Yazdian-Robati R, Bayat P, Dehestani S, Hashemi M, Taghdisi SM, Abnous K. Smart delivery of epirubicin to cancer cells using aptamer-modified ferritin nanoparticles.
J Drug Target 2022;
30:567-576. [PMID:
34991424 DOI:
10.1080/1061186x.2022.2025600]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Epirubicin is a chemotherapy agent which is commonly used in treatment of cancers. However, despite being efficient, the tendency to use this drug is declining mostly due to its myocardiopathy and drug-resistance of tumor cells. Such side effects could be prevented using targeted nanocarriers. This study aims to evaluate targeted delivery of epirubicin (Epi) to colon cancer cells using ferritin nanoparticles (Ft NPs) and MUC1 aptamer (Apt) and formation of Apt-Epi Ft NPs. In the current study, Apt-Epi Ft NPs were prepared. Then, physicochemical properties of nanoparticles, including size and zeta potential, morphology, drug loading, drug release from nanoparticles, drug uptake of cancer cells, cytotoxicity and in vivo results were collected. The results showed that the nanoparticles were synthesized with a mean size of 37.9 nm and encapsulation efficiency of 67%. The drug release from these nanoparticles was about 90% within 4 h in acidic medium. Also, targeted delivery of Epi enhanced its anticancer effects in both in vitro and in vivo. In this study, targeted delivery of Epi using aptamer-modified ferritin nanoparticles improved in vitro and in vivo results which indicates that it could be useful as a successful drug delivery system against cancer cells.
Collapse