1
|
Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much More than M1 and M2 Macrophages, There are also CD169(+) and TCR(+) Macrophages. Front Immunol 2015; 6:263. [PMID: 26074923 PMCID: PMC4443739 DOI: 10.3389/fimmu.2015.00263] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Monocytes are considered to be precursor cells of the mononuclear phagocytic system, and macrophages are one of the leading members of this cellular system. Macrophages play highly diverse roles in maintaining an organism's integrity by either directly participating in pathogen elimination or repairing tissue under sterile inflammatory conditions. There are different subpopulations of macrophages and each one has its own characteristics and functions. In this review, we summarize present knowledge on the polarization of macrophages that allows the generation of subpopulations called classically activated macrophages or M1 and alternative activated macrophages or M2. Furthermore, there are macrophages that their origin and characterization still remain unclear but have been involved as main players in some human pathologies. Thus, we also review three other categories of macrophages: tumor-associated macrophages, CD169(+) macrophages, and the recently named TCR(+) macrophages. Based on the literature, we provide information on the molecular characterization of these macrophage subpopulations and their specific involvement in several human pathologies such as cancer, infectious diseases, obesity, and asthma. The refined characterization of the macrophage subpopulations can be useful in designing new strategies, supplementing those already established for the treatment of diseases using macrophages as a therapeutic target.
Collapse
|
Review |
10 |
341 |
2
|
Wu H, Zheng J, Xu S, Fang Y, Wu Y, Zeng J, Shao A, Shi L, Lu J, Mei S, Wang X, Guo X, Wang Y, Zhao Z, Zhang J. Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J Neuroinflammation 2021; 18:2. [PMID: 33402181 PMCID: PMC7787000 DOI: 10.1186/s12974-020-02041-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Microglial/macrophage activation and neuroinflammation are key cellular events following TBI, but the regulatory and functional mechanisms are still not well understood. Myeloid-epithelial-reproductive tyrosine kinase (Mer), a member of the Tyro-Axl-Mer (TAM) family of receptor tyrosine kinases, regulates multiple features of microglial/macrophage physiology. However, its function in regulating the innate immune response and microglial/macrophage M1/M2 polarization in TBI has not been addressed. The present study aimed to evaluate the role of Mer in regulating microglial/macrophage M1/M2 polarization and neuroinflammation following TBI. METHODS The controlled cortical impact (CCI) mouse model was employed. Mer siRNA was intracerebroventricularly administered, and recombinant protein S (PS) was intravenously applied for intervention. The neurobehavioral assessments, RT-PCR, Western blot, magnetic-activated cell sorting, immunohistochemistry and confocal microscopy analysis, Nissl and Fluoro-Jade B staining, brain water content measurement, and contusion volume assessment were performed. RESULTS Mer is upregulated and regulates microglial/macrophage M1/M2 polarization and neuroinflammation in the acute stage of TBI. Mechanistically, Mer activates the signal transducer and activator of transcription 1 (STAT1)/suppressor of cytokine signaling 1/3 (SOCS1/3) pathway. Inhibition of Mer markedly decreases microglial/macrophage M2-like polarization while increases M1-like polarization, which exacerbates the secondary brain damage and sensorimotor deficits after TBI. Recombinant PS exerts beneficial effects in TBI mice through Mer activation. CONCLUSIONS Mer is an important regulator of microglial/macrophage M1/M2 polarization and neuroinflammation, and may be considered as a potential target for therapeutic intervention in TBI.
Collapse
|
Journal Article |
4 |
197 |
3
|
Sun D, Yu Z, Fang X, Liu M, Pu Y, Shao Q, Wang D, Zhao X, Huang A, Xiang Z, Zhao C, Franklin RJ, Cao L, He C. LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep 2017; 18:1801-1816. [PMID: 28808113 PMCID: PMC5623836 DOI: 10.15252/embr.201643668] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022] Open
Abstract
The regulation of inflammation is pivotal for preventing the development or reoccurrence of multiple sclerosis (MS). A biased ratio of high‐M1 versus low‐M2 polarized microglia is a major pathological feature of MS. Here, using microarray screening, we identify the long noncoding RNA (lncRNA) GAS5 as an epigenetic regulator of microglial polarization. Gain‐ and loss‐of‐function studies reveal that GAS5 suppresses microglial M2 polarization. Interference with GAS5 in transplanted microglia attenuates the progression of experimental autoimmune encephalomyelitis (EAE) and promotes remyelination in a lysolecithin‐induced demyelination model. In agreement, higher levels of GAS5 are found in amoeboid‐shaped microglia in MS patients. Further, functional studies demonstrate that GAS5 suppresses transcription of TRF4, a key factor controlling M2 macrophage polarization, by recruiting the polycomb repressive complex 2 (PRC2), thereby inhibiting M2 polarization. Thus, GAS5 may be a promising target for the treatment of demyelinating diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
178 |
4
|
Kishore A, Petrek M. Roles of Macrophage Polarization and Macrophage-Derived miRNAs in Pulmonary Fibrosis. Front Immunol 2021; 12:678457. [PMID: 34489932 PMCID: PMC8417529 DOI: 10.3389/fimmu.2021.678457] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
This mini-review summarizes the current evidence for the role of macrophage activation and polarization in inflammation and immune response pertinent to interstitial lung disease, specifically pulmonary fibrosis. In the fibrosing lung, the production and function of inflammatory and fibrogenic mediators involved in the disease development have been reported to be regulated by the effects of polarized M1/M2 macrophage populations. The M1 and M2 macrophage phenotypes were suggested to correspond with the pro-inflammatory and pro-fibrogenic signatures, respectively. These responses towards tissue injury followed by the development and progression of lung fibrosis are further regulated by macrophage-derived microRNAs (miRNAs). Besides cellular miRNAs, extracellular exosomal-miRNAs derived from M2 macrophages have also been proposed to promote the progression of pulmonary fibrosis. In a future perspective, harnessing the noncoding miRNAs with a key role in the macrophage polarization is, therefore, suggested as a promising therapeutic strategy for this debilitating disease.
Collapse
|
Review |
4 |
153 |
5
|
Lee JW, Chun W, Lee HJ, Min JH, Kim SM, Seo JY, Ahn KS, Oh SR. The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases. Cells 2021; 10:897. [PMID: 33919784 PMCID: PMC8070705 DOI: 10.3390/cells10040897] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages play an important role in the innate and adaptive immune responses of organ systems, including the lungs, to particles and pathogens. Cumulative results show that macrophages contribute to the development and progression of acute or chronic inflammatory responses through the secretion of inflammatory cytokines/chemokines and the activation of transcription factors in the pathogenesis of inflammatory lung diseases, such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), ARDS related to COVID-19 (coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)), allergic asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). This review summarizes the functions of macrophages and their associated underlying mechanisms in the development of ALI, ARDS, COVID-19-related ARDS, allergic asthma, COPD, and IPF and briefly introduces the acute and chronic experimental animal models. Thus, this review suggests an effective therapeutic approach that focuses on the regulation of macrophage function in the context of inflammatory lung diseases.
Collapse
|
Review |
4 |
142 |
6
|
Lee JH, Wei ZZ, Cao W, Won S, Gu X, Winter M, Dix TA, Wei L, Yu SP. Regulation of therapeutic hypothermia on inflammatory cytokines, microglia polarization, migration and functional recovery after ischemic stroke in mice. Neurobiol Dis 2016; 96:248-260. [PMID: 27659107 PMCID: PMC5161414 DOI: 10.1016/j.nbd.2016.09.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/30/2016] [Accepted: 09/17/2016] [Indexed: 01/08/2023] Open
Abstract
Stroke is a leading threat to human life and health in the US and around the globe, while very few effective treatments are available for stroke patients. Preclinical and clinical studies have shown that therapeutic hypothermia (TH) is a potential treatment for stroke. Using novel neurotensin receptor 1 (NTR1) agonists, we have demonstrated pharmacologically induced hypothermia and protective effects against brain damages after ischemic stroke, hemorrhage stroke, and traumatic brain injury (TBI) in rodent models. To further characterize the mechanism of TH-induced brain protection, we examined the effect of TH (at ±33°C for 6h) induced by the NTR1 agonist HPI-201 or physical (ice/cold air) cooling on inflammatory responses after ischemic stroke in mice and oxygen glucose deprivation (OGD) in cortical neuronal cultures. Seven days after focal cortical ischemia, microglia activation in the penumbra reached a peak level, which was significantly attenuated by TH treatments commenced 30min after stroke. The TH treatment decreased the expression of M1 type reactive factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-12, IL-23, and inducible nitric oxide synthase (iNOS) measured by RT-PCR and Western blot analyses. Meanwhile, TH treatments increased the expression of M2 type reactive factors including IL-10, Fizz1, Ym1, and arginase-1. In the ischemic brain and in cortical neuronal/BV2 microglia cultures subjected to OGD, TH attenuated the expression of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α), two key chemokines in the regulation of microglia activation and infiltration. Consistently, physical cooling during OGD significantly decreased microglia migration 16h after OGD. Finally, TH improved functional recovery at 1, 3, and 7days after stroke. This study reveals the first evidence for hypothermia mediated regulation on inflammatory factor expression, microglia polarization, migration and indicates that the anti-inflammatory effect is an important mechanism underlying the brain protective effects of a TH therapy.
Collapse
|
research-article |
9 |
117 |
7
|
Astragalus polysaccharides (PG2) Enhances the M1 Polarization of Macrophages, Functional Maturation of Dendritic Cells, and T Cell-Mediated Anticancer Immune Responses in Patients with Lung Cancer. Nutrients 2019; 11:nu11102264. [PMID: 31547048 PMCID: PMC6836209 DOI: 10.3390/nu11102264] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Recently, we demonstrated that Astragalus polysaccharide (PG2), the active ingredient in dried roots of astragalus membranaceus, ameliorates cancer symptom clusters and improves quality of life (QoL) in patients with metastatic disease by modulating inflammatory cascade against the background roles of inflammatory cells, including macrophages, dendritic cells (DCs), and cytotoxic T lymphocytes (CTLs) in tumor initiation, metastasis, and progression. Nevertheless, the role of PG2 in the modulation of anticancer immunogenicity and therapeutic response remains relatively underexplored and unclear. Purpose: The present study investigates how and to what extent PG2 modulates cellular and biochemical components of the inflammatory cascade and enhances anticancer immunity, as well as the therapeutic implication of these bio-events in patients with lung cancer. Methods and Results: Herein, we demonstrated that PG2 significantly increased the M1/M2 macrophage polarization ratio in non-small cell carcinoma (NSCLC) H441 and H1299 cells. This PG2-induced preferential pharmacologic up-regulation of tumoral M1 population in vitro positively correlated with the downregulation of tumor-promoting IL-6 and IL-10 expression in NSCLC cell-conditioned medium, with concomitant marked inhibition of cell proliferation, clonogenicity, and tumorsphere formation. Our ex vivo results, using clinical sample from our NSCLC cohort, demonstrated that PG2 also promoted the functional maturation of DCs with consequent enhancement of T cell-mediated anticancer immune responses. Consistent with the in vitro and ex vivo results, our in vivo studies showed that treatment with PG2 elicited significant time-dependent depletion of the tumor-associated M2 population, synergistically enhanced the anti-M2-based anticancer effect of cisplatin, and inhibited xenograft tumor growth in the NSCLC mice models. Moreover, in the presence of PG2, cisplatin-associated dyscrasia and weight-loss was markedly suppressed. Conclusion: These results do indicate a therapeutically-relevant role for PG2 in modulating the M1/M2 macrophage pool, facilitating DC maturation and synergistically enhancing the anticancer effect of conventional chemotherapeutic agent, cisplatin, thus laying the foundation for further exploration of the curative relevance of PG2 as surrogate immunotherapy and/or clinical feasibility of its use for maintenance therapy in patients with lung cancer.
Collapse
|
Journal Article |
6 |
107 |
8
|
Zhao R, Ying M, Gu S, Yin W, Li Y, Yuan H, Fang S, Li M. Cysteinyl Leukotriene Receptor 2 is Involved in Inflammation and Neuronal Damage by Mediating Microglia M1/M2 Polarization through NF-κB Pathway. Neuroscience 2019; 422:99-118. [PMID: 31726033 DOI: 10.1016/j.neuroscience.2019.10.048] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Microglia activation plays a key role in regulating inflammatory and immune reaction during cerebral ischemia and it exerts pro-inflammatory or anti-inflammatory effect depending on M1/M2 polarization phenotype. Cysteinyl leukotriene 2 receptor (CysLT2R) is a potent inflammatory mediator receptor, and involved in cerebral ischemic injury, but the mechanism of CysLT2R regulating inflammation and neuron damage remains unclear. Here, we found that LPS and CysLT2R agonist NMLTC4 significantly increased microglia proliferation and phagocytosis, up-regulated the mRNA expression of M1 polarization markers (IL-1β, TNF-α, IFN-γ, CD86 and iNOS), down-regulated the expression of M2 polarization markers (Arg-1, CD206, TGF-β, IL-10, Ym-1) and increased the release of IL-1β and TNF-α. CysLT2R selective antagonist HAMI3379 could antagonize these effects. IL-4 significantly up-regulated the mRNA expression of M2 polarization markers, and HAMI3379 further increased IL-4-induced up-regulation of M2 polarization markers expression. Additionally, LPS and NMLTC4 stimulated NF-κB p50 and p65 proteins expression, and promoted p50 transfer to the nucleus. Pre-treatment with HAMI3379 and NF-κB signaling inhibitor Bay 11-7082 could reverse the up-regulation of p50 and p65 proteins expression, and inhibited p50 transfer to the nucleus. The conditional medium of BV-2 cells contained HAMI3379 could inhibit SH-SY5Y cells apoptosis induced by LPS and NMLTC4. These results were further confirmed in primary microglia. The findings indicate that CysLT2R was involved in inflammation and neuronal damage by inducing the activation of microglia M1 polarization and NF-κB pathway, inhibiting microglia M1 polarization and promoting microglia polarization toward M2 phenotype which may exerts neuroprotective effects, and targeting CysLT2R may be a new therapeutic strategy against cerebral ischemia stroke.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
79 |
9
|
Won S, Lee JK, Stein DG. Recombinant tissue plasminogen activator promotes, and progesterone attenuates, microglia/macrophage M1 polarization and recruitment of microglia after MCAO stroke in rats. Brain Behav Immun 2015; 49:267-79. [PMID: 26093305 DOI: 10.1016/j.bbi.2015.06.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/20/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Tissue plasminogen activator (tPA) is one of the few approved treatments for stroke, but its effects on the phenotype of microglia/macrophages are poorly understood. One of its side effects is an increase in the inflammatory response leading to neuronal cell damage and death in the ischemic cascade after stroke. Injury-induced activated microglia/macrophages can have dual functions as pro-inflammatory (M1) and anti-inflammatory (M2) factors in brain injury and repair. Recent studies show that progesterone (PROG) is a potent anti-inflammatory agent which affects microglia/macrophage expression after brain injury. PURPOSE We examined the interaction of tPA-induced expression of microglia/macrophage phenotypes and PROG's anti-inflammatory effects. RESULTS tPA treatment increased the recruitment of microglia/macrophages, the polarity of M1 reactions, the expression of MIP-1α in neurons and capillaries, and the expression of MMP-3 compared to vehicle, and PROG modulated these effects. CONCLUSIONS PROG treatment attenuates tPA-induced inflammatory alterations in brain capillaries and microglia/macrophages both in vivo and in vitro and thus may be a useful adjunct therapy when tPA is given for stroke.
Collapse
|
|
10 |
68 |
10
|
Ding N, Wang Y, Dou C, Liu F, Guan G, Wei K, Yang J, Yang M, Tan J, Zeng W, Zhu C. Physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway. J Cell Physiol 2018; 234:8788-8796. [PMID: 30317606 DOI: 10.1002/jcp.27537] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
The in vitro and in vivo effects of physalin D on macrophage M1/M2 polarization were investigated. In silico analysis was first performed for biological function prediction of different physalins. The results suggest physalins have similar predicted biological functions due to their similarities in chemical structures. The cytotoxicity of physalins was then analyzed based on cell apoptosis rate and cell viability evaluation. Physalin D was chosen for further study due to its minimal cytotoxicity. Bone marrow macrophages were isolated and induced with lipopolysaccharide/interferon (IFN)-γ for M1 polarization and interleukin (IL)-4/IL-13 for M2 polarization. The results showed that physalin D can repolarize M1 phenotype cells toward M2 phenotype. In addition, physalin D is protective in M2 macrophages to maintain the M2 phenotype in the presence of IFN-γ. On the molecular level, we found that physalin D suppressed the signal transducers and activators of transcription (STAT)1 activation and blocked STAT1 nuclear translocation. Conversely, physalin D can also activate STAT6 and enhance STAT6 nuclear translocation for M2 polarization. Taken together, these results suggested that physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
62 |
11
|
Kim S, Son Y. Astrocytes Stimulate Microglial Proliferation and M2 Polarization In Vitro through Crosstalk between Astrocytes and Microglia. Int J Mol Sci 2021; 22:ijms22168800. [PMID: 34445510 PMCID: PMC8396240 DOI: 10.3390/ijms22168800] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia are resident immune cells of the central nervous system that act as brain-specific macrophages and are also known to regulate the innate immune functions of astrocytes through secretory molecules. This communication plays an important role in brain functions and homeostasis as well as in neuropathologic disease. In this study, we aimed to elucidate whether astrocytes and microglia could crosstalk to induce microglial polarization and proliferation, which can be further regulated under a microenvironment mimicking that of brain stroke. Microglia in a mixed glial culture showed increased survival and proliferation and were altered to M2 microglia; CD11b−GFAP+ astrocytes resulted in an approximately tenfold increase in microglial cell proliferation after the reconstitution of astrocytes. Furthermore, GM-CSF stimulated microglial proliferation approximately tenfold and induced them to become CCR7+ M1 microglia, which have a phenotype that could be suppressed by anti-inflammatory cytokines such as IL-4, IL-10, and substance P. In addition, the astrocytes in the microglial co-culture showed an A2 phenotype; they could be activated to A1 astrocytes by TNF-α and IFN-γ under the stroke-mimicking condition. Altogether, astrocytes in the mixed glial culture stimulated the proliferation of the microglia and M2 polarization, possibly through the acquisition of the A2 phenotype; both could be converted to M1 microglia and A1 astrocytes under the inflammatory stroke-mimicking environment. This study demonstrated that microglia and astrocytes could be polarized to M2 microglia and A2 astrocytes, respectively, through crosstalk in vitro and provides a system with which to explore how microglia and astrocytes may behave in the inflammatory disease milieu after in vivo transplantation.
Collapse
|
|
4 |
55 |
12
|
Aldose Reductase Regulates Microglia/Macrophages Polarization Through the cAMP Response Element-Binding Protein After Spinal Cord Injury in Mice. Mol Neurobiol 2014; 53:662-676. [PMID: 25520004 DOI: 10.1007/s12035-014-9035-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/30/2014] [Indexed: 01/18/2023]
Abstract
Inflammatory reactions are the most critical pathological processes occurring after spinal cord injury (SCI). Activated microglia/macrophages have either detrimental or beneficial effects on neural regeneration based on their functional polarized M1/M2 subsets. However, the mechanism of microglia/macrophage polarization to M1/M2 at the injured spinal cord environment remains unknown. In this study, wild-type (WT) or aldose reductase (AR)-knockout (KO) mice were subjected to SCI by a spinal crush injury model. The expression pattern of AR, behavior tests for locomotor activity, and lesion size were assessed at between 4 h and 28 days after SCI. We found that the expression of AR is upregulated in microglia/macrophages after SCI in WT mice. In AR KO mice, SCI led to smaller injury lesion areas compared to WT. AR deficiency-induced microglia/macrophages induce the M2 rather than the M1 response and promote locomotion recovery after SCI in mice. In the in vitro experiments, microglia cell lines (N9 or BV2) were treated with the AR inhibitor (ARI) fidarestat. AR inhibition caused 4-hydroxynonenal (HNE) accumulation, which induced the phosphorylation of the cAMP response element-binding protein (CREB) to promote Arg1 expression. KG501, the specific inhibitor of phosphorylated CREB, could cancel the upregulation of Arg1 by ARI or HNE stimulation. Our results suggest that AR works as a switch which can regulate microglia by polarizing cells to either the M1 or the M2 phenotype under M1 stimulation based on its states of activity. We suggest that inhibiting AR may be a promising therapeutic method for SCI in the future.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
52 |
13
|
Molecular profiling of the tumor microenvironment in glioblastoma patients: correlation of microglia/macrophage polarization state with metalloprotease expression profiles and survival. Biosci Rep 2019; 39:BSR20182361. [PMID: 31142630 PMCID: PMC6616040 DOI: 10.1042/bsr20182361] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/06/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Due to poor prognosis of glioblastoma (GBM), there is an urgent need to develop new therapeutic strategies. Besides eliminating GBM tumor cells and stem cells, a novel therapeutic approach aims to target Glioma-associated microglia/macrophages (GAMs). We investigated the molecular profile of GAMs correlated with patient prognosis by exploiting M1/M2-like polarization markers in a cohort of 20 GBM patients. Using quantitative PCR (qPCR), the markers CXCL10 (M1) and CCL13 (M2) were validated in human macrophages and applied to a global analysis of GBM tissue. Furthermore, proteinase genes, known to be associated with GBM progression (ADAM8, MMP9, MMP14, ADAM10, ADAM17), were analyzed in correlation to M1/M2 markers. Notably, expression levels of ADAM10 and ADAM17 are significantly correlated with an M1-like phenotype and are positively associated to patient survival. Whilst ADAM8 mRNA expression was equally correlated with M1- and M2-like markers, genes for MMP9 and MMP14 are significantly associated with an M2-like phenotype and association to impaired prognosis in the GBM patient cohort. Thus, we provide a robust and reliable combination of qPCR markers to characterize global microglia/macrophage status and the associated proteinase profiles in GBM patients that can be used to analyze the tumor microenvironment, the patients’ prognosis and preselect those GBM patients for which targeting the microglia/macrophage population by repolarization might be beneficial.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
49 |
14
|
Li LL, Dai B, Sun YH, Zhang TT. The activation of IL-17 signaling pathway promotes pyroptosis in pneumonia-induced sepsis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:674. [PMID: 32617294 PMCID: PMC7327349 DOI: 10.21037/atm-19-1739] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Pyroptosis is closely relevant to sepsis. However, the molecular mechanisms of pyroptosis in pneumonia-induced sepsis are still not fully understood. Thus, this study aimed to find the specific molecular pathways associated with pyroptosis and explore their relationship in pneumonia-induced sepsis. Methods First, significant signaling pathways related to pneumonia-induced sepsis were screened by bioinformatics analysis based on GSE48080. The peripheral blood samples from patients with pneumonia-induced sepsis and healthy subjects were collected. Pneumonia-induced sepsis rat models were also established. Then, inflammatory response, pyroptosis, and regulatory T cells (Tregs)/T-helper 17 (Th17), Th1/Th2, and M1/M2 cell ratios in pneumonia-induced sepsis were evaluated. Results IL-17 signaling pathway was significantly related to pneumonia-induced sepsis by bioinformatics analysis. Compared with healthy groups, the higher of Th17/Treg, Th1/Th2 and M1/M2 cell radios in the patients and sepsis rat model indicated that pneumonia-induced sepsis caused a severe inflammatory response. This result was confirmed by higher levels of pro-inflammatory factors (IL-6, TNF-α, IL-1β, and IL-18) and an inflammation indicator (LDH), as well as pyroptosis occurrence in sepsis. Additionally, the up-regulation of key molecules (HMGB1, RAGE, IL-17A, TRAF6 and NK-κB) in the IL-17 signaling pathway suggested the IL-17 pathway was activated. Moreover, the release of IL-1β and IL-18 and the levels of the molecules (NLRP3, NLRC4, Cleaved caspase-1, and Cleaved GSDMD) associated with caspase-1-dependent pyroptosis were up-regulated in pneumonia-induced sepsis. Conclusions As NK-κB activation can promote the development of caspase-1-dependent pyroptosis, these findings suggested that the activation of the IL-17 signaling pathway could promote pyroptosis in pneumonia-induced sepsis.
Collapse
|
Journal Article |
5 |
48 |
15
|
Espinosa-Garcia C, Sayeed I, Yousuf S, Atif F, Sergeeva EG, Neigh GN, Stein DG. Stress primes microglial polarization after global ischemia: Therapeutic potential of progesterone. Brain Behav Immun 2017. [PMID: 28648389 DOI: 10.1016/j.bbi.2017.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the fact that stress is associated with increased risk of stroke and worsened outcome, most preclinical studies have ignored this comorbid factor, especially in the context of testing neuroprotective treatments. Preclinical research suggests that stress primes microglia, resulting in an enhanced reactivity to a subsequent insult and potentially increasing vulnerability to stroke. Ischemia-induced activated microglia can be polarized into a harmful phenotype, M1, which produces pro-inflammatory cytokines, or a protective phenotype, M2, which releases anti-inflammatory cytokines and neurotrophic factors. Selective modulation of microglial polarization by inhibiting M1 or stimulating M2 may be a potential therapeutic strategy for treating cerebral ischemia. Our laboratory and others have shown progesterone to be neuroprotective against ischemic stroke in rodents, but it is not known whether it will be as effective under a comorbid condition of chronic stress. Here we evaluated the neuroprotective effect of progesterone on the inflammatory response in the hippocampus after exposure to stress followed by global ischemia. We focused on the effects of microglial M1/M2 polarization and pro- and anti-inflammatory mediators in stressed ischemic animals. Male Sprague-Dawley rats were exposed to 8 consecutive days of social defeat stress and then subjected to global ischemia or sham surgery. The rats received intraperitoneal injections of progesterone (8mg/kg) or vehicle at 2h post-ischemia followed by subcutaneous injections at 6h and once every 24h post-injury for 7days. The animals were killed at 7 and 14days post-ischemia, and brains were removed and processed to assess outcome measures using histological, immunohistochemical and molecular biology techniques. Pre-ischemic stress (1) exacerbated neuronal loss and neurodegeneration as well as microglial activation in the selectively vulnerable CA1 hippocampal region, (2) dysregulated microglial polarization, leading to upregulation of both M1 and M2 phenotype markers, (3) increased pro-inflammatory cytokine expression, and (4) reduced anti-inflammatory cytokine and neurotrophic factor expression in the ischemic hippocampus. Treatment with progesterone significantly attenuated stress-induced microglia priming by modulating polarized microglia and the inflammatory environment in the hippocampus, the area most vulnerable to ischemic injury. Our findings can be taken to suggest that progesterone holds potential as a candidate for clinical testing in ischemic stroke where high stress may be a contributing factor.
Collapse
|
|
8 |
46 |
16
|
Cheon SY, Kim EJ, Kim JM, Kam EH, Ko BW, Koo BN. Regulation of Microglia and Macrophage Polarization via Apoptosis Signal-Regulating Kinase 1 Silencing after Ischemic/Hypoxic Injury. Front Mol Neurosci 2017; 10:261. [PMID: 28855861 PMCID: PMC5557792 DOI: 10.3389/fnmol.2017.00261] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
Inflammation is implicated in ischemic stroke and is involved in abnormal homeostasis. Activation of the immune system leads to breakdown of the blood-brain barrier and, thereby, infiltration of immune cells into the brain. Upon cerebral ischemia, infiltrated macrophages and microglia (resident CNS immune cell) are activated, change their phenotype to M1 or M2 based on the microenvironment, migrate toward damaged tissue, and are involved in repair or damage. Those of M1 phenotype release pro-inflammatory mediators, which are associated with tissue damage, while those of M2 phenotype release anti-inflammatory mediators, which are related to tissue recovery. Moreover, late inflammation continually stimulates immune cell infiltration and leads to brain infarction. Therefore, regulation of M1/M2 phenotypes under persistent inflammatory conditions after cerebral ischemia is important for brain repair. Herein, we focus on apoptosis signal-regulating kinase 1 (ASK1), which is involved in apoptotic cell death, brain infarction, and production of inflammatory mediators after cerebral ischemia. We hypothesized that ASK1 is involved in the polarization of M1/M2 phenotype and the function of microglia and macrophage during the late stage of ischemia/hypoxia. We investigated the effects of ASK1 in mice subjected to middle cerebral artery occlusion and on BV2 microglia and RAW264.7 macrophage cell lines subjected to oxygen-glucose deprivation. Our results showed that ASK1 silencing effectively reduced Iba-1 or CD11b-positive cells in ischemic areas, suppressed pro-inflammatory cytokines, and increased anti-inflammatory mediator levels at 7 days after cerebral ischemia. In cultured microglia and macrophages, ASK1 inhibition, induced by NQDI-1 drug, decreased the expression and release of M1-associated factors and increased those of M2-associated factors after hypoxia/reperfusion (H/R). At the gene level, ASK1 inhibition suppressed M1-associated genes and augmented M2-associated genes. In gap closure assay, ASK1 inhibition reduced the migration rate of microglia and macrophages after H/R. Taken together, our results provide new information that suggests ASK1 controls the polarization of M1/M2 and the function of microglia and macrophage under sustained-inflammatory conditions. Regulation of persistent inflammation via M1/M2 polarization by ASK1 is a novel strategy for repair after ischemic stroke.
Collapse
|
Journal Article |
8 |
44 |
17
|
Zhao D, Cui W, Liu M, Li J, Sun Y, Shi S, Lin S, Lin Y. Tetrahedral Framework Nucleic Acid Promotes the Treatment of Bisphosphonate-Related Osteonecrosis of the Jaws by Promoting Angiogenesis and M2 Polarization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44508-44522. [PMID: 32924430 DOI: 10.1021/acsami.0c13839] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bisphosphonates are often used to treat osteoporosis, malignant bone metastases, and hypercalcemia. However, it can cause serious adverse reactions, bisphosphonate-related osteonecrosis of the jaw (BRONJ), which seriously affects the quality of life of patients. At present, the treatment of BRONJ is still difficult to reach an agreement, and there is no effective treatment. Therefore, it is very important to find effective treatments. Many studies have shown that the occurrence of BRONJ may be due to unbalanced bone turnover, anti-angiogenesis, bacterial infection, direct tissue toxicity, and abnormal immune function. The previous research results show that tetrahedral framework nucleic acids (tFNAs), a new type of nanomaterial, can promote various biological activities of cells, such as cell proliferation, migration, anti-inflammation and anti-oxidation, and angiogenesis. Therefore, we intend to explore the potential of tFNAs in the treatment of BRONJ through this study. The results show that tFNAs can promote the treatment of BRONJ by promoting angiogenesis and promoting M2 polarization in macrophages and inhibiting M1 polarization both in vitro and in vivo. These results provide a theoretical basis for the application of tFNAs in the treatment of BRONJ and also provide new ideas and methods for the treatment of other diseases based on ischemia and immune disorders.
Collapse
|
Journal Article |
5 |
44 |
18
|
Gui X, Wang H, Wu L, Tian S, Wang X, Zheng H, Wu W. Botulinum toxin type A promotes microglial M2 polarization and suppresses chronic constriction injury-induced neuropathic pain through the P2X7 receptor. Cell Biosci 2020; 10:45. [PMID: 32211150 PMCID: PMC7092425 DOI: 10.1186/s13578-020-00405-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Background Switching microglial polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype represents a novel therapeutic strategy for neuropathic pain (NP). This study aims to investigate whether botulinum toxin type A (BTX-A) regulates microglial M1/M2 polarization by inhibiting P2X7 expression in a rat model of NP. Results The BTX-A administration elevated pain threshold, induced microglial polarization toward the M2 phenotype, and decreased P2X7 protein level in a rat model of NP induced by chronic compression injury (CCI). Lipopolysaccharide (LPS) was used to activate HAPI rat microglial cells as an in vitro inflammatory model and we demonstrated that BTX-A promoted microglial M2 polarization in LPS-stimulated HAPI microglial cells through suppressing P2X7. Conclusions Our results indicate that BTX-A promotes microglial M2 polarization and suppresses CCI-induced NP through inhibiting P2X7 receptor. These findings provide new insights into the mechanism of BTX-A in relieving NP.
Collapse
|
Journal Article |
5 |
42 |
19
|
Mezouar S, Katsogiannou M, Ben Amara A, Bretelle F, Mege JL. Placental macrophages: Origin, heterogeneity, function and role in pregnancy-associated infections. Placenta 2020; 103:94-103. [PMID: 33120051 PMCID: PMC7568513 DOI: 10.1016/j.placenta.2020.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Placental macrophages are a heterogenous population of immune cells present throughout pregnancy. They are essential for maintenance of the homeostatic placenta environment and host defense against infections. The characterization of placental macrophages as well as their activation have been limited for a long time by the lack of convenient tools. The emergence of unbiased methods makes it possible to reappraise the study of placental macrophages. In this review, we discuss the diversity and the functions of placental macrophages to better understand their dysfunctions during placental infections.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
39 |
20
|
Asperlin Inhibits LPS-Evoked Foam Cell Formation and Prevents Atherosclerosis in ApoE -/- Mice. Mar Drugs 2017; 15:md15110358. [PMID: 29135917 PMCID: PMC5706047 DOI: 10.3390/md15110358] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Asperlin is a marine-derived natural product with antifungal and anti-inflammatory activities in vitro. In the present study, we isolated asperlin from a marine Aspergillus versicolor LZD4403 fungus and investigated its anti-atherosclerotic effects in vitro and in vivo. Asperlin significantly inhibited lipopolysaccharides (LPS)- but not oxidated low-density lipoprotein (oxLDL)-evoked foam cell formation and promoted cholesterol efflux in RAW264.7 macrophages. Supplementation with asperlin also suppressed LPS-elicited production of pro-inflammatory factors in RAW264.7 macrophages, decreased the expression levels of iNOS, IL-1β and TNFα, and increased the expression of IL-10 and IL-4, indicating a remarkable shift in M1/M2 macrophages polarization. In vivo experiments in high-fat diet (HFD)-fed ApoE−/− mice showed that oral administration of asperlin for 12 weeks remarkably suppressed atherosclerotic plaque formation in the aorta, as revealed by the reduced aortic dilatation and decreased atherosclerotic lesion area. Asperlin also decreased serum levels of pro-inflammatory factors but showed little impact on blood lipids in ApoE−/− atherosclerotic mice. These results suggested that asperlin is adequate to prevent atherosclerosis in vivo. It may exert atheroprotective function through suppressing inflammation rather than ameliorating dyslipidemia.
Collapse
|
Journal Article |
8 |
37 |
21
|
Khan J, Sharma PK, Mukhopadhaya A. Vibrio cholerae porin OmpU mediates M1-polarization of macrophages/monocytes via TLR1/TLR2 activation. Immunobiology 2015; 220:1199-209. [PMID: 26093918 DOI: 10.1016/j.imbio.2015.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/04/2015] [Accepted: 06/01/2015] [Indexed: 01/01/2023]
Abstract
Polarization of the monocytes and macrophages toward the M1 and M2 states is important for hosts' defense against the pathogens. Moreover, it plays a crucial role to resolve the overwhelming inflammatory responses that can be harmful to the host. Polarization of macrophages/monocytes can be induced by pathogen-associated molecular patterns (PAMPs). PAMP-mediated monocyte/macrophage polarization is important during the infection, as pathogen can suppress host immune system by altering the polarization status of the macrophages/monocytes. OmpU, an outer membrane porin protein of Vibrio cholerae, possesses the ability to induce pro-inflammatory responses in monocytes/macrophages. It is also able to down-regulate the LPS-mediated activation of the monocytes/macrophages. Such observation leads us to believe that OmpU may induce a state that can be called as M1/M2-intermediate state. In the present study, we evaluated a set of M1 and M2 markers in RAW 264.7 murine macrophage cell line, and THP-1 human monocytic cell line, in response to the purified OmpU protein. We observed that OmpU, as a PAMP, induced M1-polarization by activating the Toll-like receptor (TLR) signaling pathway. OmpU induced formation of TLR1/TLR2-heterodimers. OmpU-mediated TLR-activation led to the MyD88 recruitment to the TLR1/TLR2 complex. MyD88, in turn, recruited IRAK1. Ultimately, OmpU-mediated signaling led to the activation and subsequent nuclear translocation of the NFκB p65 subunit. We also observed that blocking of the TLR1, TLR2, IRAK1, and NFκB affected OmpU-mediated production of M1-associated pro-inflammatory cytokines such as TNFα and IL-6.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
35 |
22
|
Wang L, Hu S, Liu Q, Li Y, Xu L, Zhang Z, Cai X, He X. Porcine alveolar macrophage polarization is involved in inhibition of porcine reproductive and respiratory syndrome virus (PRRSV) replication. J Vet Med Sci 2017; 79:1906-1915. [PMID: 28924090 PMCID: PMC5709573 DOI: 10.1292/jvms.17-0258] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Macrophage polarization is a process by which macrophages acquire a distinct phenotypic and functional profile in response to microenvironmental signals. The classically and alternatively activated (M1 and M2, respectively)
macrophage phenotypes are defined by the specific molecular characteristics induced in response to prototypic pro- and anti-inflammatory cues. In this study, we used LPS/IFN-γ and IL-4 to stimulate porcine alveolar macrophages
(PAMs) in vitro and investigated the expression changes of several novel markers during macrophage polarization. Notably, we found that LPS/IFN-γ-stimulated PAMs express prototypical M1 molecules, whereas
IL-4-stimulated PAMs express M2 molecules. We also demonstrated that replication of the highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV) strain HuN4 was effectively suppressed in LPS/IFN-γ-stimulated
M1 PAMs (M1 type), but not IL-4 stimulated M2 PAMs. However, this was not observed with the classic, less pathogenic CH-1a strain. Moreover, we found that M2 marker expression gradually increased after PAM infection with PRRSV,
whereas no significant changes were found with M1 marker expression, suggesting that PRRSV infection may skew macrophage polarization towards an M2 phenotype. Finally, we found that anti-viral cytokine expression was significantly
higher in M1 macrophages than in M2 macrophages or nonpolarized controls. In summary, our results show that PRRSV replication was significantly impaired in M1 PAMs, which may serve as a foundation for further understanding of the
dynamic phenotypic changes during macrophage polarization and their effects on viral infection.
Collapse
|
Journal Article |
8 |
35 |
23
|
Gaire BP, Bae YJ, Choi JW. S1P 1 Regulates M1/M2 Polarization toward Brain Injury after Transient Focal Cerebral Ischemia. Biomol Ther (Seoul) 2019; 27:522-529. [PMID: 31181588 PMCID: PMC6824626 DOI: 10.4062/biomolther.2019.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/16/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
M1/M2 polarization of immune cells including microglia has been well characterized. It mediates detrimental or beneficial roles in neuroinflammatory disorders including cerebral ischemia. We have previously found that sphingosine 1-phospate receptor subtype 1 (S1P1) in post-ischemic brain following transient middle cerebral artery occlusion (tMCAO) can trigger microglial activation, leading to brain damage. Although the link between S1P1 and microglial activation as a pathogenesis in cerebral ischemia had been clearly demonstrated, whether the pathogenic role of S1P1 is associated with its regulation of M1/M2 polarization remains unclear. Thus, this study aimed to determine whether S1P1 was associated with regulation of M1/M2 polarization in post-ischemic brain. Suppressing S1P1 activity with its functional antagonist, AUY954 (5 mg/kg, p.o.), attenuated mRNA upregulation of M1 polarization markers in post-ischemic brain at 1 day and 3 days after tMCAO challenge. Similarly, suppressing S1P1 activity with AUY954 administration inhibited M1-polarizatioin-relevant NF-κB activation in post-ischemic brain. Particularly, NF-κB activation was observed in activated microglia of post-ischemic brain and markedly attenuated by AUY954, indicating that M1 polarization through S1P1 in post-ischemic brain mainly occurred in activated microglia. Suppressing S1P1 activity with AUY954 also increased mRNA expression levels of M2 polarization markers in post-ischemic brain, further indicating that S1P1 could also influence M2 polarization in post-ischemic brain. Finally, suppressing S1P1 activity decreased phosphorylation of M1-relevant ERK1/2, p38, and JNK MAPKs, but increased phosphorylation of M2-relevant Akt, all of which were downstream pathways following S1P1 activation. Overall, these results revealed S1P1-regulated M1/M2 polarization toward brain damage as a pathogenesis of cerebral ischemia.
Collapse
|
research-article |
6 |
34 |
24
|
Wang X, Jiang Y, Li J, Wang Y, Tian Y, Guo Q, Cheng Z. DUSP1 Promotes Microglial Polarization toward M2 Phenotype in the Medial Prefrontal Cortex of Neuropathic Pain Rats via Inhibition of MAPK Pathway. ACS Chem Neurosci 2021; 12:966-978. [PMID: 33666084 DOI: 10.1021/acschemneuro.0c00567] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Shifting microglial polarization from M1 toward M2 phenotype represents a promising therapeutic strategy for neuropathic pain (NP). Dual-specificity phosphatase-1 (DUSP1) is a key component in regulating anti-inflammatory response. The medial prefrontal cortex (mPFC) is implicated in emotional disorders associated with NP and constitutes a neuroanatomical substrate for exploring mechanisms underlying NP. This study aims to investigate whether DUSP1 regulates microglial M1/M2 polarization in the mPFC in a rat model of NP. Rat model of NP was established by chronic constriction injury (CCI) of the rat sciatic nerve. Lipopolysaccharide (LPS) was used to activate HAPI rat microglial cells as an in vitro inflammatory model. CCI-induced decreased pain threshold, increased cell apoptosis in mPFC, elevated pro-inflammatory M1/M2 microglia ratio, and activated MAPK signaling in the mPFC of rats. Importantly, intra-mPFC injection of DUSP1-expressing lentivirus counteracted these abnormalities. In vitro assay further confirmed that DUSP1 overexpression switched microglial M1 to M2 polarization through inhibition of MAPK signaling activation. DUSP1 switched microglial M1 to M2 polarization in the mPFC and attenuated CCI-induced NP by inhibiting the MAPK signaling.
Collapse
|
Journal Article |
4 |
29 |
25
|
Razi S, Yaghmoorian Khojini J, Kargarijam F, Panahi S, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Macrophage efferocytosis in health and disease. Cell Biochem Funct 2023; 41:152-165. [PMID: 36794573 DOI: 10.1002/cbf.3780] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Creating cellular homeostasis within a defined tissue typically relates to the processes of apoptosis and efferocytosis. A great example here is cell debris that must be removed to prevent unwanted inflammatory responses and then reduce autoimmunity. In view of that, defective efferocytosis is often assumed to be responsible for the improper clearance of apoptotic cells (ACs). This predicament triggers off inflammation and even results in disease development. Any disruption of phagocytic receptors, molecules as bridging groups, or signaling routes can also inhibit macrophage efferocytosis and lead to the impaired clearance of the apoptotic body. In this line, macrophages as professional phagocytic cells take the lead in the efferocytosis process. As well, insufficiency in macrophage efferocytosis facilitates the spread of a wide variety of diseases, including neurodegenerative diseases, kidney problems, types of cancer, asthma, and the like. Establishing the functions of macrophages in this respect can be thus useful in the treatment of many diseases. Against this background, this review aimed to recapitulate the knowledge about the mechanisms related to macrophage polarization under physiological or pathological conditions, and shed light on its interaction with efferocytosis.
Collapse
|
Review |
2 |
29 |