oxide (NO) and pro-inflammatory cytokines including interleukin-1 and -6. Moreover, LET showed higher anti-proliferation activity on MDA-MB-231 cells than LEW. Immunofluorescence staining showed that LET could internalize into NIH-3T3 cells, and localize in the nucleus. In conclusion, it is feasible and efficient to produce lunasin through a transgenic soybean expression system. Lunasin overexpressing soybean could be consumed as a functional food in the diets of patients with cancer and obesity in the future.
Collapse
|
|
5 |
12 |
11
|
Bedlack RS, Wicks P, Vaughan T, Opie A, Blum R, Dios A, Sadri-Vakili G. Lunasin does not slow ALS progression: results of an open-label, single-center, hybrid-virtual 12-month trial. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:285-293. [PMID: 30663902 DOI: 10.1080/21678421.2018.1556698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: Lunasin, a soy peptide that reportedly alters histone acetylation in vitro, was associated with a single ALS reversal in the media. Following an ALSUntangled report, we sought to determine whether Lunasin altered histone acetylation and improved progression in people with ALS, and whether patient-centric trial design features might improve enrollment and retention. Methods: This single-center, year-long trial (NCT02709330) featured broad inclusion criteria, historical controls, primarily virtual data collection, and real-time results. Participants measured their own ALSFRS-R score, weight and perceived efficacy, and recorded these monthly on PatientsLikeMe. Blood tests at screening and month 1 assessed alterations in histone H3 and H4 acetylation. The protocol was published online, empowering patients outside the study to self-experiment. Results: Fifty participants enrolled in 5.5 months. Although this population had more advanced disease compared to other trials, retention and adherence were very high. There was no significant effect of Lunasin treatment on histone acetylation or disease progression. A cohort following our protocol outside the trial reported similar side effects and perceived effectiveness; however, their compliance with data entry was markedly lower. Conclusions: While Lunasin's lack of efficacy is disappointing, our novel trial design had the highest ALS trial enrollment rate ever recorded, with excellent retention and adherence. Low data density from patients who are self-experimenting outside a formal protocol casts doubt on the possibility of gathering useful information from unsupervised expanded access programs or "right to try" initiatives.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
11 |
12
|
Mitchell RAC, Lovegrove A, Shewry PR. Lunasin in cereal seeds: What is the origin? J Cereal Sci 2013; 57:267-269. [PMID: 24817784 PMCID: PMC4010285 DOI: 10.1016/j.jcs.2013.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/22/2013] [Accepted: 01/24/2013] [Indexed: 11/08/2022]
Abstract
Lunasin is a peptide from soybean seeds which has been demonstrated to have anticancer properties. It has also been reported in cereal seeds: wheat, rye, barley and Triticale. However, extensive searches of transcriptome and DNA sequence databases for wheat and other cereals have failed to identify sequences encoding either the lunasin peptide or a precursor protein. This raises the question of the origin of the lunasin reported in cereal grain.
Collapse
|
Journal Article |
12 |
11 |
13
|
Drori A, Rotnemer-Golinkin D, Zolotarov L, Ilan Y. Oral Administration of CardioAid and Lunasin Alleviates Liver Damage in a High-Fat Diet Nonalcoholic Steatohepatitis Model. Digestion 2018; 96:110-118. [PMID: 28796993 DOI: 10.1159/000479734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/20/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Several of the drugs in development for treatment of nonalcoholic steatohepatitis (NASH) target liver fibrosis or have side effects that prohibit their long-term use in patients with mild to moderate disease. Lunasin is a soy-derived peptide with anti-inflammatory properties. ADM's CardioAid™ is a plant sterol extract that exerts cholesterol- and triacylglycerol-lowering effects. AIM To determine the immunomodulatory effects of CardioAid and lunasin in a high-fat diet (HFD) animal model of NASH. METHODS C57BL/6 mice on an HFD were orally administered CardioAid or lunasin for 25 weeks. The effects on the immune system, liver function, insulin resistance and lipid profile were studied. RESULTS Treatment with CardioAid and lunasin was associated with a significant decrease in the CD4/CD8 ratio and an increase in CD4+CD25+ lymphocytes. A decrease in interleukin 1-alpha serum levels and an increase in transforming growth factor beta serum levels were noted. These were associated with alleviation of liver damage as indicated by a significant decrease in liver enzymes and improvement in the histological nonalcoholic fatty liver disease activity score (NAS). Decreases in both serum triglyceride and serum glucose levels were observed in treated mice. A decrease in total body fat measured by EchoMRI was also observed in treated mice. CONCLUSIONS CardioAid and lunasin exerted hepatoprotective and glucose-protective effects in an HFD NASH model. These data and the high-safety profiles of CardioAid and Lunasin support their use in patients in the early stages of NASH to prevent deterioration due to the disease.
Collapse
|
|
7 |
10 |
14
|
Aleksis R, Jaudzems K, Muceniece R, Liepinsh E. Lunasin is a redox sensitive intrinsically disordered peptide with two transiently populated α-helical regions. Peptides 2016; 85:56-62. [PMID: 27639324 DOI: 10.1016/j.peptides.2016.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
Lunasin is a 43 amino acid peptide with anti-cancer, antioxidant, anti-inflammatory and cholesterol-lowering properties. Although the mechanism of action of lunasin has been characterized to some extent, its exact three-dimensional structure as well as the function of the N-terminal sequence remains unknown. We established a novel method for the production of recombinant lunasin that allows efficient isotope labeling for NMR studies. Initial studies showed that lunasin can exist in a reduced or oxidized state with an intramolecular disulfide bond depending on solution conditions. The structure of both forms of the peptide at pH 3.5 and 6.5 was characterized by CD spectroscopy and multidimensional NMR methods. The data indicate that lunasin belongs to the class of intrinsically disordered proteins. The analysis of secondary structure propensities indicates the presence of two helical regions and an extended (beta strand) conformation at the C-terminus. We hypothesize that the transient secondary structure elements could be stabilized upon interaction with the histones H3 and H4. The newly discovered redox properties of lunasin could explain its antioxidant and anti-inflammatory activity.
Collapse
|
|
9 |
9 |
15
|
Muceniece R, Namniece J, Nakurte I, Jekabsons K, Riekstina U, Jansone B. Pharmacological research on natural substances in Latvia: Focus on lunasin, betulin, polyprenol and phlorizin. Pharmacol Res 2016; 113:760-770. [PMID: 27109319 DOI: 10.1016/j.phrs.2016.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 01/08/2023]
Abstract
In this concise review the current research in plant bioactive compound studies in Latvia is described. The paper summarizes recent studies on substances from edible plants (e.g., cereals and apples) or their synthetic analogues, such as peptide lunasin, as well as substances isolated from inedible plants (e.g., birch and conifer), such as pentacyclic triterpenes (e.g., betulin, betulinic acid, and lupeol) and polyprenols. Latvian researchers have been first to demonstrate the presence of lunasin in triticale and oats. Additionally, the impact of genotype on the levels of lunasin in cereals was shown. Pharmacological studies have revealed effects of lunasin and synthetic triterpenes on the central nervous system in rodents. We were first to show that synthetic lunasin causes a marked neuroleptic/cataleptic effect and that betulin antagonizes bicuculline-induced seizures (a GABA A receptor antagonist). Studies on the mechanisms of action showed that lunasin binds to dopamine D1 receptors and betulin binds to melanocortin and gamma-aminobutyric acid A receptors therefore we suggest that these receptors play an essential role in lunasin's and betulin's central effects. Recent studies on conifer polyprenols demonstrated the ability of polyprenols to prevent statin-induced muscle weakness in a rat model. Another study on plant compounds has demonstrated the anti-hyperglycemic activity of phlorizin-containing unripe apple pomace in healthy volunteers. In summary, research into plant-derived compounds in Latvia has been focused on fractionating, isolating and characterizing of lunasin, triterpenes, polyprenols and phlorizin using in vitro, and in vivo assays, and human observational studies.
Collapse
|
Review |
9 |
8 |
16
|
Dzirkale Z, Rumaks J, Svirskis S, Mazina O, Allikalt A, Rinken A, Jekabsons K, Muceniece R, Klusa V. Lunasin-induced behavioural effects in mice: focus on the dopaminergic system. Behav Brain Res 2013; 256:5-9. [PMID: 23933157 DOI: 10.1016/j.bbr.2013.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 02/08/2023]
Abstract
The present study for the first time is devoted to identify central effects of synthetic lunasin, a 43 amino acid peptide. A markedly expressed neuroleptic/cataleptic effect was observed at low (0.1-10 nmol/mouse) centrally administered doses in male C57Bl/6 mice. Lunasin considerably reduced the amphetamine hyperlocomotion but weakly apomorphine climbing behaviour. No influence on ketamine and bicuculline effects was observed. Binding assay studies demonstrated modest affinity of lunasin for the dopamine D₁ receptor (Ki=60 ± 15 μM). In a functional assay of cAMP accumulation on live cells lunasin antagonised apomorphine effect on D₁ receptor activation (pEC₅₀=6.1 ± 0.3), but had no effect in cells expressing D₂ receptors. The obtained data suggest that lunasin's action at least in part is provided via dopaminergic D1 receptor pathways. However, other non-identified mechanisms (probably intracellular) may play an important role in lunasin's central action. Nevertheless further studies of lunasin are promising, particularly taking into account a necessity for novel type of antipsychotic drugs.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
6 |
17
|
Alves de Souza SM, Fernandes TVA, Kalume DE, T R Lima LM, Pascutti PG, de Souza TLF. Physicochemical and structural properties of lunasin revealed by spectroscopic, chromatographic and molecular dynamics approaches. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2020; 1868:140440. [PMID: 32376479 DOI: 10.1016/j.bbapap.2020.140440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Lunasin is a 43-amino acid peptide from seeds and grains with bioavailability in humans and potent chemotherapeutic action against several cancer cell lines. Here, we investigate new information about the physicochemical and structural properties of lunasin using circular dichroism (CD), fluorescence spectroscopy, electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS), size exclusion chromatography (SEC), molecular dynamics (MD), and bioinformatics. CD analysis and disorder prediction obtained by PONDR indicate that lunasin has a mostly unordered structure. Double wavelength [θ]222nm x [θ]200nm plot data suggests that lunasin is an intrinsically disordered peptide (IDP) in a pre-molten globule-like (PMG-like) state, while CD spectrum deconvolution and MD simulation indicate small β-strand content. The presence of residual structure was supported by loss of CD signal at 222 nm after treatment with urea and by increasing fluorescence emission upon bis-ANS binding. Lunasin also demonstrated stability to heating up to the temperature of 100 °C, as verified by CD. MD and CD analyses in the presence of TFE and MoRFpred prediction indicated the helix propensity of lunasin. ESI-IMS-MS data revealed that lunasin shows a propensity to form disulfide bonds at the conditions used. MD data also indicated that disulfide bond formation affects the adopted structure, showing a possible role of aspartyl-end in structure stabilization and compaction. In conclusion, our data support a characterization of lunasin as a peptide with an intrinsic disorder in a PMG-like state and reveal new aspects about its structural stability and plasticity, as well as the effects of disulfide bond formation and electrostatic attractions.
Collapse
|
|
5 |
3 |
18
|
Nieto-Veloza A, Zhong Q, Kim WS, D'Souza D, Krishnan HB, Dia VP. Utilization of tofu processing wastewater as a source of the bioactive peptide lunasin. Food Chem 2021; 362:130220. [PMID: 34098437 DOI: 10.1016/j.foodchem.2021.130220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The goal of our study was to design a simple and feasible method to obtain lunasin, a naturally-occurring bioactive peptide, from tofu whey wastewater. A combination of alcoholic precipitation of high-molecular weight proteins from the whey, isoelectric precipitation of lunasin enriched material, and purification via gel filtration chromatography was selected as the best approach using tofu whey prepared at the laboratory scale. This process was applied to tofu whey produced by a local tofu factory and 773 mg of 80% purity lunasin was obtained per kg of dry tofu whey. Significant reduction of nitric oxide, and pro-inflammatory cytokines TNF-α and IL-6 over lipopolysaccharide activated murine macrophages demonstrate its biological activity. Our three-step process is not only simpler and faster than the previously reported methods to obtain lunasin but provides a sustainable approach for the valorization of a waste product, promoting the better utilization of soybean nutrients and active compounds.
Collapse
|
|
4 |
2 |
19
|
Kusmardi K, Wiyarta E, Rusdi NK, Maulana AM, Estuningtyas A, Sunaryo H. The potential of lunasin extract for the prevention of breast cancer progression by upregulating E-Cadherin and inhibiting ICAM-1. F1000Res 2021; 10:902. [PMID: 34691393 PMCID: PMC8506221 DOI: 10.12688/f1000research.55385.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Research in natural substances for their anticancer potential has become increasingly popular. Lunasin, a soybean protein, is known to inhibit cancer progression via various pathways. The aim of this study was to investigate the effect of Lunasin Extract (LE) on the expression of Intercellular Adhesion Molecule 1 (ICAM-1) and epithelial cadherins (E-Cadherin) in breast cancer. Methods: In this true-experimental in vivo study, 24 Sprague-Dawley rats that were induced by 7,12-Dimethylbenz[a]anthracene (DMBA), were used. Based on the therapy given, the groups were divided into, normal, positive control (PC), negative control (NC), adjuvant, curative, and preventive. Lunasin was extracted from soybean seeds of the Grobogan variety in Indonesia. Tissue samples were obtained, processed, stained with anti-ICAM-1 and anti-E-Cadherin antibodies, examined under a microscope, and quantified using H-score. The data were analyzed using ANOVA, which was then followed by Duncan's test. Results: Statistically significant difference in ICAM-1 expression was observed between the following groups: adjuvant and NC, normal and NC, PC and NC, adjuvant and preventive, normal and preventive, PC and preventive, adjuvant and curative, normal and curative, PC and curative. E-Cadherin expression was significantly different between preventive and NC, adjuvant and NC, PC and NC, normal and NC, adjuvant and curative, PC and curative, normal and curative, normal and preventive. Significant negative correlation was found between ICAM-1 and E-Cadherin [-0.616 (-0.8165; -0.283)] with p = 0.001. Conclusion: Preventive dose of LE was able to reduce ICAM-1 expression while increasing E-Cadherin expression.
Collapse
|
research-article |
4 |
2 |
20
|
Huang PY, Chiang CC, Huang CY, Lin PY, Kuo HC, Kuo CH, Hsieh CC. Lunasin ameliorates glucose utilization in C2C12 myotubes and metabolites profile in diet-induced obese mice benefiting metabolic disorders. Life Sci 2023; 333:122180. [PMID: 37848083 DOI: 10.1016/j.lfs.2023.122180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
AIMS Obesity is the main cause of low-grade inflammation and oxidation, resulting in insulin resistance. This study aimed to investigate the effects of a seed peptide lunasin on glucose utilization in C2C12 myotubes and the metabolite profiles in obese mice. MAIN METHODS C2C12 myotubes were challenged by palmitic acid (PA) to mimic the obese microenvironment and inflammation, cell vitality, and glucose utilization were determined. C57BL6/j mice were divided into low-fat diet (LF), high-fat diet (HF), and HF with intraperitoneally injected lunasin (HFL) groups. Glucose intolerance and metabolite profiles of the tissues were analyzed. KEY FINDINGS In vitro, C2C12 myotubes treated with lunasin showed decreased proinflammatory cytokines and increased cell vitality under palmitic acid conditions. Lunasin improved glucose uptake and glucose transporter 4 expression by activating insulin receptor substrate-1 and AKT phosphorylation. Next-generation sequencing revealed that lunasin regulates genes expression by promoting insulin secretion and decreasing oxidative stress. In vivo, HF mice showed increased tricarboxylic acid cycle and uric acid metabolites but decreased bile acids metabolites and specific amino acids. Lunasin intervention improved glucose intolerance and modulated metabolites associated with increased insulin sensitivity and decreased metabolic disorders. SIGNIFICANCE This study is the first to reveal that lunasin is a promising regulator of anti-inflammation, anti-oxidation, and glucose utilization in myotubes and ameliorating glucose uptake and metabolite profiles in obese mice, contributing to glucose homeostasis and benefiting metabolic disorders.
Collapse
|
|
2 |
2 |
21
|
Fan X, Zhang Z, Hu Y, Richel A, Wang F, Zhang L, Ren G, Zou L. Current research status on the structure, physicochemical properties, bioactivities, and mechanism of soybean-derived bioactive peptide lunasin. Food Chem 2025; 479:143836. [PMID: 40090200 DOI: 10.1016/j.foodchem.2025.143836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Since the 21st century, chronic diseases have become a worldwide health problem due to their high morbidity and mortality. Soybean bioactive substances, especially soybean peptides, are considered to have health benefits beyond nutritional effects. As the most studied peptide in soybean, lunasin has been proven to exert beneficial effects on various chronic disorders. This review summarizes the content of lunasin in soybeans, soy derived foods, and other crops, as well as its structural characteristics and bioavailability. Moreover, we focused on the relationship between the physicochemical characteristics and structural composition of lunasin, and its significance for the bioactivities of lunasin. Ultimately, the therapeutic effects of lunasin on cancer, oxidative stress, inflammation, immune response, and hyperlipidemia were described, as well as the molecular mechanisms involved in these impacts. In conclusion, lunasin is a promising multifunctional bioactive peptide, yet further research is required to optimize and expedite its application in the food industry.
Collapse
|
Review |
1 |
|