1
|
He XT, Wu RX, Xu XY, Wang J, Yin Y, Chen FM. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions. Acta Biomater 2018; 71:132-147. [PMID: 29462712 DOI: 10.1016/j.actbio.2018.02.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
Accumulating evidence indicates that the physicochemical properties of biomaterials exert profound influences on stem cell fate decisions. However, matrix-based regulation selected through in vitro analyses based on a given cell population do not genuinely reflect the in vivo conditions, in which multiple cell types are involved and interact dynamically. This study constitutes the first investigation of how macrophages (Mφs) in stiffness-tunable transglutaminase cross-linked gelatin (TG-gel) affect the osteogenesis of bone marrow-derived mesenchymal stem cells (BMMSCs). When a single cell type was cultured, low-stiffness TG-gels promoted BMMSC proliferation, whereas high-stiffness TG-gels supported cell osteogenic differentiation. However, Mφs in high-stiffness TG-gels were more likely to polarize toward the pro-inflammatory M1 phenotype. Using either conditioned medium (CM)-based incubation or Transwell-based co-culture, we found that Mφs encapsulated in the low-stiffness matrix exerted a positive effect on the osteogenesis of co-cultured BMMSCs. Conversely, Mφs in high-stiffness TG-gels negatively affected cell osteogenic differentiation. When both cell types were cultured in the same TG-gel type and placed into the Transwell system, the stiffness-related influences of Mφs on BMMSCs were significantly altered; both the low- and high-stiffness matrix induced similar levels of BMMSC osteogenesis. Although the best material parameter for synergistically affecting Mφs and BMMSCs remains unknown, our data suggest that Mφ involvement in the co-culture system alters previously identified material-related influences on BMMSCs, such as matrix stiffness-related effects, which were identified based on a culture system involving a single cell type. Such Mφ-stem cell interactions should be considered when establishing proper matrix parameter-associated cell regulation in the development of biomimetic biomaterials for regenerative applications. STATEMENT OF SIGNIFICANCE The substrate stiffness of a scaffold plays critical roles in modulating both reparative cells, such as mesenchymal stem cells (MSCs), and immune cells, such as macrophages (Mφs). Although the influences of material stiffness on either Mφs or MSCs, have been extensively described, how the two cell types respond to matrix cues to dynamically affect each other in a three-dimensional (3D) biosystem remains largely unknown. Here, we report our findings that, in a platform wherein Mφs and bone marrow-derived MSCs coexist, matrix stiffness can influence stem cell fate through both direct matrix-associated regulation and indirect Mφ-based modulation. Our data support future studies of the MSC-Mφ-matrix interplay in the 3D context to optimize matrix parameters for the development of the next biomaterial.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
69 |
2
|
Altintas C, Altundal OF, Keskin S, Yildirim R. Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation. J Chem Inf Model 2021; 61:2131-2146. [PMID: 33914526 PMCID: PMC8154255 DOI: 10.1021/acs.jcim.1c00191] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 02/06/2023]
Abstract
The acceleration in design of new metal organic frameworks (MOFs) has led scientists to focus on high-throughput computational screening (HTCS) methods to quickly assess the promises of these fascinating materials in various applications. HTCS studies provide a massive amount of structural property and performance data for MOFs, which need to be further analyzed. Recent implementation of machine learning (ML), which is another growing field in research, to HTCS of MOFs has been very fruitful not only for revealing the hidden structure-performance relationships of materials but also for understanding their performance trends in different applications, specifically for gas storage and separation. In this review, we highlight the current state of the art in ML-assisted computational screening of MOFs for gas storage and separation and address both the opportunities and challenges that are emerging in this new field by emphasizing how merging of ML and MOF simulations can be useful.
Collapse
|
Review |
4 |
60 |
3
|
In-plane mechanics of soft architectured fibre-reinforced silicone rubber membranes. J Mech Behav Biomed Mater 2014; 40:339-353. [PMID: 25265032 DOI: 10.1016/j.jmbbm.2014.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 11/22/2022]
Abstract
Silicone rubber membranes reinforced with architectured fibre networks were processed with a dedicated apparatus, allowing a control of the fibre content and orientation. The membranes were subjected to tensile loadings combined with continuous and discrete kinematical field measurements (DIC and particle tracking). These tests show that the mechanical behaviour of the membranes is hyperelastic at the first order. They highlight the influence of the fibre content and orientation on both the membrane in-plane deformation and stress levels. They also prove that for the considered fibrous architectures and mechanical loadings, the motion and deformation of fibres is an affine function of the macroscale transformation. These trends are fairly well described by the micromechanical model proposed recently in Bailly et al. (JMBBM, 2012). This result proves that these materials are very good candidates for new biomimetic membranes, e.g. to improve aortic analogues used for in vitro experiments, or existing textiles used for vascular (endo)prostheses.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
15 |
4
|
Xu T, Wang D, Li Z, Chen Z, Zhang J, Hu T, Zhang X, Shen L. Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices. NANO-MICRO LETTERS 2022; 14:126. [PMID: 35699769 PMCID: PMC9198198 DOI: 10.1007/s40820-022-00864-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 05/14/2023]
Abstract
Simultaneously improving the energy density and power density of electrochemical energy storage systems is the ultimate goal of electrochemical energy storage technology. An effective strategy to achieve this goal is to take advantage of the high capacity and rapid kinetics of electrochemical proton storage to break through the power limit of batteries and the energy limit of capacitors. This article aims to review the research progress on the physicochemical properties, electrochemical performance, and reaction mechanisms of electrode materials for electrochemical proton storage. According to the different charge storage mechanisms, the surface redox, intercalation, and conversion materials are classified and introduced in detail, where the influence of crystal water and other nanostructures on the migration kinetics of protons is clarified. Several reported advanced full cell devices are summarized to promote the commercialization of electrochemical proton storage. Finally, this review provides a framework for research directions of charge storage mechanism, basic principles of material structure design, construction strategies of full cell device, and goals of practical application for electrochemical proton storage.
Collapse
|
Review |
3 |
13 |
5
|
Bastakoti BP, Kuila D, Salomon C, Konarova M, Eguchi M, Na J, Yamauchi Y. Metal-incorporated mesoporous oxides: Synthesis and applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123348. [PMID: 32763679 DOI: 10.1016/j.jhazmat.2020.123348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Mesoporous oxides are outstanding metal nanoparticle catalyst supports owing to their well-defined porous structures. Such mesoporous architectures not only prevent the aggregation of metal nanoparticles but also enhance their catalytic performance. Metal/metal oxide heterojunctions exhibit unique chemical and physical properties because of the surface reconstruction around the junction and electron transfer/interaction across the interface. This article reviews the methods used for synthesizing metal-supported hybrid nanostructures and their applications as catalysts for environmental remediation and sensors for detecting hazardous materials.
Collapse
|
|
4 |
9 |
6
|
Li X, You B, Shum HC, Chen CH. Future foods: Design, fabrication and production through microfluidics. Biomaterials 2022; 287:121631. [PMID: 35717791 DOI: 10.1016/j.biomaterials.2022.121631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Many delicious foods are soft matter systems with health ingredients and unique internal structures that provide rich nutrition, unique textures, and popular flavors. Obtaining these special properties in food products usually requires specialized processes. Microfluidic technologies have been developed to physically manipulate liquids to produce a broad range of microunits, providing a suitable approach for precise fabrication of functional biomaterials with desirable interior structures in a bottom-up fashion. In this review, we present how microfluidics has been applied to produce gel-based structures and highlight their use in fabricating novel foods, focusing on, among others, cultured meat as a rapidly growing field in food industry. We first discuss the behaviors of food liquids in microchannels for fluidic structure design. Then, different types of microsized building blocks with specific geometries fabricated through microfluidics are introduced, including particles (point), fibers (line), and sheets (plane). These well-defined units can encapsulate or interact with cells, forming microtissues to construct meat products with desirable architectures. After that, we review approaches to scale up microfluidic devices for mass production of the hydrogel building blocks and highlight the challenges associated with bottom-up food production.
Collapse
|
|
3 |
8 |
7
|
Zou CY, Li QJ, Hu JJ, Song YT, Zhang QY, Nie R, Li-Ling J, Xie HQ. Design of biopolymer-based hemostatic material: Starting from molecular structures and forms. Mater Today Bio 2022; 17:100468. [PMID: 36340592 PMCID: PMC9626749 DOI: 10.1016/j.mtbio.2022.100468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Uncontrolled bleeding remains as a leading cause of death in surgical, traumatic, and emergency situations. Management of the hemorrhage and development of hemostatic materials are paramount for patient survival. Owing to their inherent biocompatibility, biodegradability and bioactivity, biopolymers such as polysaccharides and polypeptides have been extensively researched and become a focus for the development of next-generation hemostatic materials. The construction of novel hemostatic materials requires in-depth understanding of the physiological hemostatic process, fundamental hemostatic mechanisms, and the effects of material chemistry/physics. Herein, we have recapitulated the common hemostatic strategies and development status of biopolymer-based hemostatic materials. Furthermore, the hemostatic mechanisms of various molecular structures (components and chemical modifications) are summarized from a microscopic perspective, and the design based on them are introduced. From a macroscopic perspective, the design of various forms of hemostatic materials, e.g., powder, sponge, hydrogel and gauze, is summarized and compared, which may provide an enlightenment for the optimization of hemostat design. It has also highlighted current challenges to the development of biopolymer-based hemostatic materials and proposed future directions in chemistry design, advanced form and clinical application.
Collapse
|
Review |
3 |
7 |
8
|
Yao Y, Chen F, Chen X, Shen Q, Zhang L. Data of microstructure and mechanical properties of carbon foams derived from sucrose/polyacrylamide hydrogel. Data Brief 2016; 7:117-22. [PMID: 26933668 PMCID: PMC4764894 DOI: 10.1016/j.dib.2016.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/10/2015] [Accepted: 02/06/2016] [Indexed: 11/28/2022] Open
Abstract
An easy method that combined gel casting and physical foaming was used to fabricate modified carbon foams. The design of carbon foams from sucrose/polyacrylamide hydrogel is a new concept for controlling the microstructure and improving the compressive properties of carbon foams. This article provides the micrographs obtained from optical and scanning electron microscope for foaming solution and carbon foams. Weight loss data used to construct the thermo-gravimetric curves are included. Load–displacement data constructing the stress–strain curves and the derived compressive properties are also included.
Collapse
|
|
9 |
3 |
9
|
Ji K, Yao Y, Wei X, Liu W, Zhang J, Liu Y, Zhang Y, Wang J, Gu Z. Material design for oral insulin delivery. MED-X 2023; 1:7. [PMID: 37485249 PMCID: PMC10357414 DOI: 10.1007/s44258-023-00006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 07/25/2023]
Abstract
Frequent insulin injections remain the primary method for controlling the blood glucose level of individuals with diabetes mellitus but are associated with low compliance. Accordingly, oral administration has been identified as a highly desirable alternative due to its non-invasive nature. However, the harsh gastrointestinal environment and physical intestinal barriers pose significant challenges to achieving optimal pharmacological bioavailability of insulin. As a result, researchers have developed a range of materials to improve the efficiency of oral insulin delivery over the past few decades. In this review, we summarize the latest advances in material design that aim to enhance insulin protection, permeability, and glucose-responsive release. We also explore the opportunities and challenges of using these materials for oral insulin delivery.
Collapse
|
Review |
2 |
|
10
|
陈 子, 崔 海, 芦 映, 郎 景. [ Material design and temperature field simulation analysis of tumor radiofrequency ablation needle]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:958-965. [PMID: 36310484 PMCID: PMC9927707 DOI: 10.7507/1001-5515.202202012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/01/2022] [Indexed: 06/16/2023]
Abstract
To solve the problems of small one-time ablation range and easy charring of the tissue around the electrode associated with the tumor radiofrequency ablation needle, based on the multiphysical field coupling analysis software COMSOL, the effects of needle material, the number of sub needles and the bending angle of sub needles on the ablation effect of radiofrequency ablation electrode needle were studied. The results show that compared with titanium alloy and stainless steel, nickel titanium alloy has better radiofrequency energy transmission efficiency and it is the best material for electrode needle. The number of sub needles has a great influence on the average necrosis depth and the maximum necrosis diameter. Under the same conditions, the more the number of sub needles, the larger the volume of coagulation necrosis area. The bending angle of the needle has a great effect on the maximum diameter of the coagulated necrotic area, but has little effect on the average necrotic depth. Under the same other conditions, the coagulation necrosis area formed by ablation increased with the increase of the bending angle of the sub needle. For the three needles with bending angles of 60 °, 90 ° and 120 ° analyzed in this paper, the one with bending angle of 120 ° can obtain the largest coagulation necrosis area. In general, the design of nickel titanium alloy with 120 ° bending 8-pin is the optimal. The average depth of radiofrequency ablation necrosis area is 32.40 mm, and the maximum necrosis diameter is 52.65 mm. The above optimized design parameters can provide guidance for the structure and material design of tumor radiofrequency ablation needle.
Collapse
|
English Abstract |
3 |
|
11
|
Xia H, Zhou C, Wang Y, Zheng Y. Design of a new detachable pedicle screw based on medical optical imaging inspection to improve osteoporosis and enhance vertebral body revision effect. Med Eng Phys 2024; 125:104137. [PMID: 38508790 DOI: 10.1016/j.medengphy.2024.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Osteoporosis is a common bone disease that often leads to difficulty in vertebrae revision. Traditional pedicle screws are often complicated to operate and have poor visibility during implantation. A new detachable pedicle screw is needed to improve the revision effect. The aim of this study was to design a new detachable pedicle screw based on medical optical imaging to improve the outcome of vertebral revision in osteoporosis, and to improve operational feasibility and visibility. In this study, the parameters related to the degree of osteoporosis were obtained by optical imaging detection of the osteoporotic vertebral body. Then a new detachable pedicle screw was designed according to the test results to improve the effect of vertebral body revision. By preparing and optimizing the material and structure of the screw, it is ensured that it has sufficient mechanical strength and stability. Finally, the visibility and operability of the improved screw during implantation were verified by medical optical imaging. Compared with traditional screws, the new detachable pedicle screw can improve the vertebral body revision in the case of osteoporosis. The optical imaging test results show that the new screw has good visibility and maneuverability, providing more accurate guidance and positioning for the vertebral body revision operation.
Collapse
|
|
1 |
|
12
|
Yin C, Chen X, Zhang H, Xue Y, Dong H, Mao X. Pickering emulsion biocatalysis: Bridging interfacial design with enzymatic reactions. Biotechnol Adv 2024; 72:108338. [PMID: 38460741 DOI: 10.1016/j.biotechadv.2024.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Non-homogeneous enzyme-catalyzed systems are more widely used than homogeneous systems. Distinguished from the conventional biphasic approach, Pickering emulsion stabilized by ultrafine solid particles opens up an innovative platform for biocatalysis. Their vast specific surface area significantly enhances enzyme-substrate interactions, dramatically increasing catalytic efficiency. This review comprehensively explores various aspects of Pickering emulsion biocatalysis, provides insights into the multiple types and mechanisms of its catalysis, and offers strategies for material design, enzyme immobilization, emulsion formation control, and reactor design. Characterization methods are summarized for the determination of drop size, emulsion type, interface morphology, and emulsion potential. Furthermore, recent reports on the design of stimuli-responsive reaction systems are reviewed, enabling the simple control of demulsification. Moreover, the review explores applications of Pickering emulsion in single-step, cascade, and continuous flow reactions and outlines the challenges and future directions for the field. Overall, we provide a review focusing on Pickering emulsions catalysis, which can draw the attention of researchers in the field of catalytic system design, further empowering next-generation bioprocessing.
Collapse
|
Review |
1 |
|
13
|
Li S, Kattner UR, Campbell CE. A Computational Framework for Material Design. INTEGRATING MATERIALS AND MANUFACTURING INNOVATION 2017; 6:229-248. [PMID: 31976208 PMCID: PMC6945991 DOI: 10.1007/s40192-017-0101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/14/2017] [Indexed: 06/10/2023]
Abstract
A computational framework is proposed that enables the integration of experimental and computational data, a variety of user-selected models, and a computer algorithm to direct a design optimization. To demonstrate this framework, a sample design of a ternary Ni-Al-Cr alloy with a high work-to-necking ratio is presented. This design example illustrates how CALPHAD phase-based, composition and temperature-dependent phase equilibria calculations and precipitation models are coupled with models for elastic and plastic deformation to calculate the stress-strain curves. A genetic algorithm then directs the search within a specific set of composition and processing constraints for the ideal composition and processing profile to optimize the mechanical properties. The initial demonstration of the framework provides a potential solution to initiate the material design process in a large space of composition and processing conditions. This framework can also be used in similar material systems or adapted for other material classes.
Collapse
|
research-article |
8 |
|