1
|
Assländer J, Cloos MA, Knoll F, Sodickson DK, Hennig J, Lattanzi R. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Med 2018; 79:83-96. [PMID: 28261851 PMCID: PMC5585028 DOI: 10.1002/mrm.26639] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE The proposed reconstruction framework addresses the reconstruction accuracy, noise propagation and computation time for magnetic resonance fingerprinting. METHODS Based on a singular value decomposition of the signal evolution, magnetic resonance fingerprinting is formulated as a low rank (LR) inverse problem in which one image is reconstructed for each singular value under consideration. This LR approximation of the signal evolution reduces the computational burden by reducing the number of Fourier transformations. Also, the LR approximation improves the conditioning of the problem, which is further improved by extending the LR inverse problem to an augmented Lagrangian that is solved by the alternating direction method of multipliers. The root mean square error and the noise propagation are analyzed in simulations. For verification, in vivo examples are provided. RESULTS The proposed LR alternating direction method of multipliers approach shows a reduced root mean square error compared to the original fingerprinting reconstruction, to a LR approximation alone and to an alternating direction method of multipliers approach without a LR approximation. Incorporating sensitivity encoding allows for further artifact reduction. CONCLUSION The proposed reconstruction provides robust convergence, reduced computational burden and improved image quality compared to other magnetic resonance fingerprinting reconstruction approaches evaluated in this study. Magn Reson Med 79:83-96, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
|
research-article |
7 |
137 |
2
|
Buonincontri G, Sawiak SJ. MR fingerprinting with simultaneous B1 estimation. Magn Reson Med 2015; 76:1127-35. [PMID: 26509746 PMCID: PMC5061105 DOI: 10.1002/mrm.26009] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE MR fingerprinting (MRF) can be used for quantitative estimation of physical parameters in MRI. Here, we extend the method to incorporate B1 estimation. METHODS The acquisition is based on steady state free precession MR fingerprinting with a Cartesian trajectory. To increase the sensitivity to the B1 profile, abrupt changes in flip angle were introduced in the sequence. Slice profile and B1 effects were included in the dictionary and the results from two- and three-dimensional (3D) acquisitions were compared. Acceleration was demonstrated using retrospective undersampling in the phase encode directions of 3D data exploiting redundancy between MRF frames at the edges of k-space. RESULTS Without B1 estimation, T2 and B1 were inaccurate by more than 20%. Abrupt changes in flip angle improved B1 maps. T1 and T2 values obtained with the new MRF methods agree with classical spin echo measurements and are independent of the B1 field profile. When using view sharing reconstruction, results remained accurate (error <10%) when sampling under 10% of k-space from the 3D data. CONCLUSION The methods demonstrated here can successfully measure T1, T2, and B1. Errors due to slice profile can be substantially reduced by including its effect in the dictionary or acquiring data in 3D. Magn Reson Med 76:1127-1135, 2016. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
114 |
3
|
Assländer J, Glaser SJ, Hennig J. Pseudo Steady-State Free Precession for MR-Fingerprinting. Magn Reson Med 2016; 77:1151-1161. [PMID: 27079826 DOI: 10.1002/mrm.26202] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 11/10/2022]
Abstract
PURPOSE This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. METHODS Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. RESULTS A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. CONCLUSION The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
|
Journal Article |
9 |
63 |
4
|
Abstract
Mycobacteria as well as other bacteria remodel their ribosomes in response to zinc depletion by replacing zinc-binding ribosomal proteins with zinc-free paralogues, releasing zinc for other metabolic processes. In this study, we show that the remodeled ribosome acquires a structurally stable but functionally inactive and aminoglycoside-resistant state in zinc-starved Mycobacterium smegmatis. Conversely, M. smegmatis cells that are growth arrested in zinc-rich conditions have unstable ribosomes and reduced survival. We further provide evidence for ribosome remodeling in Mycobacterium tuberculosis in host tissues, suggesting that ribosome hibernation occurs during TB infections. Our findings could offer insights into mechanisms of persistence and antibiotic tolerance of mycobacterial infections. Bacteria respond to zinc starvation by replacing ribosomal proteins that have the zinc-binding CXXC motif (C+) with their zinc-free (C−) paralogues. Consequences of this process beyond zinc homeostasis are unknown. Here, we show that the C− ribosome in Mycobacterium smegmatis is the exclusive target of a bacterial protein Y homolog, referred to as mycobacterial-specific protein Y (MPY), which binds to the decoding region of the 30S subunit, thereby inactivating the ribosome. MPY binding is dependent on another mycobacterial protein, MPY recruitment factor (MRF), which is induced on zinc depletion, and interacts with C− ribosomes. MPY binding confers structural stability to C− ribosomes, promoting survival of growth-arrested cells under zinc-limiting conditions. Binding of MPY also has direct influence on the dynamics of aminoglycoside-binding pockets of the C− ribosome to inhibit binding of these antibiotics. Together, our data suggest that zinc limitation leads to ribosome hibernation and aminoglycoside resistance in mycobacteria. Furthermore, our observation of the expression of the proteins of C− ribosomes in Mycobacterium tuberculosis in a mouse model of infection suggests that ribosome hibernation could be relevant in our understanding of persistence and drug tolerance of the pathogen encountered during chemotherapy of TB.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
60 |
5
|
Harrill JA, Viant MR, Yauk CL, Sachana M, Gant TW, Auerbach SS, Beger RD, Bouhifd M, O'Brien J, Burgoon L, Caiment F, Carpi D, Chen T, Chorley BN, Colbourne J, Corvi R, Debrauwer L, O'Donovan C, Ebbels TMD, Ekman DR, Faulhammer F, Gribaldo L, Hilton GM, Jones SP, Kende A, Lawson TN, Leite SB, Leonards PEG, Luijten M, Martin A, Moussa L, Rudaz S, Schmitz O, Sobanski T, Strauss V, Vaccari M, Vijay V, Weber RJM, Williams AJ, Williams A, Thomas RS, Whelan M. Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regul Toxicol Pharmacol 2021; 125:105020. [PMID: 34333066 DOI: 10.1016/j.yrtph.2021.105020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD.
Collapse
|
Journal Article |
4 |
49 |
6
|
Honnorat N, Eavani H, Satterthwaite TD, Gur RE, Gur RC, Davatzikos C. GraSP: geodesic Graph-based Segmentation with Shape Priors for the functional parcellation of the cortex. Neuroimage 2014; 106:207-21. [PMID: 25462796 DOI: 10.1016/j.neuroimage.2014.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/21/2014] [Accepted: 11/04/2014] [Indexed: 01/21/2023] Open
Abstract
Resting-state functional MRI is a powerful technique for mapping the functional organization of the human brain. However, for many types of connectivity analysis, high-resolution voxelwise analyses are computationally infeasible and dimensionality reduction is typically used to limit the number of network nodes. Most commonly, network nodes are defined using standard anatomic atlases that do not align well with functional neuroanatomy or regions of interest covering a small portion of the cortex. Data-driven parcellation methods seek to overcome such limitations, but existing approaches are highly dependent on initialization procedures and produce spatially fragmented parcels or overly isotropic parcels that are unlikely to be biologically grounded. In this paper, we propose a novel graph-based parcellation method that relies on a discrete Markov Random Field framework. The spatial connectedness of the parcels is explicitly enforced by shape priors. The shape of the parcels is adapted to underlying data through the use of functional geodesic distances. Our method is initialization-free and rapidly segments the cortex in a single optimization. The performance of the method was assessed using a large developmental cohort of more than 850 subjects. Compared to two prevalent parcellation methods, our approach provides superior reproducibility for a similar data fit. Furthermore, compared to other methods, it avoids incoherent parcels. Finally, the method's utility is demonstrated through its ability to detect strong brain developmental effects that are only weakly observed using other methods.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
47 |
7
|
van de Velde CJH, Boelens PG, Tanis PJ, Espin E, Mroczkowski P, Naredi P, Pahlman L, Ortiz H, Rutten HJ, Breugom AJ, Smith JJ, Wibe A, Wiggers T, Valentini V. Experts reviews of the multidisciplinary consensus conference colon and rectal cancer 2012: science, opinions and experiences from the experts of surgery. Eur J Surg Oncol 2013; 40:454-68. [PMID: 24268926 DOI: 10.1016/j.ejso.2013.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/23/2013] [Indexed: 12/12/2022] Open
Abstract
The first multidisciplinary consensus conference on colon and rectal cancer was held in December 2012, achieving a majority of consensus for diagnostic and treatment decisions using the Delphi Method. This article will give a critical appraisal of the topics discussed during the meeting and in the consensus document by well-known leaders in surgery that were involved in this multidisciplinary consensus process. Scientific evidence, experience and opinions are collected to support multidisciplinary teams (MDT) with arguments for medical decision-making in diagnosis, staging and treatment strategies for patients with colon or rectal cancer. Surgery is the cornerstone of curative treatment for colon and rectal cancer. Standardizing treatment is an effective instrument to improve outcome of multidisciplinary cancer care for patients with colon and rectal cancer. In this article, a review of the following focuses; Perioperative care, age and colorectal surgery, obstructive colorectal cancer, stenting, surgical anatomical considerations, total mesorectal excision (TME) surgery and training, surgical considerations for locally advanced rectal cancer (LARC) and local recurrent rectal cancer (LRRC), surgery in stage IV colorectal cancer, definitions of quality of surgery, transanal endoscopic microsurgery (TEM), laparoscopic colon and rectal surgery, preoperative radiotherapy and chemoradiotherapy, and how about functional outcome after surgery?
Collapse
|
Review |
12 |
46 |
8
|
Zalc A, Hayashi S, Auradé F, Bröhl D, Chang T, Mademtzoglou D, Mourikis P, Yao Z, Cao Y, Birchmeier C, Relaix F. Antagonistic regulation of p57kip2 by Hes/Hey downstream of Notch signaling and muscle regulatory factors regulates skeletal muscle growth arrest. Development 2014; 141:2780-90. [PMID: 25005473 DOI: 10.1242/dev.110155] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A central question in development is to define how the equilibrium between cell proliferation and differentiation is temporally and spatially regulated during tissue formation. Here, we address how interactions between cyclin-dependent kinase inhibitors essential for myogenic growth arrest (p21(cip1) and p57(kip2)), the Notch pathway and myogenic regulatory factors (MRFs) orchestrate the proliferation, specification and differentiation of muscle progenitor cells. We first show that cell cycle exit and myogenic differentiation can be uncoupled. In addition, we establish that skeletal muscle progenitor cells require Notch signaling to maintain their cycling status. Using several mouse models combined with ex vivo studies, we demonstrate that Notch signaling is required to repress p21(cip1) and p57(kip2) expression in muscle progenitor cells. Finally, we identify a muscle-specific regulatory element of p57(kip2) directly activated by MRFs in myoblasts but repressed by the Notch targets Hes1/Hey1 in progenitor cells. We propose a molecular mechanism whereby information provided by Hes/Hey downstream of Notch as well as MRF activities are integrated at the level of the p57(kip2) enhancer to regulate the decision between progenitor cell maintenance and muscle differentiation.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
40 |
9
|
Zhou Z, Han P, Zhou B, Christodoulou AG, Shaw JL, Deng Z, Li D. Chemical exchange saturation transfer fingerprinting for exchange rate quantification. Magn Reson Med 2018; 80:1352-1363. [PMID: 29845651 PMCID: PMC6592698 DOI: 10.1002/mrm.27363] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 01/18/2023]
Abstract
PURPOSE There is an increased interest to determine the exchange rate using CEST to provide pH information. However, current CEST quantification methods require lengthy scan times and do not address magnetization transfer effects. The purpose of this work was to apply the magnetic resonance fingerprinting (MRF) concept to CEST to achieve more efficient and accurate exchange rate quantification. METHODS The proposed CEST fingerprinting method used varying saturation powers and saturation times to create unique signal evolutions for different exchange rates. The acquired signal was matched to a predefined dictionary to determine the exchange rate. The magnetization transfer effects were also addressed in the framework of CEST fingerprinting: The simulated dictionary could predict the signal curves without magnetization transfer effects, and comparing the dictionary to the acquired signals allowed the correction of the magnetization transfer effects. The CEST fingerprinting method was compared with the conventional pulsed quantitative CEST method using omega plots in the creatine phantom study. RESULTS The CEST fingerprinting method has a significantly reduced scan time (10 minutes versus 50 minutes) while providing more accurate exchange rate quantification using literature values as the reference. CONCLUSION In this study, we demonstrate that CEST fingerprinting is more efficient (5 times faster) compared with pulsed quantitative CEST. It is also shown that the results of the proposed CEST fingerprinting technique are much closer to the literature values than pulsed quantitative CEST at 3 T.
Collapse
|
research-article |
7 |
38 |
10
|
Esteves de Lima J, Relaix F. Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. CELL REGENERATION 2021; 10:31. [PMID: 34595600 PMCID: PMC8484369 DOI: 10.1186/s13619-021-00093-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
In vertebrates, the skeletal muscles of the body and their associated stem cells originate from muscle progenitor cells, during development. The specification of the muscles of the trunk, head and limbs, relies on the activity of distinct genetic hierarchies. The major regulators of trunk and limb muscle specification are the paired-homeobox transcription factors PAX3 and PAX7. Distinct gene regulatory networks drive the formation of the different muscles of the head. Despite the redeployment of diverse upstream regulators of muscle progenitor differentiation, the commitment towards the myogenic fate requires the expression of the early myogenic regulatory factors MYF5, MRF4, MYOD and the late differentiation marker MYOG. The expression of these genes is activated by muscle progenitors throughout development, in several waves of myogenic differentiation, constituting the embryonic, fetal and postnatal phases of muscle growth. In order to achieve myogenic cell commitment while maintaining an undifferentiated pool of muscle progenitors, several signaling pathways regulate the switch between proliferation and differentiation of myoblasts. The identification of the gene regulatory networks operating during myogenesis is crucial for the development of in vitro protocols to differentiate pluripotent stem cells into myoblasts required for regenerative medicine.
Collapse
|
Review |
4 |
38 |
11
|
Mazor G, Weizman L, Tal A, Eldar YC. Low-rank magnetic resonance fingerprinting. Med Phys 2018; 45:4066-4084. [PMID: 29972693 DOI: 10.1002/mp.13078] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 02/28/2024] Open
Abstract
PURPOSE Magnetic resonance fingerprinting (MRF) is a relatively new approach that provides quantitative MRI measures using randomized acquisition. Extraction of physical quantitative tissue parameters is performed offline, without the need of patient presence, based on acquisition with varying parameters and a dictionary generated according to the Bloch equation simulations. MRF uses hundreds of radio frequency (RF) excitation pulses for acquisition, and therefore, a high undersampling ratio in the sampling domain (k-space) is required for reasonable scanning time. This undersampling causes spatial artifacts that hamper the ability to accurately estimate the tissue's quantitative values. In this work, we introduce a new approach for quantitative MRI using MRF, called magnetic resonance fingerprinting with low rank (FLOR). METHODS We exploit the low-rank property of the concatenated temporal imaging contrasts, on top of the fact that the MRF signal is sparsely represented in the generated dictionary domain. We present an iterative recovery scheme that consists of a gradient step followed by a low-rank projection using the singular value decomposition. RESULTS Experimental results consist of retrospective sampling that allows comparison to a well defined reference, and prospective sampling that shows the performance of FLOR for a real-data sampling scenario. Both experiments demonstrate improved parameter accuracy compared to other compressed-sensing and low-rank based methods for MRF at 5% and 9% sampling ratios for the retrospective and prospective experiments, respectively. CONCLUSIONS We have shown through retrospective and prospective experiments that by exploiting the low-rank nature of the MRF signal, FLOR recovers the MRF temporal undersampled images and provides more accurate parameter maps compared to previous iterative approaches.
Collapse
|
|
7 |
36 |
12
|
Uchida K, Nakahira K, Mimura K, Shimizu T, De Seta F, Wakimoto T, Kawai Y, Nomiyama M, Kuwano K, Guaschino S, Yanagihara I. Effects of Ureaplasma parvum lipoprotein multiple-banded antigen on pregnancy outcome in mice. J Reprod Immunol 2013; 100:118-27. [PMID: 24238827 DOI: 10.1016/j.jri.2013.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 08/31/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022]
Abstract
Ureaplasma spp. are members of the family Mycoplasmataceae and have been considered to be associated with chorioamnionitis and preterm delivery. However, it is unclear whether Ureaplasma spp. have virulence factors related to these manifestations. The purpose of the present study was to determine whether the immunogenic protein multiple-banded antigen (MBA) from Ureaplasma parvum is a virulence factor for preterm delivery. We partially purified MBA from a type strain and clinical isolates of U. parvum, and also synthesized a diacylated lipopeptide derived from U. parvum, UPM-1. Using luciferase assays, both MBA-rich fraction MRF and UPM-1 activated the NF-κB pathway via TLR2. UPM-1 upregulated IL-1β, IL-6, IL-12p35, TNF-α, MIP2, LIX, and iNOS in mouse peritoneal macrophage. MRF or UPM-1 was injected into uteri on day 15 of gestation on pregnant C3H/HeN mice. The intrauterine MRF injection group had a significantly higher incidence of intrauterine fetal death (IUFD; 38.5%) than the control group (14.0%). Interestingly, intrauterine injection of UPM-1 caused preterm deliveries at high concentration (80.0%). In contrast, a low concentration of UPM-1 induced a significantly higher rate of fetal deaths (55.2%) than the control group (14.0%). The placentas of the UPM-1 injection group showed neutrophil infiltration and increased iNOS protein expression. Our data indicate that MBA from the clinical isolate of U. parvum is a potential virulence factor for IUFD and preterm delivery in mice and that the N-terminal diacylated lipopeptide is essential for the initiation of inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
31 |
13
|
Marty B, Carlier PG. MR fingerprinting for water T1 and fat fraction quantification in fat infiltrated skeletal muscles. Magn Reson Med 2019; 83:621-634. [PMID: 31502715 DOI: 10.1002/mrm.27960] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/11/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To develop a fast MR fingerprinting (MRF) sequence for simultaneous estimation of water T1 (T1H2O ) and fat fraction (FF) in fat infiltrated skeletal muscles. METHODS The MRF sequence for T1H2O and FF quantification (MRF T1-FF) comprises a 1400 radial spokes echo train, following nonselective inversion, with varying echo and repetition time, as well as prescribed flip angle. Undersampled frames were reconstructed at different acquisition time-points by nonuniform Fourier transform, and a bi-component model based on Bloch simulations applied to adjust the signal evolution and extract T1H2O and FF. The sequence was validated on a multi-vial phantom, in three healthy volunteers and five patients with neuromuscular diseases. We evaluated the agreement between MRF T1-FF parameters and reference values and confounding effects due to B0 and B1 inhomogeneities. RESULTS In phantom, T1H2O and FF were highly correlated with references values measured with multi-inversion time inversion recovery-stimulated echo acquisition mode and Dixon, respectively (R2 > 0.99). In vivo, T1H2O and FF determined by the MRF T1-FF sequence were also correlated with reference values (R2 = 0.98 and 0.97, respectively). The precision on T1H2O was better than 5% for muscles where FF was less than 0.4. Both T1H2O and FF values were not confounded by B0 nor B1 inhomogeneities. CONCLUSION The MRF T1-FF sequence derived T1H2O and FF values in voxels containing a mixture of water and fat protons. This method can be used to comprehend and characterize the effects of tissue water compartmentation and distribution on muscle T1 values in patients affected by chronic fat infiltration.
Collapse
|
Journal Article |
6 |
28 |
14
|
Rønning SB, Pedersen ME, Andersen PV, Hollung K. The combination of glycosaminoglycans and fibrous proteins improves cell proliferation and early differentiation of bovine primary skeletal muscle cells. Differentiation 2013; 86:13-22. [PMID: 23933398 DOI: 10.1016/j.diff.2013.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022]
Abstract
Primary muscle cell model systems from farm animals are widely used to acquire knowledge about muscle development, muscle pathologies, overweight issues and tissue regeneration. The morphological properties of a bovine primary muscle cell model system, in addition to cell proliferation and differentiation features, were characterized using immunocytochemistry, western blotting and real-time PCR. We observed a reorganization of the Golgi complex in differentiated cells. The Golgi complex transformed to a highly fragmented network of small stacks of cisternae positioned throughout the myotubes as well as around the nucleus. Different extracellular matrix (ECM) components were used as surface coatings in order to improve cell culture conditions. Our experiments demonstrated improved proliferation and early differentiation for cells grown on surface coatings containing a mixture of both glycosaminoglycans (GAGs) and fibrous proteins. We suggest that GAGs and fibrous proteins mixed together into a composite biomaterial can mimic a natural ECM, and this could improve myogenesis for in vitro cell cultures.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
25 |
15
|
Kulpanovich A, Tal A. The application of magnetic resonance fingerprinting to single voxel proton spectroscopy. NMR IN BIOMEDICINE 2018; 31:e4001. [PMID: 30176091 DOI: 10.1002/nbm.4001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Magnetic resonance fingerprinting has been proposed as a method for undersampling k-space while simultaneously yielding multiparametric tissue maps. In the context of single voxel spectroscopy, fingerprinting can provide a unified framework for parameter estimation. We demonstrate the utility of such a magnetic resonance spectroscopic fingerprinting (MRSF) framework for simultaneously quantifying metabolite concentrations, T1 and T2 relaxation times and transmit inhomogeneity for major singlets of N-acetylaspartate, creatine and choline. This is achieved by varying TR , TE and the flip angle of the first pulse in a PRESS sequence between successive excitations (i.e. successive TR values). The need for multiparametric schemes such as MRSF for accurate medical diagnostics is demonstrated with the aid of realistic in vivo simulations; these show that certain schemes lead to substantial increases to the area under receiver operating characteristics of metabolite concentrations, when viewed as classifiers of pathologies. Numerical simulations and phantom and in vivo experiments using several different schedules of variable length demonstrate superior precision and accuracy for metabolite concentrations and longitudinal relaxation, and similar performance for the quantification of transverse relaxation.
Collapse
|
|
7 |
23 |
16
|
Assländer J. A Perspective on MR Fingerprinting. J Magn Reson Imaging 2020; 53:676-685. [PMID: 32286717 DOI: 10.1002/jmri.27134] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
This article reviews the basic concept of MR fingerprinting (MRF) with the goal of highlighting MRF's key contributions, putting them in the context of other quantitative MRI literature, and refining MRF's terminology. The article discusses the robustness and flexibility of MRF's signature dictionary-matching reconstruction along with more advanced MRF reconstructions. A key feature of MRF is the lack of assumptions about the signal evolution, which gives scientists the flexibility to tailor sequences for their needs. The article argues that the concept of unique fingerprints does not capture the requirements for successful parameter mapping and that an analysis of the signal's derivatives with respect to biophysical parameters, such as relaxation times, is more informative, as it allows one to evaluate the efficiency of a pulse sequence. The article points at the source of MRF's efficiency, namely, flip angle variations at the time scale of the relaxation times, and reveals that MRF's advantages are strongest at long scan times, as required for 3D imaging. Further, it outlines how MRF's flexibility can be used to design mutually tailored pulse sequences and biophysical models with the goal of improving the reproducibility of parameter mapping biological tissue. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 1.
Collapse
|
Review |
5 |
23 |
17
|
Assländer J, Lattanzi R, Sodickson DK, Cloos MA. Optimized quantification of spin relaxation times in the hybrid state. Magn Reson Med 2019; 82:1385-1397. [PMID: 31189025 DOI: 10.1002/mrm.27819] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE The optimization and analysis of spin ensemble trajectories in the hybrid state-a state in which the direction of the magnetization adiabatically follows the steady state while the magnitude remains in a transient state. METHODS Numerical optimizations were performed to find spin ensemble trajectories that minimize the Cramér-Rao bound for T 1 -encoding, T 2 -encoding, and their weighted sum, respectively, followed by a comparison between the Cramér-Rao bounds obtained with our optimized spin-trajectories, Look-Locker sequences, and multi-spin-echo methods. Finally, we experimentally tested our optimized spin trajectories with in vivo scans of the human brain. RESULTS After a nonrecurring inversion segment on the southern half of the Bloch sphere, all optimized spin trajectories pursue repetitive loops on the northern hemisphere in which the beginning of the first and the end of the last loop deviate from the others. The numerical results obtained in this work align well with intuitive insights gleaned directly from the governing equation. Our results suggest that hybrid-state sequences outperform traditional methods. Moreover, hybrid-state sequences that balance T 1 - and T 2 -encoding still result in near optimal signal-to-noise efficiency for each relaxation time. Thus, the second parameter can be encoded at virtually no extra cost. CONCLUSIONS We provided new insights into the optimal encoding processes of spin relaxation times in order to guide the design of robust and efficient pulse sequences. We found that joint acquisitions of T 1 and T 2 in the hybrid state are substantially more efficient than sequential encoding techniques.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
23 |
18
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
|
Review |
6 |
21 |
19
|
Mickevicius NJ, Kim JP, Zhao J, Morris ZS, Hurst NJ, Glide-Hurst CK. Toward magnetic resonance fingerprinting for low-field MR-guided radiation therapy. Med Phys 2021; 48:6930-6940. [PMID: 34487357 DOI: 10.1002/mp.15202] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The acquisition of multiparametric quantitative magnetic resonance imaging (qMRI) is becoming increasingly important for functional characterization of cancer prior to- and throughout the course of radiation therapy. The feasibility of a qMRI method known as magnetic resonance fingerprinting (MRF) for rapid T1 and T2 mapping was assessed on a low-field MR-linac system. METHODS A three-dimensional MRF sequence was implemented on a 0.35T MR-guided radiotherapy system. MRF-derived measurements of T1 and T2 were compared to those obtained with gold standard single spin echo methods, and the impacts of the radiofrequency field homogeneity and scan times ranging between 6 and 48 min were analyzed by acquiring between 1 and 8 spokes per time point in a standard quantitative system phantom. The short-term repeatability of MRF was assessed over three measurements taken over a 10-h period. To evaluate transferability, MRF measurements were acquired on two additional MR-guided radiotherapy systems. Preliminary human volunteer studies were performed. RESULTS The phantom benchmarking studies showed that MRF is capable of mapping T1 and T2 values within 8% and 10% of gold standard measures, respectively, at 0.35T. The coefficient of variation of T1 and T2 estimates over three repeated scans was < 5% over a broad range of relaxation times. The T1 and T2 times derived using a single-spoke MRF acquisition across three scanners were near unity and mean percent errors in T1 and T2 estimates using the same phantom were < 3%. The mean percent differences in T1 and T2 as a result of truncating the scan time to 6 min over the large range of relaxation times in the system phantom were 0.65% and 4.05%, respectively. CONCLUSIONS The technical feasibility and accuracy of MRF on a low-field MR-guided radiation therapy device has been demonstrated. MRF can be used to measure accurate T1 and T2 maps in three dimensions from a brief 6-min scan, offering strong potential for efficient and reproducible qMRI for future clinical trials in functional plan adaptation and tumor/normal tissue response assessment.
Collapse
|
|
4 |
19 |
20
|
Responsive neurostimulation for the treatment of medically intractable epilepsy. Brain Res Bull 2013; 97:39-47. [PMID: 23735806 DOI: 10.1016/j.brainresbull.2013.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/10/2013] [Accepted: 05/16/2013] [Indexed: 01/17/2023]
Abstract
With an annual incidence of 50/100,000 people, nearly 1% of the population suffers from epilepsy. Treatment with antiepileptic medication fails to achieve seizure remission in 20-30% of patients. One treatment option for refractory epilepsy patients who would not otherwise be surgical candidates is electrical stimulation of the brain, which is a rapidly evolving and reversible adjunctive therapy. Therapeutic stimulation can involve direct stimulation of the brain nuclei or indirect stimulation of peripheral nerves. There are three stimulation modalities that have class I evidence supporting their uses: vagus nerve stimulation (VNS), stimulation of the anterior nuclei of the thalamus (ANT), and, the most recently developed, responsive neurostimulation (RNS). While the other treatment modalities outlined deliver stimulation regardless of neuronal activity, the RNS administers stimulation only if triggered by seizure activity. The lower doses of stimulation provided by such responsive devices can not only reduce power consumption, but also prevent adverse reactions caused by continuous stimulation, which include the possibility of habituation to long-term stimulation. RNS, as an investigational treatment for medically refractory epilepsy, is currently under review by the FDA. Eventually systems may be developed to enable activation by neurochemical triggers or to wirelessly transmit any information gathered. We review the mechanisms, the current status, the target options, and the prospects of RNS for the treatment of medically intractable epilepsy.
Collapse
|
Review |
12 |
18 |
21
|
Mok GF, Mohammed RH, Sweetman D. Expression of myogenic regulatory factors in chicken embryos during somite and limb development. J Anat 2015; 227:352-60. [PMID: 26183709 PMCID: PMC4560569 DOI: 10.1111/joa.12340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 01/24/2023] Open
Abstract
The expression of the myogenic regulatory factors (MRFs), Myf5, MyoD, myogenin (Mgn) and MRF4 have been analysed during the development of chicken embryo somites and limbs. In somites, Myf5 is expressed first in somites and paraxial mesoderm at HH stage 9 followed by MyoD at HH stage 12, and Mgn and MRF4 at HH stage 14. In older somites, Myf5 and MyoD are also expressed in the ventrally extending myotome prior to Mgn and MRF4 expression. In limb muscles a similar temporal sequence is observed with Myf5 expression detected first in forelimbs at HH stage 22, MyoD at HH stage 23, Mgn at HH stage 24 and MRF4 at HH stage 30. This report describes the precise time of onset of expression of each MRF in somites and limbs during chicken embryo development, and provides a detailed comparative timeline of MRF expression in different embryonic muscle groups.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
16 |
22
|
Yu Z, Madelin G, Sodickson DK, Cloos MA. Simultaneous proton magnetic resonance fingerprinting and sodium MRI. Magn Reson Med 2020; 83:2232-2242. [PMID: 31746048 PMCID: PMC7047525 DOI: 10.1002/mrm.28073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE The goal of this work is to demonstrate a method for the simultaneous acquisition of proton multiparametric maps (T1 , T2 , and proton density) and sodium density images in 1 single scan. We hope that the development of such capabilities will help to ease the implementation of sodium MRI in clinical trials and provide more opportunities for researchers to investigate metabolism through sodium MRI. METHODS We developed a sequence based on magnetic resonance fingerprinting (MRF), which contains interleaved proton (1 H) and sodium (23 Na) excitations followed by a simultaneous center-out radial readout for both nuclei. The receive chain of a 7T scanner was modified to enable simultaneous acquisition of 1 H and 23 Na signal. The obtained signal-to-noise ratio (SNR) was evaluated, and the accuracy of both proton T1 , T2 , and B 1 + and sodium density maps were verified in phantoms. Finally, the method was demonstrated in 2 healthy subjects. RESULTS The SNR obtained using the simultaneous measurement was almost identical to single-nucleus measurements (<1% change). Similarly, the proton T1 and T2 maps remained stable (normalized root mean square error in T1 ≈ 2.2%, in T2 ≈ 1.4%, and B 1 + ≈ 5.4%), which indicates that the proposed sequence and hardware have no significant effects on the signal from either nucleus. In vivo measurements corroborated these results and demonstrated the feasibility of our method for in vivo application. CONCLUSIONS With the proposed approach, we were able to simultaneously acquire sodium density images in addition to proton T1 , T2 , and B 1 + maps as well as proton density images.
Collapse
|
Clinical Study |
5 |
16 |
23
|
Wang C, Wang M, Arrington J, Shan T, Yue F, Nie Y, Tao WA, Kuang S. Ascl2 inhibits myogenesis by antagonizing the transcriptional activity of myogenic regulatory factors. Development 2016; 144:235-247. [PMID: 27993983 DOI: 10.1242/dev.138099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022]
Abstract
Myogenic regulatory factors (MRFs), including Myf5, MyoD (Myod1) and Myog, are muscle-specific transcription factors that orchestrate myogenesis. Although MRFs are essential for myogenic commitment and differentiation, timely repression of their activity is necessary for the self-renewal and maintenance of muscle stem cells (satellite cells). Here, we define Ascl2 as a novel inhibitor of MRFs. During mouse development, Ascl2 is transiently detected in a subpopulation of Pax7+ MyoD+ progenitors (myoblasts) that become Pax7+ MyoD- satellite cells prior to birth, but is not detectable in postnatal satellite cells. Ascl2 knockout in embryonic myoblasts decreases both the number of Pax7+ cells and the proportion of Pax7+ MyoD- cells. Conversely, overexpression of Ascl2 inhibits the proliferation and differentiation of cultured myoblasts and impairs the regeneration of injured muscles. Ascl2 competes with MRFs for binding to E-boxes in the promoters of muscle genes, without activating gene transcription. Ascl2 also forms heterodimers with classical E-proteins to sequester their transcriptional activity on MRF genes. Accordingly, MyoD or Myog expression rescues myogenic differentiation despite Ascl2 overexpression. Ascl2 expression is regulated by Notch signaling, a key governor of satellite cell self-renewal. These data demonstrate that Ascl2 inhibits myogenic differentiation by targeting MRFs and facilitates the generation of postnatal satellite cells.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
13 |
24
|
Cao X, Liao C, Iyer SS, Wang Z, Zhou Z, Dai E, Liberman G, Dong Z, Gong T, He H, Zhong J, Bilgic B, Setsompop K. Optimized multi-axis spiral projection MR fingerprinting with subspace reconstruction for rapid whole-brain high-isotropic-resolution quantitative imaging. Magn Reson Med 2022; 88:133-150. [PMID: 35199877 DOI: 10.1002/mrm.29194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To improve image quality and accelerate the acquisition of 3D MR fingerprinting (MRF). METHODS Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low-rank constraint and a modified spiral-projection spatiotemporal encoding scheme called tiny golden-angle shuffling were implemented for rapid whole-brain high-resolution quantitative mapping. Reconstruction parameters such as the locally low-rank regularization parameter and the subspace rank were tuned using retrospective in vivo data and simulated examinations. B0 inhomogeneity correction using multifrequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect. RESULTS The proposed MRF acquisition and reconstruction framework yields high-quality 1-mm isotropic whole-brain quantitative maps in 2 min at better quality compared with 6-min acquisitions of prior approaches. The proposed method was validated to not induce bias in T1 and T2 mapping. High-quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4 min using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures. CONCLUSIONS The proposed tiny golden-angle shuffling, MRF with optimized spiral-projection trajectory and subspace reconstruction enables high-resolution quantitative mapping in ultrafast acquisition time.
Collapse
|
|
3 |
11 |
25
|
Kulpanovich A, Tal A. What is the optimal schedule for multiparametric MRS? A magnetic resonance fingerprinting perspective. NMR IN BIOMEDICINE 2021; 34:e4196. [PMID: 31814197 PMCID: PMC9244865 DOI: 10.1002/nbm.4196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 05/09/2023]
Abstract
Clinical magnetic resonance spectroscopy (MRS) mainly concerns itself with the quantification of metabolite concentrations. Metabolite relaxation values, which reflect the microscopic state of specific cellular and sub-cellular environments, could potentially hold additional valuable information, but are rarely acquired within clinical scan times. By varying the flip angle, repetition time and echo time in a preset way (termed a schedule), and matching the resulting signals to a pre-generated dictionary - an approach dubbed magnetic resonance fingerprinting - it is possible to encode the spins' relaxation times into the acquired signal, simultaneously quantifying multiple tissue parameters for each metabolite. Herein, we optimized the schedule to minimize the averaged root mean square error (RMSE) across all estimated parameters: concentrations, longitudinal and transverse relaxation time, and transmitter inhomogeneity. The optimal schedules were validated in phantoms and, subsequently, in a cohort of healthy volunteers, in a 4.5 mL parietal white matter single voxel and an acquisition time under 5 minutes. The average intra-subject, inter-scan coefficients of variation (CVs) for metabolite concentrations, T1 and T2 relaxation times were found to be 3.4%, 4.6% and 4.7% in-vivo, respectively, averaged over all major singlets. Coupled metabolites were quantified using the short echo time schedule entries and spectral fitting, and reliable estimates of glutamate+glutamine, glutathione and myo-inositol were obtained.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
10 |