1
|
Ezcurra MD. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 2016; 4:e1778. [PMID: 27162705 PMCID: PMC4860341 DOI: 10.7717/peerj.1778] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/18/2016] [Indexed: 11/20/2022] Open
Abstract
The early evolution of archosauromorphs during the Permo-Triassic constitutes an excellent empirical case study to shed light on evolutionary radiations in deep time and the timing and processes of recovery of terrestrial faunas after a mass extinction. However, macroevolutionary studies of early archosauromorphs are currently limited by poor knowledge of their phylogenetic relationships. In particular, one of the main early archosauromorph groups that need an exhaustive phylogenetic study is "Proterosuchia," which as historically conceived includes members of both Proterosuchidae and Erythrosuchidae. A new data matrix composed of 96 separate taxa (several of them not included in a quantitative phylogenetic analysis before) and 600 osteological characters was assembled and analysed to generate a comprehensive higher-level phylogenetic hypothesis of basal archosauromorphs and shed light on the species-level interrelationships of taxa historically identified as proterosuchian archosauriforms. The results of the analysis using maximum parsimony include a polyphyletic "Prolacertiformes" and "Protorosauria," in which the Permian Aenigmastropheus and Protorosaurus are the most basal archosauromorphs. The enigmatic choristoderans are either found as the sister-taxa of all other lepidosauromorphs or archosauromorphs, but consistently placed within Sauria. Prolacertids, rhynchosaurs, allokotosaurians and tanystropheids are the major successive sister clades of Archosauriformes. The Early Triassic Tasmaniosaurus is recovered as the sister-taxon of Archosauriformes. Proterosuchidae is unambiguosly restricted to five species that occur immediately after and before the Permo-Triassic boundary, thus implying that they are a short-lived "disaster" clade. Erythrosuchidae is composed of eight nominal species that occur during the Early and Middle Triassic. "Proterosuchia" is polyphyletic, in which erythrosuchids are more closely related to Euparkeria and more crownward archosauriforms than to proterosuchids, and several species are found widespread along the archosauromorph tree, some being nested within Archosauria (e.g., "Chasmatosaurus ultimus," Youngosuchus). Doswelliids and proterochampsids are recovered as more closely related to each other than to other archosauromorphs, forming a large clade (Proterochampsia) of semi-aquatic to aquatic forms that includes the bizarre genus Vancleavea. Euparkeria is one of the sister-taxa of the clade composed of proterochampsians and archosaurs. The putative Indian archosaur Yarasuchus is recovered in a polytomy with Euparkeria and more crownward archosauriforms, and as more closely related to the Russian Dongusuchus than to other species. Phytosaurs are recovered as the sister-taxa of all other pseudosuchians, thus being nested within Archosauria.
Collapse
|
research-article |
9 |
132 |
2
|
Roy A, Walker WB, Vogel H, Chattington S, Larsson MC, Anderson P, Heckel DG, Schlyter F. Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 71:91-105. [PMID: 26908076 DOI: 10.1016/j.ibmb.2016.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
Adaption to dietary changes is critical in the evolution of host plant ranges in polyphagous insects. We compared three taxa of lepidopteran herbivores from the predominantly generalist genus Spodoptera showing different degrees of polyphagy: Spodoptera littoralis, with a broad host range including both mono- and dicotyledonous plants, and two Spodoptera frugiperda strains [Corn (i.e. maize) (C) and Rice (R)] adapted primarily to different grass species. When feeding on maize we show a lower performance in the broad generalist taxon compared to the grass adapted taxa. Among these taxa, the maize adapted S. frugiperda C-strain generally performed better than the R-strain on maize leaves. On artificial pinto diet, all taxa performed well. Our RNA-Seq analysis of midgut transcriptomes from 3rd instar larvae feeding on maize showed broader transcriptional readjustments in the generalist S. littoralis compared to grass adapted S. frugiperda strains. Substantial alteration in the expression levels of midgut physiological function related transcripts, such as digestive and detoxifying enzymes, transporters, immunity, and peritrophic membrane associated transcripts, existed in all taxa. We found high background expression of UDP-glucosyl transferases, which are known to neutralize maize leaf toxins, in the maize adapted S. frugiperda C-strain, contributing to its fitness on maize compared to the R-strain. Our findings provide evidence for divergent diet specific response of digestive physiology within these Spodoptera taxa. Unexpectedly, the C- and R-strains of S. frugiperda fed on the same diet showed large differences in expression patterns between these two closely related taxa.
Collapse
|
|
9 |
59 |
3
|
Bardua C, Wilkinson M, Gower DJ, Sherratt E, Goswami A. Morphological evolution and modularity of the caecilian skull. BMC Evol Biol 2019; 19:30. [PMID: 30669965 PMCID: PMC6343317 DOI: 10.1186/s12862-018-1342-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/21/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Caecilians (Gymnophiona) are the least speciose extant lissamphibian order, yet living forms capture approximately 250 million years of evolution since their earliest divergences. This long history is reflected in the broad range of skull morphologies exhibited by this largely fossorial, but developmentally diverse, clade. However, this diversity of form makes quantification of caecilian cranial morphology challenging, with highly variable presence or absence of many structures. Consequently, few studies have examined morphological evolution across caecilians. This extensive variation also raises the question of degree of conservation of cranial modules (semi-autonomous subsets of highly-integrated traits) within this clade, allowing us to assess the importance of modular organisation in shaping morphological evolution. We used an intensive surface geometric morphometric approach to quantify cranial morphological variation across all 32 extant caecilian genera. We defined 16 cranial regions using 53 landmarks and 687 curve and 729 surface sliding semilandmarks. With these unprecedented high-dimensional data, we analysed cranial shape and modularity across caecilians assessing phylogenetic, allometric and ecological influences on cranial evolution, as well as investigating the relationships among integration, evolutionary rate, and morphological disparity. RESULTS We found highest support for a ten-module model, with greater integration of the posterior skull. Phylogenetic signal was significant (Kmult = 0.87, p < 0.01), but stronger in anterior modules, while allometric influences were also significant (R2 = 0.16, p < 0.01), but stronger posteriorly. Reproductive strategy and degree of fossoriality were small but significant influences on cranial morphology (R2 = 0.03-0.05), after phylogenetic (p < 0.03) and multiple-test (p < 0.05) corrections. The quadrate-squamosal 'cheek' module was the fastest evolving module, perhaps due to its pivotal role in the unique dual jaw-closing mechanism of caecilians. Highly integrated modules exhibited both high and low disparities, and no relationship was evident between integration and evolutionary rate. CONCLUSIONS Our high-dimensional approach robustly characterises caecilian cranial evolution and demonstrates that caecilian crania are highly modular and that cranial modules are shaped by differential phylogenetic, allometric, and ecological effects. More broadly, and in contrast to recent studies, this work suggests that there is no simple relationship between integration and evolutionary rate or disparity.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
55 |
4
|
Pellestor F, Gatinois V. Chromoanagenesis: a piece of the macroevolution scenario. Mol Cytogenet 2020; 13:3. [PMID: 32010222 PMCID: PMC6988253 DOI: 10.1186/s13039-020-0470-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/05/2020] [Indexed: 01/04/2023] Open
Abstract
Over the last decade, new types of massive and complex chromosomal rearrangements based on the chaotic shattering and restructuring of chromosomes have been identified in cancer cells as well as in patients with congenital diseases and healthy individuals. These unanticipated phenomena are named chromothripsis, chromoanasynthesis and chromoplexy, and are grouped under the term of chromoanagenesis. As mechanisms for rapid and profound genome modifications in germlines and early development, these processes can be regarded as credible pathways for genomic evolution and speciation process. Their discovery confirms the importance of genome-centric investigations to fully understand organismal evolution. Because they oppose the model of progressive acquisition of driver mutations or rearrangements, these phenomena conceptually give support to the concept of macroevolution, known through the models of “Hopeful Monsters” and the “Punctuated Equilibrium”. In this review, we summarize mechanisms underlying chromoanagenesis processes and we show that numerous cases of chromosomal speciation and short-term adaptation could be correlated to chromoanagenesis-related mechanisms. In the frame of a modern and integrative analysis of eukaryote evolutionary processes, it seems important to consider the unexpected chromoanagenesis phenomena.
Collapse
|
Review |
5 |
51 |
5
|
Heard SB. PATTERNS IN PHYLOGENETIC TREE BALANCE WITH VARIABLE AND EVOLVING SPECIATION RATES. Evolution 2017; 50:2141-2148. [PMID: 28565665 DOI: 10.1111/j.1558-5646.1996.tb03604.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/1996] [Accepted: 04/17/1996] [Indexed: 11/30/2022]
Abstract
Aspects of phylogenetic tree shape, and in particular tree balance, provide clues to the workings of the macroevolutionary process. I use a simulation approach to explore patterns in tree balance for several models of the evolutionary process under which speciation rates vary through the history of diversifying clades. I demonstrate that when speciation rates depend on an evolving trait of individuals, and are therefore "heritable" along evolutionary lineages, the resulting phylogenies become imbalanced. However, imbalance also results from some (but not all) models of "nonheritable" speciation rate variation. The degree of imbalance increases with the magnitude of speciation rate variation, and then for gradual evolution (but not punctuated equilibria) reaches an asymptote short of the theoretical maximum. Very high levels of rate variation are required to produce imbalance matching that found in real data (estimated phylogenies from the systematic literature). I discuss implications of the simulation results for our understanding of macroevolution.
Collapse
|
Journal Article |
8 |
45 |
6
|
Stadler T, Gavryushkina A, Warnock RCM, Drummond AJ, Heath TA. The fossilized birth-death model for the analysis of stratigraphic range data under different speciation modes. J Theor Biol 2018; 447:41-55. [PMID: 29550451 PMCID: PMC5931795 DOI: 10.1016/j.jtbi.2018.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/15/2017] [Accepted: 03/05/2018] [Indexed: 10/26/2022]
Abstract
A birth-death-sampling model gives rise to phylogenetic trees with samples from the past and the present. Interpreting "birth" as branching speciation, "death" as extinction, and "sampling" as fossil preservation and recovery, this model - also referred to as the fossilized birth-death (FBD) model - gives rise to phylogenetic trees on extant and fossil samples. The model has been mathematically analyzed and successfully applied to a range of datasets on different taxonomic levels, such as penguins, plants, and insects. However, the current mathematical treatment of this model does not allow for a group of temporally distinct fossil specimens to be assigned to the same species. In this paper, we provide a general mathematical FBD modeling framework that explicitly takes "stratigraphic ranges" into account, with a stratigraphic range being defined as the lineage interval associated with a single species, ranging through time from the first to the last fossil appearance of the species. To assign a sequence of fossil samples in the phylogenetic tree to the same species, i.e., to specify a stratigraphic range, we need to define the mode of speciation. We provide expressions to account for three common speciation modes: budding (or asymmetric) speciation, bifurcating (or symmetric) speciation, and anagenetic speciation. Our equations allow for flexible joint Bayesian analysis of paleontological and neontological data. Furthermore, our framework is directly applicable to epidemiology, where a stratigraphic range is the observed duration of infection of a single patient, "birth" via budding is transmission, "death" is recovery, and "sampling" is sequencing the pathogen of a patient. Thus, we present a model that allows for incorporation of multiple observations through time from a single patient.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
43 |
7
|
Unlocking the black box of feather louse diversity: A molecular phylogeny of the hyper-diverse genus Brueelia. Mol Phylogenet Evol 2015; 94:737-751. [PMID: 26455895 DOI: 10.1016/j.ympev.2015.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 11/22/2022]
Abstract
Songbirds host one of the largest, and most poorly understood, groups of lice: the Brueelia-complex. The Brueelia-complex contains nearly one-tenth of all known louse species (Phthiraptera), and the genus Brueelia has over 300 species. To date, revisions have been confounded by extreme morphological variation, convergent evolution, and periodic movement of lice between unrelated hosts. Here we use Bayesian inference based on mitochondrial (COI) and nuclear (EF-1α) gene fragments to analyze the phylogenetic relationships among 333 individuals within the Brueelia-complex. We show that the genus Brueelia, as it is currently recognized, is paraphyletic. Many well-supported and morphologically unified clades within our phylogenetic reconstruction of Brueelia were previously described as genera. These genera should be recognized, and the erection of several new genera should be explored. We show that four distinct ecomorphs have evolved repeatedly within the Brueelia-complex, mirroring the evolutionary history of feather-lice across the entire order. We show that lice in the Brueelia-complex, with some notable exceptions, are extremely host specific and that the host family associations and geographic distributions of these lice are significantly correlated with our understanding of their phylogenetic history. Several ecological phenomena, including phoresis, may be responsible for the macroevolutionary patterns in this diverse group.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
42 |
8
|
Springer MS, Signore AV, Paijmans JLA, Vélez-Juarbe J, Domning DP, Bauer CE, He K, Crerar L, Campos PF, Murphy WJ, Meredith RW, Gatesy J, Willerslev E, MacPhee RDE, Hofreiter M, Campbell KL. Interordinal gene capture, the phylogenetic position of Steller's sea cow based on molecular and morphological data, and the macroevolutionary history of Sirenia. Mol Phylogenet Evol 2015; 91:178-93. [PMID: 26050523 DOI: 10.1016/j.ympev.2015.05.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 01/02/2023]
Abstract
The recently extinct (ca. 1768) Steller's sea cow (Hydrodamalis gigas) was a large, edentulous North Pacific sirenian. The phylogenetic affinities of this taxon to other members of this clade, living and extinct, are uncertain based on previous morphological and molecular studies. We employed hybridization capture methods and second generation sequencing technology to obtain >30kb of exon sequences from 26 nuclear genes for both H. gigas and Dugong dugon. We also obtained complete coding sequences for the tooth-related enamelin (ENAM) gene. Hybridization probes designed using dugong and manatee sequences were both highly effective in retrieving sequences from H. gigas (mean=98.8% coverage), as were more divergent probes for regions of ENAM (99.0% coverage) that were designed exclusively from a proboscidean (African elephant) and a hyracoid (Cape hyrax). New sequences were combined with available sequences for representatives of all other afrotherian orders. We also expanded a previously published morphological matrix for living and fossil Sirenia by adding both new taxa and nine new postcranial characters. Maximum likelihood and parsimony analyses of the molecular data provide robust support for an association of H. gigas and D. dugon to the exclusion of living trichechids (manatees). Parsimony analyses of the morphological data also support the inclusion of H. gigas in Dugongidae with D. dugon and fossil dugongids. Timetree analyses based on calibration density approaches with hard- and soft-bounded constraints suggest that H. gigas and D. dugon diverged in the Oligocene and that crown sirenians last shared a common ancestor in the Eocene. The coding sequence for the ENAM gene in H. gigas does not contain frameshift mutations or stop codons, but there is a transversion mutation (AG to CG) in the acceptor splice site of intron 2. This disruption in the edentulous Steller's sea cow is consistent with previous studies that have documented inactivating mutations in tooth-specific loci of a variety of edentulous and enamelless vertebrates including birds, turtles, aardvarks, pangolins, xenarthrans, and baleen whales. Further, branch-site dN/dS analyses provide evidence for positive selection in ENAM on the stem dugongid branch where extensive tooth reduction occurred, followed by neutral evolution on the Hydrodamalis branch. Finally, we present a synthetic evolutionary tree for living and fossil sirenians showing several key innovations in the history of this clade including character state changes that parallel those that occurred in the evolutionary history of cetaceans.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
40 |
9
|
Dececchi TA, Larsson HC, Habib MB. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents. PeerJ 2016; 4:e2159. [PMID: 27441115 PMCID: PMC4941780 DOI: 10.7717/peerj.2159] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/27/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR), and wing-assisted leaping. METHODS Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. RESULTS None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less stringent locomotory behaviours such as balancing and braking, played a role in the evolution of the maniraptoran wing and nascent flight stroke. We find no support for widespread prevalence of WAIR in non-avian theropods, but can't reject its presence in large winged, small-bodied taxa like Microraptor and Archaeopteryx. DISCUSSION Using our first principles approach we find that "near flight" locomotor behaviors are most sensitive to wing area, and that non-locomotory related selection regimes likely expanded wing area well before WAIR and other such behaviors were possible in derived avians. These results suggest that investigations of the drivers for wing expansion and feather elongation in theropods need not be intrinsically linked to locomotory adaptations, and this separation is critical for our understanding of the origin of powered flight and avian evolution.
Collapse
|
research-article |
9 |
39 |
10
|
Simões TR, Caldwell MW, Pierce SE. Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biol 2020; 18:191. [PMID: 33287835 PMCID: PMC7720557 DOI: 10.1186/s12915-020-00901-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The vast majority of all life that ever existed on earth is now extinct and several aspects of their evolutionary history can only be assessed by using morphological data from the fossil record. Sphenodontian reptiles are a classic example, having an evolutionary history of at least 230 million years, but currently represented by a single living species (Sphenodon punctatus). Hence, it is imperative to improve the development and implementation of probabilistic models to estimate evolutionary trees from morphological data (e.g., morphological clocks), which has direct benefits to understanding relationships and evolutionary patterns for both fossil and living species. However, the impact of model choice on morphology-only datasets has been poorly explored. RESULTS Here, we investigate the impact of a wide array of model choices on the inference of evolutionary trees and macroevolutionary parameters (divergence times and evolutionary rates) using a new data matrix on sphenodontian reptiles. Specifically, we tested different clock models, clock partitioning, taxon sampling strategies, sampling for ancestors, and variations on the fossilized birth-death (FBD) tree model parameters through time. We find a strong impact on divergence times and background evolutionary rates when applying widely utilized approaches, such as allowing for ancestors in the tree and the inappropriate assumption of diversification parameters being constant through time. We compare those results with previous studies on the impact of model choice to molecular data analysis and provide suggestions for improving the implementation of morphological clocks. Optimal model combinations find the radiation of most major lineages of sphenodontians to be in the Triassic and a gradual but continuous drop in morphological rates of evolution across distinct regions of the phenotype throughout the history of the group. CONCLUSIONS We provide a new hypothesis of sphenodontian classification, along with detailed macroevolutionary patterns in the evolutionary history of the group. Importantly, we provide suggestions to avoid overestimated divergence times and biased parameter estimates using morphological clocks. Partitioning relaxed clocks offers methodological limitations, but those can be at least partially circumvented to reveal a detailed assessment of rates of evolution across the phenotype and tests of evolutionary mosaicism.
Collapse
|
research-article |
5 |
30 |
11
|
Aria C, Caron JB. Mandibulate convergence in an armoured Cambrian stem chelicerate. BMC Evol Biol 2017; 17:261. [PMID: 29262772 PMCID: PMC5738823 DOI: 10.1186/s12862-017-1088-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chelicerata represents a vast clade of mostly predatory arthropods united by a distinctive body plan throughout the Phanerozoic. Their origins, however, with respect to both their ancestral morphological features and their related ecologies, are still poorly understood. In particular, it remains unclear whether their major diagnostic characters were acquired early on, and their anatomical organization rapidly constrained, or if they emerged from a stem lineage encompassing an array of structural variations, based on a more labile "panchelicerate" body plan. RESULTS In this study, we reinvestigated the problematic middle Cambrian arthropod Habelia optata Walcott from the Burgess Shale, and found that it was a close relative of Sanctacaris uncata Briggs and Collins (in Habeliida, ord. nov.), both retrieved in our Bayesian phylogeny as stem chelicerates. Habelia possesses an exoskeleton covered in numerous spines and a bipartite telson as long as the rest of the body. Segments are arranged into three tagmata. The prosoma includes a reduced appendage possibly precursor to the chelicera, raptorial endopods connected to five pairs of outstandingly large and overlapping gnathobasic basipods, antennule-like exopods seemingly dissociated from the main limb axis, and, posteriorly, a pair of appendages morphologically similar to thoracic ones. While the head configuration of habeliidans anchors a seven-segmented prosoma as the chelicerate ground pattern, the peculiar size and arrangement of gnathobases and the presence of sensory/tactile appendages also point to an early convergence with the masticatory head of mandibulates. CONCLUSIONS Although habeliidans illustrate the early appearance of some diagnostic chelicerate features in the evolution of euarthropods, the unique convergence of their cephalons with mandibulate anatomies suggests that these traits retained an unusual variability in these taxa. The common involvement of strong gnathal appendages across non-megacheirans Cambrian taxa also illustrates that the specialization of the head as the dedicated food-processing tagma was critical to the emergence of both lineages of extant euarthropods-Chelicerata and Mandibulata-and implies that this diversification was facilitated by the expansion of durophagous niches.
Collapse
|
|
8 |
29 |
12
|
Toljagic O, Voje KL, Matschiner M, Liow LH, Hansen TF. Millions of Years Behind: Slow Adaptation of Ruminants to Grasslands. Syst Biol 2018. [PMID: 28637223 DOI: 10.1093/sysbio/syx059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Late Cretaceous appearance of grasses, followed by the Cenozoic advancement of grasslands as dominant biomes, has contributed to the evolution of a range of specialized herbivores adapted to new diets, as well as to increasingly open and arid habitats. Many mammals including ruminants, the most diversified ungulate suborder, evolved high-crowned (hypsodont) teeth as an adaptation to tooth-wearing diets and habitats. The impact of different causes of tooth wear is still a matter of debate, and the temporal pattern of hypsodonty evolution in relation to the evolution of grasslands remains unclear. We present an improved time-calibrated molecular phylogeny of Cetartiodactyla, with phylogenetic reconstruction of ancestral ruminant diets and habitats, based on characteristics of extant taxa. Using this timeline, as well as the fossil record of grasslands, we conduct phylogenetic comparative analyses showing that hypsodonty in ruminants evolved as an adaptation to both diet and habitat. Our results demonstrate a slow, perhaps constrained, evolution of hypsodonty toward estimated optimal states, excluding the possibility of immediate adaptation. This augments recent findings that slow adaptation is not uncommon on million-year time scales.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
23 |
13
|
Aria C, Zhao F, Zeng H, Guo J, Zhu M. Fossils from South China redefine the ancestral euarthropod body plan. BMC Evol Biol 2020; 20:4. [PMID: 31914921 PMCID: PMC6950928 DOI: 10.1186/s12862-019-1560-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Early Cambrian Lagerstätten from China have greatly enriched our perspective on the early evolution of animals, particularly arthropods. However, recent studies have shown that many of these early fossil arthropods were more derived than previously thought, casting uncertainty on the ancestral euarthropod body plan. In addition, evidence from fossilized neural tissues conflicts with external morphology, in particular regarding the homology of the frontalmost appendage. RESULTS Here we redescribe the multisegmented megacheirans Fortiforceps and Jianfengia and describe Sklerolibyon maomima gen. et sp. nov., which we place in Jianfengiidae, fam. nov. (in Megacheira, emended). We find that jianfengiids show high morphological diversity among megacheirans, both in trunk ornamentation and head anatomy, which encompasses from 2 to 4 post-frontal appendage pairs. These taxa are also characterized by elongate podomeres likely forming seven-segmented endopods, which were misinterpreted in their original descriptions. Plesiomorphic traits also clarify their connection with more ancestral taxa. The structure and position of the "great appendages" relative to likely sensory antero-medial protrusions, as well as the presence of optic peduncles and sclerites, point to an overall homology with the anterior head of radiodontans. This is confirmed by our Bayesian phylogeny, which places jianfengiids as the basalmost euarthropods, paraphyletic with other megacheirans, and in contiguity with isoxyids and radiodontans. CONCLUSIONS Sklerolibyon and other jianfengiids expand the disparity of megacheirans and suggest that the common euarthropod ancestor possessed a remarkable phenotypic variability associated with the externalized cephalon, as well as endopods that were already heptopodomerous, which differs from previous hypotheses and observations. These animals also demonstrate that the frontalmost pair of arthrodized appendage is homologous between radiodontans and megacheirans, refuting the claim that the radiodontan frontal appendages evolved into the euarthropod labrum, and questioning its protocerebral identity. This evidence based on external anatomy now constitutes a solid benchmark upon which we should address issues of homology, with the help of carefully examined palaeoneurological data.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
20 |
14
|
What prevents mainstream evolutionists teaching the whole truth about how genomes evolve? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:140-152. [PMID: 33933502 DOI: 10.1016/j.pbiomolbio.2021.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 01/24/2023]
Abstract
The common belief that the neo-Darwinian Modern Synthesis (MS) was buttressed by the discoveries of molecular biology is incorrect. On the contrary those discoveries have undermined the MS. This article discusses the many processes revealed by molecular studies and genome sequencing that contribute to evolution but nonetheless lie beyond the strict confines of the MS formulated in the 1940s. The core assumptions of the MS that molecular studies have discredited include the idea that DNA is intrinsically a faithful self-replicator, the one-way transfer of heritable information from nucleic acids to other cell molecules, the myth of "selfish DNA", and the existence of an impenetrable Weismann Barrier separating somatic and germ line cells. Processes fundamental to modern evolutionary theory include symbiogenesis, biosphere interactions between distant taxa (including viruses), horizontal DNA transfers, natural genetic engineering, organismal stress responses that activate intrinsic genome change operators, and macroevolution by genome restructuring (distinct from the gradual accumulation of local microevolutionary changes in the MS). These 21st Century concepts treat the evolving genome as a highly formatted and integrated Read-Write (RW) database rather than a Read-Only Memory (ROM) collection of independent gene units that change by random copying errors. Most of the discoverers of these macroevolutionary processes have been ignored in mainstream textbooks and popularizations of evolutionary biology, as we document in some detail. Ironically, we show that the active view of evolution that emerges from genomics and molecular biology is much closer to the 19th century ideas of both Darwin and Lamarck. The capacity of cells to activate evolutionary genome change under stress can account for some of the most negative clinical results in oncology, especially the sudden appearance of treatment-resistant and more aggressive tumors following therapies intended to eradicate all cancer cells. Knowing that extreme stress can be a trigger for punctuated macroevolutionary change suggests that less lethal therapies may result in longer survival times.
Collapse
|
Journal Article |
4 |
19 |
15
|
Britto DT, Coskun D, Kronzucker HJ. Potassium physiology from Archean to Holocene: A higher-plant perspective. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153432. [PMID: 34034042 DOI: 10.1016/j.jplph.2021.153432] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we discuss biological potassium acquisition and utilization processes over an evolutionary timescale, with emphasis on modern vascular plants. The quintessential osmotic and electrical functions of the K+ ion are shown to be intimately tied to K+-transport systems and membrane energization. Several prominent themes in plant K+-transport physiology are explored in greater detail, including: (1) channel mediated K+ acquisition by roots at low external [K+]; (2) K+ loading of root xylem elements by active transport; (3) variations on the theme of K+ efflux from root cells to the extracellular environment; (4) the veracity and utility of the "affinity" concept in relation to transport systems. We close with a discussion of the importance of plant-potassium relations to our human world, and current trends in potassium nutrition from farm to table.
Collapse
|
Review |
4 |
19 |
16
|
Bazzi M, Kear BP, Blom H, Ahlberg PE, Campione NE. Static Dental Disparity and Morphological Turnover in Sharks across the End-Cretaceous Mass Extinction. Curr Biol 2018; 28:2607-2615.e3. [PMID: 30078565 DOI: 10.1016/j.cub.2018.05.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/05/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022]
Abstract
The Cretaceous-Palaeogene (K-Pg) mass extinction profoundly altered vertebrate ecosystems and prompted the radiation of many extant clades [1, 2]. Sharks (Selachimorpha) were one of the few larger-bodied marine predators that survived the K-Pg event and are represented by an almost-continuous dental fossil record. However, the precise dynamics of their transition through this interval remain uncertain [3]. Here, we apply 2D geometric morphometrics to reconstruct global and regional dental morphospace variation among Lamniformes (Mackerel sharks) and Carcharhiniformes (Ground sharks). These clades are prevalent predators in today's oceans, and were geographically widespread during the late Cretaceous-early Palaeogene. Our results reveal a decoupling of morphological disparity and taxonomic richness. Indeed, shark disparity was nearly static across the K-Pg extinction, in contrast to abrupt declines among other higher-trophic-level marine predators [4, 5]. Nevertheless, specific patterns indicate that an asymmetric extinction occurred among lamniforms possessing low-crowned/triangular teeth and that a subsequent proliferation of carcharhiniforms with similar tooth morphologies took place during the early Paleocene. This compositional shift in post-Mesozoic shark lineages hints at a profound and persistent K-Pg signature evident in the heterogeneity of modern shark communities. Moreover, such wholesale lineage turnover coincided with the loss of many cephalopod [6] and pelagic amniote [5] groups, as well as the explosive radiation of middle trophic-level teleost fishes [1]. We hypothesize that a combination of prey availability and post-extinction trophic cascades favored extant shark antecedents and laid the foundation for their extensive diversification later in the Cenozoic [7-10].
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
18 |
17
|
Coombs EJ, Clavel J, Park T, Churchill M, Goswami A. Wonky whales: the evolution of cranial asymmetry in cetaceans. BMC Biol 2020; 18:86. [PMID: 32646447 PMCID: PMC7350770 DOI: 10.1186/s12915-020-00805-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unlike most mammals, toothed whale (Odontoceti) skulls lack symmetry in the nasal and facial (nasofacial) region. This asymmetry is hypothesised to relate to echolocation, which may have evolved in the earliest diverging odontocetes. Early cetaceans (whales, dolphins, and porpoises) such as archaeocetes, namely the protocetids and basilosaurids, have asymmetric rostra, but it is unclear when nasofacial asymmetry evolved during the transition from archaeocetes to modern whales. We used three-dimensional geometric morphometrics and phylogenetic comparative methods to reconstruct the evolution of asymmetry in the skulls of 162 living and extinct cetaceans over 50 million years. RESULTS In archaeocetes, we found asymmetry is prevalent in the rostrum and also in the squamosal, jugal, and orbit, possibly reflecting preservational deformation. Asymmetry in odontocetes is predominant in the nasofacial region. Mysticetes (baleen whales) show symmetry similar to terrestrial artiodactyls such as bovines. The first significant shift in asymmetry occurred in the stem odontocete family Xenorophidae during the Early Oligocene. Further increases in asymmetry occur in the physeteroids in the Late Oligocene, Squalodelphinidae and Platanistidae in the Late Oligocene/Early Miocene, and in the Monodontidae in the Late Miocene/Early Pliocene. Additional episodes of rapid change in odontocete skull asymmetry were found in the Mid-Late Oligocene, a period of rapid evolution and diversification. No high-probability increases or jumps in asymmetry were found in mysticetes or archaeocetes. Unexpectedly, no increases in asymmetry were recovered within the highly asymmetric ziphiids, which may result from the extreme, asymmetric shape of premaxillary crests in these taxa not being captured by landmarks alone. CONCLUSIONS Early ancestors of living whales had little cranial asymmetry and likely were not able to echolocate. Archaeocetes display high levels of asymmetry in the rostrum, potentially related to directional hearing, which is lost in early neocetes-the taxon including the most recent common ancestor of living cetaceans. Nasofacial asymmetry becomes a significant feature of Odontoceti skulls in the Early Oligocene, reaching its highest levels in extant taxa. Separate evolutionary regimes are reconstructed for odontocetes living in acoustically complex environments, suggesting that these niches impose strong selective pressure on echolocation ability and thus increased cranial asymmetry.
Collapse
|
research-article |
5 |
17 |
18
|
Field DJ, Hsiang AY. A North American stem turaco, and the complex biogeographic history of modern birds. BMC Evol Biol 2018; 18:102. [PMID: 29936914 PMCID: PMC6016133 DOI: 10.1186/s12862-018-1212-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Earth's lower latitudes boast the majority of extant avian species-level and higher-order diversity, with many deeply diverging clades restricted to vestiges of Gondwana. However, palaeontological analyses reveal that many avian crown clades with restricted extant distributions had stem group relatives in very different parts of the world. RESULTS Our phylogenetic analyses support the enigmatic fossil bird Foro panarium Olson 1992 from the early Eocene (Wasatchian) of Wyoming as a stem turaco (Neornithes: Pan-Musophagidae), a clade that is presently endemic to sub-Saharan Africa. Our analyses offer the first well-supported evidence for a stem musophagid (and therefore a useful fossil calibration for avian molecular divergence analyses), and reveal surprising new information on the early morphology and biogeography of this clade. Total-clade Musophagidae is identified as a potential participant in dispersal via the recently proposed 'North American Gateway' during the Palaeogene, and new biogeographic analyses illustrate the importance of the fossil record in revealing the complex historical biogeography of crown birds across geological timescales. CONCLUSIONS In the Palaeogene, total-clade Musophagidae was distributed well outside the range of crown Musophagidae in the present day. This observation is consistent with similar biogeographic observations for numerous other modern bird clades, illustrating shortcomings of historical biogeographic analyses that do not incorporate information from the avian fossil record.
Collapse
|
research-article |
7 |
17 |
19
|
Deline B, Thompson JR, Smith NS, Zamora S, Rahman IA, Sheffield SL, Ausich WI, Kammer TW, Sumrall CD. Evolution and Development at the Origin of a Phylum. Curr Biol 2020; 30:1672-1679.e3. [PMID: 32197083 DOI: 10.1016/j.cub.2020.02.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 01/07/2023]
Abstract
Quantifying morphological evolution is key to determining the patterns and processes underlying the origin of phyla. We constructed a hierarchical morphological character matrix to characterize the radiation and establishment of echinoderm body plans during the early Paleozoic. This showed that subphylum-level clades diverged gradually through the Cambrian, and the distinctiveness of the resulting body plans was amplified by the extinction of transitional forms and obscured by convergent evolution during the Ordovician. Higher-order characters that define these body plans were not fixed at the origin of the phylum, countering hypotheses regarding developmental processes governing the early evolution of animals. Instead, these burdened characters were flexible, enabling continued evolutionary innovation throughout the clades' history.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
17 |
20
|
Peterson T, Müller GB. Phenotypic Novelty in EvoDevo: The Distinction Between Continuous and Discontinuous Variation and Its Importance in Evolutionary Theory. Evol Biol 2016; 43:314-335. [PMID: 27512237 PMCID: PMC4960286 DOI: 10.1007/s11692-016-9372-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/29/2016] [Indexed: 10/25/2022]
Abstract
The introduction of novel phenotypic structures is one of the most significant aspects of organismal evolution. Yet the concept of evolutionary novelty is used with drastically different connotations in various fields of research, and debate exists about whether novelties represent features that are distinct from standard forms of phenotypic variation. This article contrasts four separate uses for novelty in genetics, population genetics, morphology, and behavioral science, before establishing how novelties are used in evolutionary developmental biology (EvoDevo). In particular, it is detailed how an EvoDevo-specific research approach to novelty produces insight distinct from other fields, gives the concept explanatory power with predictive capacities, and brings new consequences to evolutionary theory. This includes the outlining of research strategies that draw attention to productive areas of inquiry, such as threshold dynamics in development. It is argued that an EvoDevo-based approach to novelty is inherently mechanistic, treats the phenotype as an agent with generative potential, and prompts a distinction between continuous and discontinuous variation in evolutionary theory.
Collapse
|
research-article |
9 |
16 |
21
|
Tennant JP, Chiarenza AA, Baron M. How has our knowledge of dinosaur diversity through geologic time changed through research history? PeerJ 2018; 6:e4417. [PMID: 29479504 PMCID: PMC5822849 DOI: 10.7717/peerj.4417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 02/06/2018] [Indexed: 11/20/2022] Open
Abstract
Assessments of dinosaur macroevolution at any given time can be biased by the historical publication record. Recent studies have analysed patterns in dinosaur diversity that are based on secular variations in the numbers of published taxa. Many of these have employed a range of approaches that account for changes in the shape of the taxonomic abundance curve, which are largely dependent on databases compiled from the primary published literature. However, how these ‘corrected’ diversity patterns are influenced by the history of publication remains largely unknown. Here, we investigate the influence of publication history between 1991 and 2015 on our understanding of dinosaur evolution using raw diversity estimates and shareholder quorum subsampling for the three major subgroups: Ornithischia, Sauropodomorpha, and Theropoda. We find that, while sampling generally improves through time, there remain periods and regions in dinosaur evolutionary history where diversity estimates are highly volatile (e.g. the latest Jurassic of Europe, the mid-Cretaceous of North America, and the Late Cretaceous of South America). Our results show that historical changes in database compilation can often substantially influence our interpretations of dinosaur diversity. ‘Global’ estimates of diversity based on the fossil record are often also based on incomplete, and distinct regional signals, each subject to their own sampling history. Changes in the record of taxon abundance distribution, either through discovery of new taxa or addition of existing taxa to improve sampling evenness, are important in improving the reliability of our interpretations of dinosaur diversity. Furthermore, the number of occurrences and newly identified dinosaurs is still rapidly increasing through time, suggesting that it is entirely possible for much of what we know about dinosaurs at the present to change within the next 20 years.
Collapse
|
Journal Article |
7 |
16 |
22
|
Reaney AM, Saldarriaga-Córdoba M, Pincheira-Donoso D. Macroevolutionary diversification with limited niche disparity in a species-rich lineage of cold-climate lizards. BMC Evol Biol 2018; 18:16. [PMID: 29409440 PMCID: PMC5801843 DOI: 10.1186/s12862-018-1133-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 01/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Life diversifies via adaptive radiation when natural selection drives the evolution of ecologically distinct species mediated by their access to novel niche space, or via non-adaptive radiation when new species diversify while retaining ancestral niches. However, while cases of adaptive radiation are widely documented, examples of non-adaptively radiating lineages remain rarely observed. A prolific cold-climate lizard radiation from South America (Phymaturus), sister to a hyper-diverse adaptive radiation (Liolaemus), has extensively diversified phylogenetically and geographically, but with exceptionally minimal ecological and life-history diversification. This lineage, therefore, may offer unique opportunities to investigate the non-adaptive basis of diversification, and in combination with Liolaemus, to cover the whole spectrum of modes of diversification predicted by theory, from adaptive to non-adaptive. Using phylogenetic macroevolutionary modelling performed on a newly created 58-species molecular tree, we establish the tempo and mode of diversification in the Phymaturus radiation. RESULTS Lineage accumulation in Phymaturus opposes a density-dependent (or 'niche-filling') process of diversification. Concurrently, we found that body size diversification is better described by an Ornstein-Uhlenbeck evolutionary model, suggesting stabilizing selection as the mechanism underlying niche conservatism (i.e., maintaining two fundamental size peaks), and which has predominantly evolved around two major adaptive peaks on a 'Simpsonian' adaptive landscape. CONCLUSIONS Lineage diversification of the Phymaturus genus does not conform to an adaptive radiation, as it is characterised by a constant rate of species accumulation during the clade's history. Their strict habitat requirements (rocky outcrops), predominantly invariant herbivory, and especially the constant viviparous reproduction across species have likely limited their opportunities for adaptive diversifications throughout novel environments. This mode of diversification contrasts dramatically with its sister lineage Liolaemus, which geographically overlaps with Phymaturus, but exploits all possible microhabitats in these and other bioclimatic areas. Our study contributes importantly to consolidate these lizards (liolaemids) as promising model systems to investigate the entire spectrum of modes of species formations, from the adaptive to the non-adaptive extremes of the continuum.
Collapse
|
research-article |
7 |
15 |
23
|
Kraatz B, Sherratt E. Evolutionary morphology of the rabbit skull. PeerJ 2016; 4:e2453. [PMID: 27688967 PMCID: PMC5036099 DOI: 10.7717/peerj.2453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 08/16/2016] [Indexed: 11/23/2022] Open
Abstract
The skull of leporids (rabbits and hares) is highly transformed, typified by pronounced arching of the dorsal skull and ventral flexion of the facial region (i.e., facial tilt). Previous studies show that locomotor behavior influences aspects of cranial shape in leporids, and here we use an extensive 3D geometric morphometrics dataset to further explore what influences leporid cranial diversity. Facial tilt angle, a trait that strongly correlates with locomotor mode, significantly predicts the cranial shape variation captured by the primary axis of cranial shape space, and describes a small proportion (13.2%) of overall cranial shape variation in the clade. However, locomotor mode does not correlate with overall cranial shape variation in the clade, because there are two district morphologies of generalist species, and saltators and cursorial species have similar morphologies. Cranial shape changes due to phyletic size change (evolutionary allometry) also describes a small proportion (12.5%) of cranial shape variation in the clade, but this is largely driven by the smallest living leporid, the pygmy rabbit (Brachylagus idahoensis). By integrating phylogenetic history with our geometric morphometric data, we show that the leporid cranium exhibits weak phylogenetic signal and substantial homoplasy. Though these results make it difficult to reconstruct what the ‘ancestral’ leporid skull looked like, the fossil records suggest that dorsal arching and facial tilt could have occurred before the origin of the crown group. Lastly, our study highlights the diversity of cranial variation in crown leporids, and highlights a need for additional phylogenetic work that includes stem (fossil) leporids and includes morphological data that captures the transformed morphology of rabbits and hares.
Collapse
|
Journal Article |
9 |
14 |
24
|
Kodandaramaiah U, Murali G. What affects power to estimate speciation rate shifts? PeerJ 2018; 6:e5495. [PMID: 30155369 PMCID: PMC6108317 DOI: 10.7717/peerj.5495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 07/30/2018] [Indexed: 02/04/2023] Open
Abstract
The development of methods to estimate rates of speciation and extinction from time-calibrated phylogenies has revolutionized evolutionary biology by allowing researchers to correlate diversification rate shifts with causal factors. A growing number of researchers are interested in testing whether the evolution of a trait or a trait variant has influenced speciation rate, and three modelling methods-BiSSE, MEDUSA and BAMM-have been widely used in such studies. We simulated phylogenies with a single speciation rate shift each, and evaluated the power of the three methods to detect these shifts. We varied the degree of increase in speciation rate (speciation rate asymmetry), the number of tips, the tip-ratio bias (ratio of number of tips with each character state) and the relative age in relation to overall tree age when the rate shift occurred. All methods had good power to detect rate shifts when the rate asymmetry was strong and the sizes of the two lineages with the distinct speciation rates were large. Even when lineage size was small, power was good when rate asymmetry was high. In our simulated scenarios, small lineage sizes appear to affect BAMM most strongly. Tip-ratio influenced the accuracy of speciation rate estimation but did not have a strong effect on power to detect rate shifts. Based on our results, we provide suggestions to users of these methods.
Collapse
|
research-article |
7 |
14 |
25
|
Igamberdiev AU, Gordon R. Macroevolution, differentiation trees, and the growth of coding systems. Biosystems 2023; 234:105044. [PMID: 37783374 DOI: 10.1016/j.biosystems.2023.105044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
An open process of evolution of multicellular organisms is based on the rearrangement and growth of the program of differentiation that underlies biological morphogenesis. The maintenance of the final (adult) stable non-equilibrium state (stasis) of a developmental system determines the direction of the evolutionary process. This state is achieved via the sequence of differentiation events representable as differentiation trees. A special type of morphogenetic code, acting as a metacode governing gene expression, may include electromechanical signals appearing as differentiation waves. The excessive energy due to the incorporation of mitochondria in eukaryotic cells resulted not only in more active metabolism but also in establishing the differentiation code for interconnecting cells and forming tissues, which fueled the evolutionary process. The "invention" of "continuing differentiation" distinguishes multicellular eukaryotes from other organisms. The Janus-faced control, involving both top-down control by differentiation waves and bottom-up control via the mechanical consequences of cell differentiations, underlies the process of morphogenesis and results in the achievement of functional stable final states. Duplications of branches of the differentiation tree may be the basis for continuing differentiation and macroevolution, analogous to gene duplication permitting divergence of genes. Metamorphoses, if they are proven to be fusions of disparate species, may be classified according to the topology of fusions of two differentiation trees. In the process of unfolding of morphogenetic structures, microevolution can be defined as changes of the differentiation tree that preserve topology of the tree, while macroevolution represents any change that alters the topology of the differentiation tree.
Collapse
|
|
2 |
13 |