1
|
Perez-Garcia CG, Diaz-Trelles R, Vega JB, Bao Y, Sablad M, Limphong P, Chikamatsu S, Yu H, Taylor W, Karmali PP, Tachikawa K, Chivukula P. Development of an mRNA replacement therapy for phenylketonuria. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:87-98. [PMID: 35356682 PMCID: PMC8933640 DOI: 10.1016/j.omtn.2022.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/25/2022] [Indexed: 12/19/2022]
Abstract
Phenylketonuria (PKU) is an inborn error caused by deficiencies in phenylalanine (Phe) metabolism. Mutations in the phenylalanine hydroxylase (PAH) gene are the main cause of the disease whose signature hallmarks of toxically elevated levels of Phe accumulation in plasma and organs such as the brain, result in irreversible intellectual disability. Here, we present a unique approach to treating PKU deficiency by using an mRNA replacement therapy. A full-length mRNA encoding human PAH (hPAH) is encapsulated in our proprietary lipid nanoparticle LUNAR and delivered to a Pahenu2 mouse model that carries a missense mutation in the mouse PAH gene. Animals carrying this missense mutation develop hyperphenylalanemia and hypotyrosinemia in plasma, two clinical features commonly observed in the clinical presentation of PKU. We show that intravenous infusion of LUNAR-hPAH mRNA can generate high levels of hPAH protein in hepatocytes and restore the Phe metabolism in the Pahenu2 mouse model. Together, these data establish a proof of principle of a novel mRNA replacement therapy to treat PKU.
Collapse
|
|
3 |
30 |
2
|
Zhang H, Wang H, An Y, Chen Z. Construction and application of adenoviral vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102027. [PMID: 37808925 PMCID: PMC10556817 DOI: 10.1016/j.omtn.2023.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Adenoviral vectors have been widely used as vaccine candidates or potential vaccine candidates against infectious diseases due to the convenience of genome manipulation, their ability to accommodate large exogenous gene fragments, easy access of obtaining high-titer of virus, and high efficiency of transduction. At the same time, adenoviral vectors have also been used extensively in clinical research for cancer gene therapy and treatment of diseases caused by a single gene defect. However, application of adenovirus also faces a series of challenges such as poor targeting, strong immune response against the vector itself, and they cannot be used repeatedly. It is believed that these problems will be solved gradually with further research and technological development in related fields. Here, we review the construction methods of adenoviral vectors, including "gutless" adenovirus and discuss application of adenoviral vectors as prophylactic vaccines for infectious pathogens and their application prospects as therapeutic vaccines for cancer and other kinds of chronic infectious disease such as human papillomavirus, hepatitis B virus, and hepatitis C virus.
Collapse
|
Review |
2 |
26 |
3
|
Srivastava A. Rationale and strategies for the development of safe and effective optimized AAV vectors for human gene therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:949-959. [PMID: 37293185 PMCID: PMC10244667 DOI: 10.1016/j.omtn.2023.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recombinant adeno-associated virus (AAV) vectors have been, or are currently in use, in 332 phase I/II/III clinical trials in a number of human diseases, and in some cases, remarkable clinical efficacy has also been achieved. There are now three US Food and Drug Administration (FDA)-approved AAV "drugs," but it has become increasingly clear that the first generation of AAV vectors are not optimal. In addition, relatively large vector doses are needed to achieve clinical efficacy, which has been shown to provoke host immune responses culminating in serious adverse events and, more recently, in the deaths of 10 patients to date. Thus, there is an urgent need for the development of the next generation of AAV vectors that are (1) safe, (2) effective, and (3) human tropic. This review describes the strategies to potentially overcome each of the limitations of the first generation of AAV vectors and the rationale and approaches for the development of the next generation of AAV serotype vectors. These vectors promise to be efficacious at significant reduced doses, likely to achieve clinical efficacy, thereby increasing the safety as well as reducing vector production costs, ensuring translation to the clinic with higher probability of success, without the need for the use of immune suppression, for gene therapy of a wide variety of diseases in humans.
Collapse
|
Review |
2 |
26 |
4
|
Hassett KJ, Rajlic IL, Bahl K, White R, Cowens K, Jacquinet E, Burke KE. mRNA vaccine trafficking and resulting protein expression after intramuscular administration. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102083. [PMID: 38161733 PMCID: PMC10755037 DOI: 10.1016/j.omtn.2023.102083] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
The mRNA vaccine route from injection site to critical immunologic tissues, as well as the localization of protein antigen following intramuscular (i.m.) administration, is crucial to generating an effective immune response. Here, we quantified mRNA at the injection site, lymph nodes, and in select tissues. mRNA was primarily present 24 h after administration and then rapidly degraded from local and systemic tissues. Histological analyses of mRNA and expressed protein at the site of administration and in the lymph nodes following i.m. administration of our vaccine in rodents and nonhuman primates (NHPs) were completed, and mRNA and protein expression were detected in tissue resident and infiltrating immune cells at the injection site. In addition, high levels of protein expression were observed within subcapsular and medullary sinus macrophages in draining lymph nodes. More important, results were similar between rodents and NHPs, indicating cross-species similarities.
Collapse
|
research-article |
1 |
20 |
5
|
Puzzo F, Zhang C, Powell Gray B, Zhang F, Sullenger BA, Kay MA. Aptamer-programmable adeno-associated viral vectors as a novel platform for cell-specific gene transfer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:383-397. [PMID: 36817723 PMCID: PMC9929486 DOI: 10.1016/j.omtn.2023.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Adeno-associated viruses (AAVs) are commonly used for in vivo gene therapy. Nevertheless, the wide tropism that characterizes these vectors limits specific targeting to a particular cell type or tissue. Here, we developed new chemically modified AAV vectors (Nε-AAVs) displaying a single site substitution on the capsid surface for post-production vector engineering through biorthogonal copper-free click chemistry. We were able to identify AAV vectors that would tolerate the unnatural amino acid substitution on the capsid without disrupting their packaging efficiency. We functionalized the Nε-AAVs through conjugation with DNA (AS1411) or RNA (E3) aptamers or with a folic acid moiety (FA). E3-, AS1411-, and FA-AAVs showed on average a 3- to 9-fold increase in transduction compared with their non-conjugated counterparts in different cancer cell lines. Using specific competitors, we established ligand-specific transduction. In vivo studies confirmed the selective uptake of FA-AAV and AS1411-AAV without off-target transduction in peripheral organs. Overall, the high versatility of these novel Nε-AAVs might pave the way to tailoring gene therapy vectors toward specific types of cells both for ex vivo and in vivo applications.
Collapse
|
research-article |
2 |
18 |
6
|
Schmidt C, Haefner E, Gerbeth J, Beissert T, Sahin U, Perkovic M, Schnierle BS. A taRNA vaccine candidate induces a specific immune response that protects mice against Chikungunya virus infections. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:743-754. [PMID: 35664702 PMCID: PMC9126847 DOI: 10.1016/j.omtn.2022.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/28/2022] [Indexed: 01/01/2023]
Abstract
The arthritogenic alphavirus, chikungunya virus (CHIKV), is now present in almost 100 countries worldwide. Further spread is very likely, which raises public health concerns. CHIKV infections cause fever and arthralgia, which can be debilitating and last for years. Here, we describe a CHIKV vaccine candidate based on trans-amplifying RNA (taRNA). The vaccine candidate consists of two RNAs: a non-replicating mRNA encoding for the CHIKV nonstructural proteins, forming the replicase complex and a trans-replicon (TR) RNA encoding the CHIKV envelope proteins. The TR-RNA can be amplified by the replicase in trans, and small RNA amounts can induce a potent immune response. The TR-RNA was efficiently amplified by the CHIKV replicase in vitro, leading to high protein expression, comparable to that generated by a CHIKV infection. In addition, the taRNA system did not recombine to replication-competent CHIKV. Using a prime-boost schedule, the vaccine candidate induced potent CHIKV-specific humoral and cellular immune responses in vivo in a mouse model. Notably, mice were protected against a high-dose CHIKV challenge infection with two vaccine doses of only 1.5 μg RNA. Therefore, taRNAs are a promising safe and efficient vaccination strategy against CHIKV infections.
Collapse
|
|
3 |
16 |
7
|
Yang L, Li Z, Binzel DW, Guo P, Williams TM. Targeting oncogenic KRAS in non-small cell lung cancer with EGFR aptamer-conjugated multifunctional RNA nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:559-571. [PMID: 37637206 PMCID: PMC10448464 DOI: 10.1016/j.omtn.2023.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
KRAS mutations are one of the most common oncogenic driver mutations in human cancers, including non-small cell lung cancer (NSCLC), and have established roles in cancer pathogenesis and therapeutic resistance. The development of effective inhibitors of mutant KRAS represents a significant challenge. Three-way junction (3WJ)-based multi-functional RNA nanoparticles have the potential to serve as an effective in vivo siRNA delivery platform with the ability to enhance tumor targeting specificity and visualize biodistribution through an imaging moiety. Herein, we assembled novel EGFRapt-3WJ-siKRASG12C mutation targeted nanoparticles to target EGFR-expressing human NSCLC harboring a KRASG12C mutation to silence KRASG12C expression in a tumor cell-specific fashion. We found that EGFRapt-3WJ-siKRASG12C nanoparticles potently depleted cellular KRASG12C expression, resulting in attenuation of downstream MAPK pathway signaling, cell proliferation, migration/invasion ability, and sensitized NSCLC cells to chemoradiotherapy. In vivo, these nanoparticles induced tumor growth inhibition in KRASG12C NSCLC tumor xenografts. Together, this study suggests that the 3WJ pRNA-based platform has the potential to suppress mutant KRAS activity for the treatment of KRAS-driven human cancers, and warrants further development for clinical translation.
Collapse
|
research-article |
2 |
13 |
8
|
Di Trani CA, Cirella A, Arrizabalaga L, Alvarez M, Bella Á, Fernandez-Sendin M, Russo-Cabrera JS, Gomar C, Ardaiz N, Teijeira A, Bolaños E, González-Gomariz J, Otano I, Aranda F, Palencia B, Segués A, Huang S, van Duijnhoven SM, van Elsas A, Melero I, Berraondo P. Intratumoral injection of IL-12-encoding mRNA targeted to CSFR1 and PD-L1 exerts potent anti-tumor effects without substantial systemic exposure. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:599-616. [PMID: 37637207 PMCID: PMC10450355 DOI: 10.1016/j.omtn.2023.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023]
Abstract
IL-12 is a potent cytokine for cancer immunotherapy. However, its systemic delivery as a recombinant protein has shown unacceptable toxicity in the clinic. Currently, the intratumoral injection of IL-12-encoding mRNA or DNA to avoid such side effects is being evaluated in clinical trials. In this study, we aimed to improve this strategy by further favoring IL-12 tethering to the tumor. We generated in vitro transcribed mRNAs encoding murine single-chain IL-12 fused to diabodies binding to CSF1R and/or PD-L1. These targeted molecules are expressed in the tumor microenvironment, especially on myeloid cells. The binding capacity of chimeric constructs and the bioactivity of IL-12 were demonstrated in vitro and in vivo. Doses as low as 0.5 μg IL-12-encoding mRNA achieved potent antitumor effects in subcutaneously injected B16-OVA and MC38 tumors. Treatment delivery was associated with increases in IL-12p70 and IFN-γ levels in circulation. Fusion of IL-12 to the diabodies exerted comparable efficacy against bilateral tumor models. However, it achieved tethering to myeloid cells infiltrating the tumor, resulting in nearly undetectable systemic levels of IL-12 and IFN-γ. Overall, tethering IL-12 to intratumoral myeloid cells in the mRNA-transferred tumors achieves similar efficacy while reducing the dangerous systemic bioavailability of IL-12.
Collapse
|
research-article |
2 |
12 |
9
|
Abdelaal AM, Sohal IS, Iyer SG, Sudarshan K, Orellana EA, Ozcan KE, dos Santos AP, Low PS, Kasinski AL. Selective targeting of chemically modified miR-34a to prostate cancer using a small molecule ligand and an endosomal escape agent. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102193. [PMID: 38745855 PMCID: PMC11091501 DOI: 10.1016/j.omtn.2024.102193] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Use of tumor-suppressive microRNAs (miRNAs) as anti-cancer agents is hindered by the lack of effective delivery vehicles, entrapment of the miRNA within endocytic compartments, and rapid degradation of miRNA by nucleases. To address these issues, we developed a miRNA delivery strategy that includes (1) a targeting ligand, (2) an endosomal escape agent, nigericin and (3) a chemically modified miRNA. The delivery ligand, DUPA (2-[3-(1,3-dicarboxy propyl) ureido] pentanedioic acid), was selected based on its specificity for prostate-specific membrane antigen (PSMA), a receptor routinely upregulated in prostate cancer-one of the leading causes of cancer death among men. DUPA was conjugated to the tumor suppressive miRNA, miR-34a (DUPA-miR-34a) based on the ability of miR-34a to inhibit prostate cancer cell proliferation. To mediate endosomal escape, nigericin was incorporated into the complex, resulting in DUPA-nigericin-miR-34a. Both DUPA-miR-34a and DUPA-nigericin-miR-34a specifically bound to, and were taken up by, PSMA-expressing cells in vitro and in vivo. And while both DUPA-miR-34a and DUPA-nigericin-miR-34a downregulated miR-34a target genes, only DUPA-nigericin-miR-34a decreased cell proliferation in vitro and delayed tumor growth in vivo. Tumor growth was further reduced using a fully modified version of miR-34a that has significantly increased stability.
Collapse
|
research-article |
1 |
12 |
10
|
Wang H, Xun M, Tang H, Zhao J, Hu S, Zhang L, Lv J, Wang D, Chen Y, Liu J, Li GL, Wang W, Shu Y, Li H. Hair cell-specific Myo15 promoter-mediated gene therapy rescues hearing in DFNB9 mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102135. [PMID: 38404504 PMCID: PMC10883836 DOI: 10.1016/j.omtn.2024.102135] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Adeno-associated viral (AAV) vectors are increasingly used as vehicles for gene delivery to treat hearing loss. However, lack of specificity of the transgene expression may lead to overexpression of the transgene in nontarget tissues. In this study, we evaluated the expression efficiency and specificity of transgene delivered by AAV-PHP.eB under the inner ear sensory cell-specific Myo15 promoter. Compared with the ubiquitous CAG promoter, the Myo15 promoter initiates efficient expression of the GFP fluorescence reporter in hair cells, while minimizing non-specific expression in other cell types of the inner ear and CNS. Furthermore, using the Myo15 promoter, we constructed an AAV-mediated therapeutic system with the coding sequence of OTOF gene. After inner ear injection, we observed apparent hearing recovery in Otof-/- mice, highly efficient expression of exogenous otoferlin, and significant improvement in the exocytosis function of inner hair cells. Overall, our results indicate that gene therapy mediated by the hair cell-specific Myo15 promoter has potential clinical application for the treatment of autosomal recessive deafness and yet for other hereditary hearing loss related to dysfunction of hair cells.
Collapse
|
research-article |
1 |
11 |
11
|
Thomas BJ, Guldenpfennig C, Guan Y, Winkler C, Beecher M, Beedy M, Berendzen AF, Ma L, Daniels MA, Burke DH, Porciani D. Targeting lung cancer with clinically relevant EGFR mutations using anti-EGFR RNA aptamer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102046. [PMID: 37869258 PMCID: PMC10589377 DOI: 10.1016/j.omtn.2023.102046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
A significant fraction of non-small cell lung cancer (NSCLC) cases are due to oncogenic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). Anti-EGFR antibodies have shown limited clinical benefit for NSCLC, whereas tyrosine kinase inhibitors (TKIs) are effective, but resistance ultimately occurs. The current landscape suggests that alternative ligands that target wild-type and mutant EGFRs are desirable for targeted therapy or drug delivery development. Here we evaluate NSCLC targeting using an anti-EGFR aptamer (MinE07). We demonstrate that interaction sites of MinE07 overlap with clinically relevant antibodies targeting extracellular domain III and that MinE07 retains binding to EGFR harboring the most common oncogenic and resistance mutations. When MinE07 was linked to an anti-c-Met aptamer, the EGFR/c-Met bispecific aptamer (bsApt) showed superior labeling of NSCLC cells in vitro relative to monospecific aptamers. However, dual targeting in vivo did not improve the recognition of NSCLC xenografts compared to MinE07. Interestingly, biodistribution of Cy7-labeled bsApt differed significantly from Alexa Fluor 750-labeled bsApt. Overall, our findings demonstrate that aptamer formulations containing MinE07 can target ectopic lung cancer without additional stabilization or PEGylation and highlights the potential of MinE07 as a targeting reagent for the recognition of NSCLC harboring clinically relevant EGFRs.
Collapse
|
research-article |
2 |
10 |
12
|
Hsu Y, Bhattarai S, Thompson JM, Mahoney A, Thomas J, Mayer SK, Datta P, Garrison J, Searby CC, Vandenberghe LH, Seo S, Sheffield VC, Drack AV. Subretinal gene therapy delays vision loss in a Bardet-Biedl Syndrome type 10 mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:164-181. [PMID: 36700052 PMCID: PMC9841241 DOI: 10.1016/j.omtn.2022.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Blindness in Bardet-Biedl syndrome (BBS) is caused by dysfunction and loss of photoreceptor cells in the retina. BBS10, mutations of which account for approximately 21% of all BBS cases, encodes a chaperonin protein indispensable for the assembly of the BBSome, a cargo adaptor important for ciliary trafficking. The loss of BBSome function in the eye causes a reduced light sensitivity of photoreceptor cells, photoreceptor ciliary malformation, dysfunctional ciliary trafficking, and photoreceptor cell death. Cone photoreceptors lacking BBS10 have congenitally low electrical function in electroretinography. In this study, we performed gene augmentation therapy by injecting a viral construct subretinally to deliver the coding sequence of the mouse Bbs10 gene to treat retinal degeneration in a BBS10 mouse model. Long-term efficacy was assessed by measuring the electrical functions of the retina over time, imaging of the treated regions to visualize cell survival, conducting visually guided swim assays to measure functional vision, and performing retinal histology. We show that subretinal gene therapy slowed photoreceptor cell death and preserved retinal function in treated eyes. Notably, cone photoreceptors regained their electrical function after gene augmentation. Measurement of functional vision showed that subretinal gene therapy provided a significant benefit in delaying vision loss.
Collapse
|
research-article |
2 |
9 |
13
|
Tiroille V, Krug A, Bokobza E, Kahi M, Bulcaen M, Ensinck MM, Geurts MH, Hendriks D, Vermeulen F, Larbret F, Gutierrez-Guerrero A, Chen Y, Van Zundert I, Rocha S, Rios AC, Medaer L, Gijsbers R, Mangeot PE, Clevers H, Carlon MS, Bost F, Verhoeyen E. Nanoblades allow high-level genome editing in murine and human organoids. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:57-74. [PMID: 37435135 PMCID: PMC10331042 DOI: 10.1016/j.omtn.2023.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/04/2023] [Indexed: 07/13/2023]
Abstract
Genome engineering has become more accessible thanks to the CRISPR-Cas9 gene-editing system. However, using this technology in synthetic organs called "organoids" is still very inefficient. This is due to the delivery methods for the CRISPR-Cas9 machinery, which include electroporation of CRISPR-Cas9 DNA, mRNA, or ribonucleoproteins containing the Cas9-gRNA complex. However, these procedures are quite toxic for the organoids. Here, we describe the use of the "nanoblade (NB)" technology, which outperformed by far gene-editing levels achieved to date for murine- and human tissue-derived organoids. We reached up to 75% of reporter gene knockout in organoids after treatment with NBs. Indeed, high-level NB-mediated knockout for the androgen receptor encoding gene and the cystic fibrosis transmembrane conductance regulator gene was achieved with single gRNA or dual gRNA containing NBs in murine prostate and colon organoids. Likewise, NBs achieved 20%-50% gene editing in human organoids. Most importantly, in contrast to other gene-editing methods, this was obtained without toxicity for the organoids. Only 4 weeks are required to obtain stable gene knockout in organoids and NBs simplify and allow rapid genome editing in organoids with little to no side effects including unwanted insertion/deletions in off-target sites thanks to transient Cas9/RNP expression.
Collapse
|
research-article |
2 |
9 |
14
|
Zhang J, Cai X, Dou R, Guo C, Tang J, Hu Y, Chen H, Chen J. Poly(β-amino ester)s-based nanovehicles: Structural regulation and gene delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:568-581. [PMID: 37200860 PMCID: PMC10185705 DOI: 10.1016/j.omtn.2023.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The first poly(β-amino) esters (PβAEs) were synthesized more than 40 years ago. Since 2000, PβAEs have been found to have excellent biocompatibility and the capability of ferrying gene molecules. Moreover, the synthesis process of PβAEs is simple, the monomers are readily available, and the polymer structure can be tailored to meet different gene delivery needs by adjusting the monomer type, monomer ratio, reaction time, etc. Therefore, PβAEs are a promising class of non-viral gene vector materials. This review paper presents a comprehensive overview of the synthesis and correlated properties of PβAEs and summarizes the progress of each type of PβAE for gene delivery. The review focuses in particular on the rational design of PβAE structures, thoroughly discusses the correlations between intrinsic structure and effect, and then finishes with the applications and perspectives of PβAEs.
Collapse
|
Review |
2 |
8 |
15
|
Generotti A, Contreras R, Zounes B, Schade E, Kemme A, Rane Y, Liu X, Elwood D, Schultheis K, Marston J, McCoy J, Broderick K, Fisher P. Intradermal DNA vaccine delivery using vacuum-controlled, needle-free electroporation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102070. [PMID: 38034030 PMCID: PMC10682253 DOI: 10.1016/j.omtn.2023.102070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Intradermal delivery of DNA vaccines via electroporation (ID-EP) has shown clinical promise, but the use of needle electrodes is typically required to achieve consistent results. Here, delivery of a DNA vaccine targeting the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is achieved using noninvasive intradermal vacuum-EP (ID-VEP), which functions by pulling a small volume of skin tissue into a vacuum chamber containing noninvasive electrodes to perform EP at the injection site. Gene expression and immunogenicity correlated with EP parameters and vacuum chamber geometry in guinea pigs. ID-VEP generated potent humoral and cellular immune responses across multiple studies, while vacuum (without EP) greatly enhanced localized transfection but did not improve immunogenicity. Because EP was performed noninvasively, the only treatment site reaction observed was transient redness, and ID-VEP immune responses were comparable to a clinical needle-based ID-EP device. The ID-VEP delivery procedure is straightforward and highly repeatable, without any dependence on operator technique. This work demonstrates a novel, reliable, and needle-free delivery method for DNA vaccines.
Collapse
|
research-article |
2 |
7 |
16
|
Watanabe M, Miyamoto H, Okamoto K, Nakano K, Matsunari H, Kazuki K, Hasegawa K, Uchikura A, Takayanagi S, Umeyama K, Hiramuki Y, Kemter E, Klymuik N, Kurome M, Kessler B, Wolf E, Kazuki Y, Nagashima H. Phenotypic features of dystrophin gene knockout pigs harboring a human artificial chromosome containing the entire dystrophin gene. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:444-453. [PMID: 37588685 PMCID: PMC10425850 DOI: 10.1016/j.omtn.2023.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Mammalian artificial chromosomes have enabled the introduction of extremely large amounts of genetic information into animal cells in an autonomously replicating, nonintegrating format. However, the evaluation of human artificial chromosomes (HACs) as novel tools for curing intractable hereditary disorders has been hindered by the limited efficacy of the delivery system. We generated dystrophin gene knockout (DMD-KO) pigs harboring the HAC bearing the entire human DMD via a somatic cell cloning procedure (DYS-HAC-cloned pig). Restored human dystrophin expression was confirmed by immunofluorescence staining in the skeletal muscle of the DYS-HAC-cloned pigs. Viability at the first month postpartum of the DYS-HAC-cloned pigs, including motor function in the hind leg and serum creatinine kinase level, was improved significantly when compared with that in the original DMD-KO pigs. However, decrease in systemic retention of the DYS-HAC vector and limited production of the DMD protein might have caused severe respiratory impairment with general prostration by 3 months postpartum. The results demonstrate that the use of transchromosomic cloned pigs permitted a straightforward estimation of the efficacy of the DYS-HAC carried in affected tissues/organs in a large-animal disease model, providing novel insights into the therapeutic application of exogenous mammalian artificial chromosomes.
Collapse
|
research-article |
2 |
5 |
17
|
Fang F, Liu P, Huang H, Feng X, Li L, Sun Y, Kaufman RJ, Hu Y. RGC-specific ATF4 and/or CHOP deletion rescues glaucomatous neurodegeneration and visual function. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:286-295. [PMID: 37547290 PMCID: PMC10400881 DOI: 10.1016/j.omtn.2023.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Endoplasmic reticulum (ER) stress has been linked with various acute and chronic neurodegenerative diseases. We previously found that optic nerve (ON) injury and diseases induce neuronal ER stress in retinal ganglion cells (RGCs). We further demonstrated that germline deletion of CHOP preserves the structure and function of both RGC somata and axons in mouse glaucoma models. Here we report that RGC-specific deletion of CHOP and/or its upstream regulator ATF4 synergistically promotes RGC and ON survival and preserves visual function in mouse ON crush and silicone oil-induced ocular hypertension (SOHU) glaucoma models. Consistently, topical application of the ATF4/CHOP chemical inhibitor ISRIB or RGC-specific CRISPR-mediated knockdown of the ATF4 downstream effector Gadd45a also delivers significant neuroprotection in the SOHU glaucoma model. These studies suggest that blocking the neuronal intrinsic ATF4/CHOP axis of ER stress is a promising neuroprotection strategy for neurodegeneration.
Collapse
|
research-article |
2 |
5 |
18
|
Byrnes AE, Dominguez SL, Yen CW, Laufer BI, Foreman O, Reichelt M, Lin H, Sagolla M, Hötzel K, Ngu H, Soendergaard C, Estevez A, Lin HC, Goyon A, Bian J, Lin J, Hinz FI, Friedman BA, Easton A, Hoogenraad CC. Lipid nanoparticle delivery limits antisense oligonucleotide activity and cellular distribution in the brain after intracerebroventricular injection. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:773-793. [PMID: 37346977 PMCID: PMC10280097 DOI: 10.1016/j.omtn.2023.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Antisense oligonucleotide (ASO) therapeutics are being investigated for a broad range of neurological diseases. While ASOs have been effective in the clinic, improving productive ASO internalization into target cells remains a key area of focus in the field. Here, we investigated how the delivery of ASO-loaded lipid nanoparticles (LNPs) affects ASO activity, subcellular trafficking, and distribution in the brain. We show that ASO-LNPs increase ASO activity up to 100-fold in cultured primary brain cells as compared to non-encapsulated ASO. However, in contrast to the widespread ASO uptake and activity observed following free ASO delivery in vivo, LNP-delivered ASOs did not downregulate mRNA levels throughout the brain after intracerebroventricular injection. This lack of activity was likely due to ASO accumulation in cells lining the ventricles and blood vessels. Furthermore, we reveal a formulation-dependent activation of the immune system post dosing, suggesting that LNP encapsulation cannot mask cellular ASO backbone-mediated toxicities. Together, these data provide insights into how LNP encapsulation affects ASO distribution as well as activity in the brain, and a foundation that enables future optimization of brain-targeting ASO-LNPs.
Collapse
|
research-article |
2 |
5 |
19
|
Del Toro Runzer C, Anand S, Mota C, Moroni L, Plank C, van Griensven M, Balmayor ER. Cellular uptake of modified mRNA occurs via caveolae-mediated endocytosis, yielding high protein expression in slow-dividing cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:960-979. [PMID: 37305166 PMCID: PMC10250585 DOI: 10.1016/j.omtn.2023.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Nucleic acids have clear clinical potential for gene therapy. Plasmid DNA (pDNA) was the first nucleic acid to be pursued as a therapeutic molecule. Recently, mRNA came into play as it offers improved safety and affordability. In this study, we investigated the uptake mechanisms and efficiencies of genetic material by cells. We focused on three main variables (1) the nucleic acid (pDNA, or chemically modified mRNA), (2) the delivery vector (Lipofectamine 3000 or 3DFect), and (3) human primary cells (mesenchymal stem cells, dermal fibroblasts, and osteoblasts). In addition, transfections were studied in a 3D environment using electrospun scaffolds. Cellular internalization and intracellular trafficking were assessed by using enhancers or inhibitors of endocytosis and endosomal escape. The polymeric vector TransIT-X2 was included for comparison purposes. While lipoplexes utilized several entry routes, uptake via caveolae served as the main route for gene delivery. pDNA yielded higher expression levels in fast-dividing fibroblasts, whereas, in slow-dividing osteoblasts, cmRNA was responsible for high protein production. In the case of mesenchymal stem cells, which presented an intermediate doubling time, the combination vector/nucleic acid seemed more relevant than the nucleic acid per se. In all cases, protein expression was higher when the cells were seeded on 3D scaffolds.
Collapse
|
research-article |
2 |
5 |
20
|
Hou Y, Lin S, Xia J, Zhang Y, Yin Y, Huang M, Xu Y, Yang W, Zhu Y. Alleviation of ischemia-reperfusion induced renal injury by chemically modified SOD2 mRNA delivered via lipid nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102067. [PMID: 38028193 PMCID: PMC10652142 DOI: 10.1016/j.omtn.2023.102067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury, which is a serious clinical condition with no effective pharmacological treatment. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) significantly alleviate kidney IRI; however, the underlying mechanisms and key molecules conferring renoprotection remain elusive. In this study, we characterized the protein composition of MSC-EVs using a proteomics approach and found that mitochondrial protein superoxide dismutase 2 (SOD2) was enriched in MSC-EVs. Using lipid nanoparticles (LNP), we successfully delivered chemically modified SOD2 mRNA into kidney cells and mice with kidney IRI. We demonstrated that SOD2 mRNA-LNP treatment decreased cellular reactive oxygen species (ROS) in cultured cells and ameliorated renal damage in IRI mice, as indicated by reduced levels of serum creatinine and restored tissue integrity compared with the control mRNA-LNP-injected group. Thus, the modulation of mitochondrial ROS levels through SOD2 upregulation by SOD2 mRNA-LNP delivery could be a novel therapeutic method for ischemia-reperfusion-induced acute kidney injury.
Collapse
|
research-article |
2 |
5 |
21
|
Fakih HH, Tang Q, Summers A, Shin M, Buchwald JE, Gagnon R, Hariharan VN, Echeverria D, Cooper DA, Watts JK, Khvorova A, Sleiman HF. Dendritic amphiphilic siRNA: Selective albumin binding, in vivo efficacy, and low toxicity. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102080. [PMID: 38089931 PMCID: PMC10711485 DOI: 10.1016/j.omtn.2023.102080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
Although an increasing number of small interfering RNA (siRNA) therapies are reaching the market, the challenge of efficient extra-hepatic delivery continues to limit their full therapeutic potential. Drug delivery vehicles and hydrophobic conjugates are being used to overcome the delivery bottleneck. Previously, we reported a novel dendritic conjugate that can be appended efficiently to oligonucleotides, allowing them to bind albumin with nanomolar affinity. Here, we explore the ability of this novel albumin-binding conjugate to improve the delivery of siRNA in vivo. We demonstrate that the conjugate binds albumin exclusively in circulation and extravasates to various organs, enabling effective gene silencing. Notably, we show that the conjugate achieves a balance between hydrophobicity and safety, as it significantly reduces the side effects associated with siRNA interactions with blood components, which are commonly observed in some hydrophobically conjugated siRNAs. In addition, it reduces siRNA monocyte uptake, which may lead to cytokine/inflammatory responses. This work showcases the potential of using this dendritic conjugate as a selective albumin binding handle for the effective and safe delivery of nucleic acid therapeutics. We envision that these properties may pave the way for new opportunities to overcome delivery hurdles of oligonucleotides in future applications.
Collapse
|
research-article |
2 |
5 |
22
|
Uno N, Satofuka H, Miyamoto H, Honma K, Suzuki T, Yamazaki K, Ito R, Moriwaki T, Hamamichi S, Tomizuka K, Oshimura M, Kazuki Y. Treatment of CHO cells with Taxol and reversine improves micronucleation and microcell-mediated chromosome transfer efficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:391-403. [PMID: 37547291 PMCID: PMC10403731 DOI: 10.1016/j.omtn.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Microcell-mediated chromosome transfer is an attractive technique for transferring chromosomes from donor cells to recipient cells and has enabled the generation of cell lines and humanized animal models that contain megabase-sized gene(s). However, improvements in chromosomal transfer efficiency are still needed to accelerate the production of these cells and animals. The chromosomal transfer protocol consists of micronucleation, microcell formation, and fusion of donor cells with recipient cells. We found that the combination of Taxol (paclitaxel) and reversine rather than the conventional reagent colcemid resulted in highly efficient micronucleation and substantially improved chromosomal transfer efficiency from Chinese hamster ovary donor cells to HT1080 and NIH3T3 recipient cells by up to 18.3- and 4.9-fold, respectively. Furthermore, chromosome transfer efficiency to human induced pluripotent stem cells, which rarely occurred with colcemid, was also clearly improved after Taxol and reversine treatment. These results might be related to Taxol increasing the number of spindle poles, leading to multinucleation and delaying mitosis, and reversine inducing mitotic slippage and decreasing the duration of mitosis. Here, we demonstrated that an alternative optimized protocol improved chromosome transfer efficiency into various cell lines. These data advance chromosomal engineering technology and the use of human artificial chromosomes in genetic and regenerative medical research.
Collapse
|
research-article |
2 |
5 |
23
|
Mohapatra P, Madhulika S, Behera S, Singh P, Sa P, Prasad P, Swain RK, Sahoo SK. Nimbolide-based nanomedicine inhibits breast cancer stem-like cells by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102031. [PMID: 37771911 PMCID: PMC10523002 DOI: 10.1016/j.omtn.2023.102031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023]
Abstract
Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis.
Collapse
|
research-article |
2 |
5 |
24
|
Lima Cunha D, Sarkar H, Eintracht J, Harding P, Zhou JH, Moosajee M. Restoration of functional PAX6 in aniridia patient iPSC-derived ocular tissue models using repurposed nonsense suppression drugs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:240-253. [PMID: 37483273 PMCID: PMC10362734 DOI: 10.1016/j.omtn.2023.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
Congenital aniridia is a rare, pan-ocular disease causing severe sight loss, with only symptomatic intervention offered to patients. Approximately 40% of aniridia patients present with heterozygous nonsense variants in PAX6, resulting in haploinsufficiency. Translational readthrough-inducing drugs (TRIDs) have the ability to weaken the recognition of in-frame premature termination codons (PTCs), permitting full-length protein to be translated. We established induced pluripotent stem cell (iPSC)-derived 3D optic cups and 2D limbal epithelial stem cell (LESC) models from two aniridia patients with prevalent PAX6 nonsense mutations. Both in vitro models show reduced PAX6 protein levels, mimicking the disease. The repurposed TRIDs amlexanox and 2,6-diaminopurine (DAP) and the positive control compounds ataluren and G418 were tested for their efficiency. Amlexanox was identified as the most promising TRID, increasing full-length PAX6 levels in both models and rescuing the disease phenotype through normalization of VSX2 and cell proliferation in the optic cups and reduction of ABCG2 protein and SOX10 expression in LESCs. This study highlights the significance of patient iPSC-derived cells as a new model system for aniridia and proposes amlexanox as a new putative treatment for nonsense-mediated aniridia.
Collapse
|
research-article |
2 |
4 |
25
|
Tian X, Zheng Q, Xie J, Zhou Q, Liang L, Xu G, Chen H, Ling C, Lu D. Improved gene therapy for MFRP deficiency-mediated retinal degeneration by knocking down endogenous bicistronic Mfrp and Ctrp5 transcript. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:843-856. [PMID: 37273779 PMCID: PMC10238587 DOI: 10.1016/j.omtn.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
The membrane frizzled-related protein (Mfrp) and C1-tumor necrosis factor related protein 5 (Ctrp5) genes are transcribed as a bicistronic unit and dysregulation of either gene is associated with retinal degeneration in the retinal pigment epithelium (RPE) cells. However, the mechanisms that regulate the expression of the bicistronic transcript remain controversial. Here, we identified a microRNA-based negative feedback loop that helps maintain a normal expression level of the bicistronic Mfrp and Ctrp5 transcript. Specifically, miR-149-3p, a conserved microRNA, binds to the 3'UTR of the Mfrp gene. In MFRP-deficient rd6 mice, the miR-149-3p levels were compromised compared with those in WT mice, resulting in an increase in the bicistronic transcript. We also report a capsid-modified rAAVDJ-3M vector that is capable of robustly and specifically transducing RPE cells following subretinal delivery. Compared with the parental vector, the modified vector elicited similar levels of serum anti-rAAV antibodies, but recruited fewer microglial infiltrations. Most significantly, we also demonstrate that simultaneous overexpressing of MFRP and knockdown of the bicistronic transcript was more effective in rescuing vision than MFRP overexpression alone. Our findings offer new insights into the function of MFRP and provide a promising therapeutic strategy for the treatment of MFRP-associated ocular diseases.
Collapse
|
research-article |
2 |
4 |