1
|
Paul D, Bartenschlager R. Architecture and biogenesis of plus-strand RNA virus replication factories. World J Virol 2013; 2:32-48. [PMID: 24175228 PMCID: PMC3785047 DOI: 10.5501/wjv.v2.i2.32] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/18/2013] [Accepted: 01/24/2013] [Indexed: 02/05/2023] Open
Abstract
Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replication factories. This compartmentalization allows coordination of the different steps of the viral replication cycle, highly efficient genome replication and protection of the viral RNA from cellular defense mechanisms. Electron tomography studies conducted during the last couple of years revealed the three dimensional structure of numerous plus-strand RNA virus replication compartments and highlight morphological analogies between different virus families. Based on the morphology of virus-induced membrane rearrangements, we propose two separate subclasses: the invaginated vesicle/spherule type and the double membrane vesicle type. This review discusses common themes and distinct differences in the architecture of plus-strand RNA virus-induced membrane alterations and summarizes recent progress that has been made in understanding the complex interplay between viral and co-opted cellular factors in biogenesis and maintenance of plus-strand RNA virus replication factories.
Collapse
|
Topic Highlight |
12 |
217 |
2
|
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10:1587-1604. [PMID: 30456600 DOI: 10.1007/s12551-018-0467-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
Collapse
|
Review |
7 |
94 |
3
|
Haucke V, Kozlov MM. Membrane remodeling in clathrin-mediated endocytosis. J Cell Sci 2018; 131:131/17/jcs216812. [PMID: 30177505 DOI: 10.1242/jcs.216812] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clathrin-mediated endocytosis is an essential cellular mechanism by which all eukaryotic cells regulate their plasma membrane composition to control processes ranging from cell signaling to adhesion, migration and morphogenesis. The formation of endocytic vesicles and tubules involves extensive protein-mediated remodeling of the plasma membrane that is organized in space and time by protein-protein and protein-phospholipid interactions. Recent studies combining high-resolution imaging with genetic manipulations of the endocytic machinery and with theoretical approaches have led to novel multifaceted phenomenological data of the temporal and spatial organization of the endocytic reaction. This gave rise to various - often conflicting - models as to how endocytic proteins and their association with lipids regulate the endocytic protein choreography to reshape the plasma membrane. In this Review, we discuss these findings in light of the hypothesis that endocytic membrane remodeling may be determined by an interplay between protein-protein interactions, the ability of proteins to generate and sense membrane curvature, and the ability of lipids to stabilize and reinforce the generated membrane shape through adopting their lateral distribution to the local membrane curvature.
Collapse
|
Review |
7 |
76 |
4
|
Jiang L, Phang JM, Yu J, Harrop SJ, Sokolova AV, Duff AP, Wilk KE, Alkhamici H, Breit SN, Valenzuela SM, Brown LJ, Curmi PMG. CLIC proteins, ezrin, radixin, moesin and the coupling of membranes to the actin cytoskeleton: a smoking gun? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:643-57. [PMID: 23732235 DOI: 10.1016/j.bbamem.2013.05.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
The CLIC proteins are a highly conserved family of metazoan proteins with the unusual ability to adopt both soluble and integral membrane forms. The physiological functions of CLIC proteins may include enzymatic activity in the soluble form and anion channel activity in the integral membrane form. CLIC proteins are associated with the ERM proteins: ezrin, radixin and moesin. ERM proteins act as cross-linkers between membranes and the cortical actin cytoskeleton. Both CLIC and ERM proteins are controlled by Rho family small GTPases. CLIC proteins, ERM and Rho GTPases act in a concerted manner to control active membrane processes including the maintenance of microvillar structures, phagocytosis and vesicle trafficking. All of these processes involve the interaction of membranes with the underlying cortical actin cytoskeleton. The relationships between Rho GTPases, CLIC proteins, ERM proteins and the membrane:actin cytoskeleton interface are reviewed. Speculative models are proposed involving the formation of localised multi-protein complexes on the membrane surface that assemble via multiple weak interactions. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
Review |
12 |
54 |
5
|
Amoasii L, Hnia K, Chicanne G, Brech A, Cowling BS, Müller MM, Schwab Y, Koebel P, Ferry A, Payrastre B, Laporte J. Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo. J Cell Sci 2013; 126:1806-19. [PMID: 23444364 DOI: 10.1242/jcs.118505] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum (SR) is a specialized form of endoplasmic reticulum (ER) in skeletal muscle and is essential for calcium homeostasis. The mechanisms involved in SR remodeling and maintenance of SR subdomains are elusive. In this study, we identified myotubularin (MTM1), a phosphoinositide phosphatase mutated in X-linked centronuclear myopathy (XLCNM, or myotubular myopathy), as a key regulator of phosphatidylinositol 3-monophosphate (PtdIns3P) levels at the SR. MTM1 is predominantly located at the SR cisternae of the muscle triads, and Mtm1-deficient mouse muscles and myoblasts from XLCNM patients exhibit abnormal SR/ER networks. In vivo modulation of MTM1 enzymatic activity in skeletal muscle using ectopic expression of wild-type or a dead-phosphatase MTM1 protein leads to differential SR remodeling. Active MTM1 is associated with flat membrane stacks, whereas dead-phosphatase MTM1 mutant promotes highly curved cubic membranes originating from the SR and enriched in PtdIns3P. Overexpression of a tandem FYVE domain with high affinity for PtdIns3P alters the shape of the SR cisternae at the triad. Our findings, supported by the parallel analysis of the Mtm1-null mouse and an in vivo study, reveal a direct function of MTM1 enzymatic activity in SR remodeling and a key role for PtdIns3P in promoting SR membrane curvature in skeletal muscle. We propose that alteration in SR remodeling is a primary cause of X-linked centronuclear myopathy. The tight regulation of PtdIns3P on specific membrane subdomains may be a general mechanism to control membrane curvature.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
45 |
6
|
Niaudet C, Bonnaud S, Guillonneau M, Gouard S, Gaugler MH, Dutoit S, Ripoche N, Dubois N, Trichet V, Corre I, Paris F. Plasma membrane reorganization links acid sphingomyelinase/ceramide to p38 MAPK pathways in endothelial cells apoptosis. Cell Signal 2017; 33:10-21. [PMID: 28179144 DOI: 10.1016/j.cellsig.2017.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 12/11/2022]
Abstract
The p38 MAPK signaling pathway is essential in the cellular response to stress stimuli, in particular in the endothelial cells that are major target of external stress. The importance of the bioactive sphingolipid ceramide generated by acid sphingomyelinase is also firmly established in stress-induced endothelial apoptotic cell death. Despite a suggested link between the p38 MAPK and ceramide pathways, the exact molecular events of this connection remain elusive. In the present study, by using two different activators of p38 MAPK, namely anisomycin and ionizing radiation, we depicted how ceramide generated by acid sphingomyelinase was involved in p38 MAPK-dependent apoptosis of endothelial cells. We first proved that both anisomycin and ionizing radiation conducted to apoptosis through activation of p38 MAPK in human microvascular endothelial cells HMEC-1. We then found that both treatments induced activation of acid sphingomyelinase and the generation of ceramide. This step was required for p38 MAPK activation and apoptosis. We finally showed that irradiation, as well as treatment with exogenous C16-ceramide or bacterial sphingomyelinase, induced in endothelial cells a deep reorganization of the plasma membrane with formation of large lipid platforms at the cell surface, leading to p38 MAPK activation and apoptosis in endothelial cells. Altogether, our results proved that the plasma membrane reorganization leading to ceramide production is essential for stress-induced activation of p38 MAPK and apoptosis in endothelial cells and established the link between the acid sphingomyelinase/ceramide and p38 MAPK pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
42 |
7
|
O'Leary EI, Lee JC. Interplay between α-synuclein amyloid formation and membrane structure. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:483-491. [PMID: 30287222 PMCID: PMC6445794 DOI: 10.1016/j.bbapap.2018.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Amyloid formation is a pathological hallmark of many neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's. While it is unknown how these disorders are initiated, in vitro and cellular experiments confirm the importance of membranes. Ubiquitous in vivo, membranes induce conformational changes in amyloidogenic proteins and in some cases, facilitate aggregation. Reciprocally, perturbations in the bilayer structure can be induced by amyloid formation. Here, we review studies in the last 10 years describing α-synuclein (α-syn) and its interactions with membranes, detailing the roles of anionic and zwitterionic lipids in aggregation, and their contribution to Parkinson's disease. We summarize the impact of α-syn - comparing monomeric, oligomeric, and fibrillar forms - on membrane structure, and the effect of membrane remodeling on amyloid formation. Finally, perspective on future studies investigating the interplay between α-syn aggregation and membranes is discussed. This article is part of a Special Issue entitled: Amyloids.
Collapse
|
Research Support, N.I.H., Intramural |
6 |
40 |
8
|
Shen Q, He B, Lu N, Conradt B, Grant BD, Zhou Z. Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in C. elegans. Development 2013; 140:3230-43. [PMID: 23861060 PMCID: PMC3931732 DOI: 10.1242/dev.093732] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The engulfment and subsequent degradation of apoptotic cells by phagocytes is an evolutionarily conserved process that efficiently removes dying cells from animal bodies during development. Here, we report that clathrin heavy chain (CHC-1), a membrane coat protein well known for its role in receptor-mediated endocytosis, and its adaptor epsin (EPN-1) play crucial roles in removing apoptotic cells in Caenorhabditis elegans. Inactivating epn-1 or chc-1 disrupts engulfment by impairing actin polymerization. This defect is partially suppressed by inactivating UNC-60, a cofilin ortholog and actin server/depolymerization protein, further indicating that EPN-1 and CHC-1 regulate actin assembly during pseudopod extension. CHC-1 is enriched on extending pseudopods together with EPN-1, in an EPN-1-dependent manner. Epistasis analysis places epn-1 and chc-1 in the same cell-corpse engulfment pathway as ced-1, ced-6 and dyn-1. CED-1 signaling is necessary for the pseudopod enrichment of EPN-1 and CHC-1. CED-1, CED-6 and DYN-1, like EPN-1 and CHC-1, are essential for the assembly and stability of F-actin underneath pseudopods. We propose that in response to CED-1 signaling, CHC-1 is recruited to the phagocytic cup through EPN-1 and acts as a scaffold protein to organize actin remodeling. Our work reveals novel roles of clathrin and epsin in apoptotic-cell internalization, suggests a Hip1/R-independent mechanism linking clathrin to actin assembly, and ties the CED-1 pathway to cytoskeleton remodeling.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
34 |
9
|
Jiang Z, Flynn JD, Teague WE, Gawrisch K, Lee JC. Stimulation of α-synuclein amyloid formation by phosphatidylglycerol micellar tubules. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1840-1847. [PMID: 29501608 DOI: 10.1016/j.bbamem.2018.02.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 10/25/2022]
Abstract
α-Synuclein (α-Syn) is a presynaptic protein that is accumulated in its amyloid form in the brains of Parkinson's patients. Although its biological function remains unclear, α-syn has been suggested to bind to synaptic vesicles and facilitate neurotransmitter release. Recently, studies have found that α-syn induces membrane tubulation, highlighting a potential mechanism for α-syn to stabilize highly curved membrane structures which could have both functional and dysfunctional consequences. To understand how membrane remodeling by α-syn affects amyloid formation, we have studied the α-syn aggregation process in the presence of phosphatidylglycerol (PG) micellar tubules, which were the first reported example of membrane tubulation by α-syn. Aggregation kinetics, β-sheet content, and macroscopic protein-lipid structures were observed by Thioflavin T fluorescence, circular dichroism spectroscopy and transmission electron microscopy, respectively. Collectively, the presence of PG micellar tubules formed at a stochiometric (L/P = 1) ratio was found to stimulate α-syn fibril formation. Moreover, transmission electron microscopy and solid-state nuclear magnetic resonance spectroscopy revealed the co-assembly of PG and α-syn into fibril structures. However, isolated micellar tubules do not form fibrils by themselves, suggesting an important role of free α-syn monomers during amyloid formation. In contrast, fibrils did not form in the presence of excess PG lipids (≥L/P = 50), where most of the α-syn molecules are in a membrane-bound α-helical form. Our results provide new mechanistic insights into how membrane tubules modulate α-syn amyloid formation and support a pivotal role of protein-lipid interaction in the dysfunction of α-syn.
Collapse
|
Journal Article |
7 |
24 |
10
|
Ci Y, Shi L. Compartmentalized replication organelle of flavivirus at the ER and the factors involved. Cell Mol Life Sci 2021; 78:4939-4954. [PMID: 33846827 PMCID: PMC8041242 DOI: 10.1007/s00018-021-03834-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Flaviviruses are positive-sense single-stranded RNA viruses that pose a considerable threat to human health. Flaviviruses replicate in compartmentalized replication organelles derived from the host endoplasmic reticulum (ER). The characteristic architecture of flavivirus replication organelles includes invaginated vesicle packets and convoluted membrane structures. Multiple factors, including both viral proteins and host factors, contribute to the biogenesis of the flavivirus replication organelle. Several viral nonstructural (NS) proteins with membrane activity induce ER rearrangement to build replication compartments, and other NS proteins constitute the replication complexes (RC) in the compartments. Host protein and lipid factors facilitate the formation of replication organelles. The lipid membrane, proteins and viral RNA together form the functional compartmentalized replication organelle, in which the flaviviruses efficiently synthesize viral RNA. Here, we reviewed recent advances in understanding the structure and biogenesis of flavivirus replication organelles, and we further discuss the function of virus NS proteins and related host factors as well as their roles in building the replication organelle.
Collapse
|
Review |
4 |
24 |
11
|
Braun AR, Lacy MM, Ducas VC, Rhoades E, Sachs JN. α-Synuclein's Uniquely Long Amphipathic Helix Enhances its Membrane Binding and Remodeling Capacity. J Membr Biol 2017; 250:183-193. [PMID: 28239748 DOI: 10.1007/s00232-017-9946-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
α-Synuclein is the primary protein found in Lewy bodies, the protein and lipid aggregates associated with Parkinson's disease and Lewy body dementia. The protein folds into a uniquely long amphipathic α-helix (AH) when bound to a membrane, and at high enough concentrations, it induces large-scale remodeling of membranes (tubulation and vesiculation). By engineering a less hydrophobic variant of α-Synuclein, we previously showed that the energy associated with binding of α-Synuclein's AH correlates with the extent of membrane remodeling (Braun et al. in J Am Chem Soc 136:9962-9972, 2014). In this study, we combine fluorescence correlation spectroscopy, electron microscopy, and vesicle clearance assays with coarse-grained molecular dynamics simulations to test the impact of decreasing the length of the amphipathic helix on membrane binding energy and tubulation. We show that truncation of α-Synuclein's AH length by approximately 15% reduces both its membrane binding affinity (by fivefold) and membrane remodeling capacity (by nearly 50% on per mole of bound protein basis). Results from simulations correlate well with the experiments and lend support to the idea that at high protein density there is a stabilization of individual, protein-induced membrane curvature fields. The extent to which these curvature fields are stabilized, a function of binding energy, dictates the extent of tubulation. Somewhat surprisingly, we find that this stabilization does not correlate directly with the geometric distribution of the proteins on the membrane surface.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
20 |
12
|
Turk J, White TD, Nelson AJ, Lei X, Ramanadham S. iPLA 2β and its role in male fertility, neurological disorders, metabolic disorders, and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:846-860. [PMID: 30408523 DOI: 10.1016/j.bbalip.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
The Ca2+-independent phospholipases, designated as group VI iPLA2s, also referred to as PNPLAs due to their shared homology with patatin, include the β, γ, δ, ε, ζ, and η forms of the enzyme. The iPLA2s are ubiquitously expressed, share a consensus GXSXG catalytic motif, and exhibit organelle/cell-specific localization. Among the iPLA2s, iPLA2β has received wide attention as it is recognized to be involved in membrane remodeling, cell proliferation, cell death, and signal transduction. Ongoing studies implicate participation of iPLA2β in a variety of disease processes including cancer, cardiovascular abnormalities, glaucoma, and peridonditis. This review will focus on iPLA2β and its links to male fertility, neurological disorders, metabolic disorders, and inflammation.
Collapse
|
Review |
7 |
19 |
13
|
Yang Y, Zheng L, Zheng X, Ge L. Autophagosomal Membrane Origin and Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1208:17-42. [PMID: 34260019 DOI: 10.1007/978-981-16-2830-6_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Autophagosome formation is a regulated membrane remodeling process, which involves the generation of autophagosomal membrane precursors (vesicles), the assembly of the autophagosomal membrane precursors to form the phagophore, and phagophore elongation to complete the autophagosome. The sources of the autophagosomal membrane precursors are endomembrane compartments, such as the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment (ERGIC), ER-exit sites (ERES), and endosomes. In response to stress, these structures are remodeled, to generate the early autophagosomal membrane precursors. The phagophore assembly site (PAS), which mainly localizes on the ER, harbors the site for autophagosomal membrane assembly, elongation, and completion. ATG proteins, membrane remodeling factors, and autophagic membranes follow a precise choreography to complete the overall process. In this chapter, we briefly discuss our current knowledge on the membrane origins of the autophagosome, as well as autophagosomal precursor generation, assembly, and expansion.
Collapse
|
Journal Article |
4 |
15 |
14
|
Multiscale simulations of protein-facilitated membrane remodeling. J Struct Biol 2016; 196:57-63. [PMID: 27327264 DOI: 10.1016/j.jsb.2016.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022]
Abstract
Protein-facilitated shape and topology changes of cell membranes are crucial for many biological processes, such as cell division, protein trafficking, and cell signaling. However, the inherently multiscale nature of membrane remodeling presents a considerable challenge for understanding the mechanisms and physics that drive this process. To address this problem, a multiscale approach that makes use of a diverse set of computational and experimental techniques is required. The atomistic simulations provide high-resolution information on protein-membrane interactions. Experimental techniques, like electron microscopy, on the other hand, resolve high-order organization of proteins on the membrane. Coarse-grained (CG) and mesoscale computational techniques provide the intermediate link between the two scales and can give new insights into the underlying mechanisms. In this Review, we present the recent advances in multiscale computational approaches established in our group. We discuss various CG and mesoscale approaches in studying the protein-mediated large-scale membrane remodeling.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
14 |
15
|
Seixas AI, Azevedo MM, Paes de Faria J, Fernandes D, Mendes Pinto I, Relvas JB. Evolvability of the actin cytoskeleton in oligodendrocytes during central nervous system development and aging. Cell Mol Life Sci 2019; 76:1-11. [PMID: 30302529 PMCID: PMC11105620 DOI: 10.1007/s00018-018-2915-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 01/23/2023]
Abstract
The organization of actin filaments into a wide range of subcellular structures is a defining feature of cell shape and dynamics, important for tissue development and homeostasis. Nervous system function requires morphological and functional plasticity of neurons and glial cells, which is largely determined by the dynamic reorganization of the actin cytoskeleton in response to intrinsic and extracellular signals. Oligodendrocytes are specialized glia that extend multiple actin-based protrusions to form the multilayered myelin membrane that spirally wraps around axons, increasing conduction speed and promoting long-term axonal integrity. Myelination is a remarkable biological paradigm in development, and maintenance of myelin is essential for a healthy adult nervous system. In this review, we discuss how structure and dynamics of the actin cytoskeleton is a defining feature of myelinating oligodendrocytes' biology and function. We also review "old and new" concepts to reflect on the potential role of the cytoskeleton in balancing life and death of myelin membranes and oligodendrocytes in the aging central nervous system.
Collapse
|
Review |
6 |
12 |
16
|
Fatty acid-based lipidomics and membrane remodeling induced by apoE3 and apoE4 in human neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1967-1973. [PMID: 28688796 DOI: 10.1016/j.bbamem.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023]
Abstract
Apolipoprotein E (apoE) is a major lipid carrier of the lipoprotein transport system that plays critical roles in various pathologies. Human apoE has three common isoforms, the apoE4 being associated with Alzheimer's disease. This is the first study in the literature investigating the effects of apoE (apoE3 and apoE4 isoforms) on membrane fatty acid profile in neuroblastoma SK-N-SH cells. Fatty acid analyses were carried out by gas chromatography of the corresponding methyl esters (FAME). We observed the occurrence of membrane fatty acid remodeling in the presence of each of the two apoE isoforms. ApoE3 increased the membrane level of stearic acid and dihomo-gamma-linolenic acid (DGLA), whereas apoE4 had opposite effects. Both apoE3 and apoE4 increased saturated and monounsaturated fatty acids (SFA and MUFA), omega-6/omega-3 ratio and decreased total polyunsaturated fatty acid (PUFA) amount, but with various intensities. Moreover, both apoE isoforms decreased membrane homeostasis indexes such as PUFA balance, unsaturation index and peroxidation index. Our results highlight membrane property changes connected to the apoE isoforms suggesting membrane lipidomics to be inserted in further model studies of apolipoproteins in health and disease.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
11 |
17
|
Paraan M, Bhattacharya N, Uversky VN, Stagg SM. Flexibility of the Sec13/31 cage is influenced by the Sec31 C-terminal disordered domain. J Struct Biol 2018; 204:250-260. [PMID: 30172710 PMCID: PMC6188663 DOI: 10.1016/j.jsb.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 01/30/2023]
Abstract
In COPII mediated vesicle formation, Sec13/Sec31 heterotetramers play a role in organizing the membranes into a spherical vesicle. There they oligomerize into a cage that interacts with the other COPII proteins to direct vesicle formation and concentrate cargo into a bud. In this role they must be flexible to accommodate different sizes and shapes of cargo, but also have elements that provide rigidity to help deform the membrane. Here we characterize the influence the C-terminal disordered region of Sec31 has on cage flexibility and rigidity. After deleting this region (residues 820-1220), we characterized Sec13/Sec31ΔC heterotetramers biophysically and structurally through cryo-EM. Our results show that Sec13/31ΔC self-assembles into canonical cuboctahedral cages in vitro at buffer conditions similar to wild type. The distribution of cage sizes indicated that unlike the wild type, Sec13/31ΔC cages have a more homogeneous geometry. However, the structure of cuboctahedrons exhibited more conformational heterogeneity than wild type. Through localized reconstruction of cage vertices and molecular dynamics flexible fitting we found a new hinge for the flexing of Sec31 β-propeller domain and more flexibility of the previously known hinge. Together, these results show that the C-terminal region of Sec31 regulates the flexing of other domains such that flexibility and rigidity are not compromised during transport of large and/or asymmetric cargo.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
9 |
18
|
Royes J, Biou V, Dautin N, Tribet C, Miroux B. Inducible intracellular membranes: molecular aspects and emerging applications. Microb Cell Fact 2020; 19:176. [PMID: 32887610 PMCID: PMC7650269 DOI: 10.1186/s12934-020-01433-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).
Collapse
|
Review |
5 |
9 |
19
|
Remodeling of the Plasma Membrane by Surface-Bound Protein Monomers and Oligomers: The Critical Role of Intrinsically Disordered Regions. J Membr Biol 2022; 255:651-663. [PMID: 35930019 PMCID: PMC9718270 DOI: 10.1007/s00232-022-00256-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
The plasma membrane (PM) of cells is a dynamic structure whose morphology and composition is in constant flux. PM morphologic changes are particularly relevant for the assembly and disassembly of signaling platforms involving surface-bound signaling proteins, as well as for many other mechanochemical processes that occur at the PM surface. Surface-bound membrane proteins (SBMP) require efficient association with the PM for their function, which is often achieved by the coordinated interactions of intrinsically disordered regions (IDRs) and globular domains with membrane lipids. This review focuses on the role of IDR-containing SBMPs in remodeling the composition and curvature of the PM. The ability of IDR-bearing SBMPs to remodel the Gaussian and mean curvature energies of the PM is intimately linked to their ability to sort subsets of phospholipids into nanoclusters. We therefore discuss how IDRs of many SBMPs encode lipid-binding specificity or facilitate cluster formation, both of which increase their membrane remodeling capacity, and how SBMP oligomers alter membrane shape by monolayer surface area expansion and molecular crowding.
Collapse
|
research-article |
3 |
9 |
20
|
Bozelli JC, Kamski-Hennekam E, Melacini G, Epand RM. α-Synuclein and neuronal membranes: Conformational flexibilities in health and disease. Chem Phys Lipids 2021; 235:105034. [PMID: 33434528 DOI: 10.1016/j.chemphyslip.2020.105034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Currently, PD has no treatment. The neuronal protein α-synuclein (αS) plays an important role in PD. However, the molecular mechanisms governing its physiological and pathological roles are not fully understood. It is becoming widely acknowledged that the biological roles of αS involve interactions with biological membranes. In these biological processes there is a fine-tuned interplay between lipids affecting the properties of αS and αS affecting lipid metabolism, αS binding to membranes, and membrane damage. In this review, the intricate interactions between αS and membranes will be reviewed and a discussion of the relationship between αS and neuronal membrane structural plasticity in health and disease will be made. It is proposed that in healthy neurons the conformational flexibilities of αS and the neuronal membranes are coupled to assist the physiological roles of αS. However, in circumstances where their conformational flexibilities are decreased or uncoupled, there is a shift toward cell toxicity. Strategies to modulate toxic αS-membrane interactions are potential approaches for the development of new therapies for PD. Future work using specific αS molecular species as well as membranes with specific physicochemical properties should widen our understanding of the intricate biological roles of αS which, in turn, would propel the development of new strategies for the treatment of PD.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
8 |
21
|
Kalia R, Talledge N, Frost A. Structural and functional studies of membrane remodeling machines. Methods Cell Biol 2015; 128:165-200. [PMID: 25997348 DOI: 10.1016/bs.mcb.2015.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Building cells from their component parts will hinge upon our ability to reconstitute biochemical compartmentalization and exchange between membrane-delimited organelles. By contrast with our understanding of other cellular events, the mechanisms that govern membrane trafficking has lagged because the presence of phospholipid bilayers complicates the use of standard methods. This chapter describes in vitro methods for purifying, reconstituting, and visualizing membrane remodeling activities directly by electron cryomicroscopy.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
7 |
22
|
Interactions in the ESCRT-III network of the yeast Saccharomyces cerevisiae. Curr Genet 2018; 65:607-619. [PMID: 30506264 DOI: 10.1007/s00294-018-0915-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/27/2023]
Abstract
Here, we examine the genetic interactions between ESCRT-III mutations in the yeast Saccharomyces cerevisiae. From the obtained interaction network, we make predictions about alternative ESCRT-III complexes. By the successful generation of an octuple deletion strain using the CRISPR/Cas9 technique, we demonstrate for the first time that ESCRT-III activity as a whole is not essential for the life of a yeast cell. Endosomal sorting complex required for transport (ESCRT)-III proteins are membrane remodeling factors involved in a multitude of cellular processes. There are eight proteins in yeast with an ESCRT-III domain. It is not clear whether the diverse ESCRT-III functions are fulfilled by a single ESCRT-III complex or by different complexes with distinct composition. Genetic interaction studies may provide a hint on the existence of alternative complexes. We performed a genetic mini-array screen by analyzing the growth phenotypes of all pairwise combinations of ESCRT-III deletion mutations under different stress conditions. Our analysis is in line with previous data pointing to a complex containing Did2/CHMP1 and Ist1/IST1. In addition, we provide evidence for the existence of a novel complex consisting of Did2/CHMP1 and Vps2/CHMP2. Some of the interactions on Congo red plates could be explained by effects of ESCRT-III mutations on Rim101 signaling.
Collapse
|
Journal Article |
7 |
7 |
23
|
Agudo-Canalejo J, Knorr RL. Formation of Autophagosomes Coincides with Relaxation of Membrane Curvature. Methods Mol Biol 2019; 1880:173-188. [PMID: 30610696 DOI: 10.1007/978-1-4939-8873-0_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autophagy is an intracellular degradation process that employs complex membrane dynamics to isolate and break down cellular components. However, many unanswered questions remain concerning remodeling of autophagic membranes. Here, we focus on the advantages of theoretical modeling to study the formation of autophagosomes and to understand the origin of autophagosomal membranes. Starting from the well-defined geometry of final autophagosomes, we ask the question of how these organelles can be formed by combining various pre-autophagosomal membranes such as vesicles, membrane tubules, or sheets. We analyze the geometric constraints of autophagosome formation by taking the area of the precursor membranes and their internal volume into account. Our results suggest that vesicle fusion contributes little to the formation of autophagosomes. In the second part, we quantify the curvature of the precursors and report that the formation of autophagosomes is associated with a strong relaxation of membrane curvature energy. This effect we find for a wide range of membrane asymmetries. It is especially strong for small distances between both autophagosomal membranes, as observed in vivo. We quantify the membrane bending energies of all precursors by considering membrane asymmetries. We propose that the generation and supply of pre-autophagosomal membranes is one limiting step for autophagosome formation.
Collapse
|
|
6 |
6 |
24
|
Dissection of membrane-binding and -remodeling regions in two classes of bacterial phospholipid N-methyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2279-2288. [PMID: 28912104 DOI: 10.1016/j.bbamem.2017.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/25/2017] [Accepted: 09/10/2017] [Indexed: 01/08/2023]
Abstract
Bacterial phospholipid N-methyltransferases (Pmts) catalyze the formation of phosphatidylcholine (PC) via successive N-methylation of phosphatidylethanolamine (PE). They are classified into Sinorhizobium-type and Rhodobacter-type enzymes. The Sinorhizobium-type PmtA protein from the plant pathogen Agrobacterium tumefaciens is recruited to anionic lipids in the cytoplasmic membrane via two amphipathic helices called αA and αF. Besides its enzymatic activity, PmtA is able to remodel membranes mediated by the αA domain. According to the Heliquest program, αA- and αF-like amphipathic helices are also present in other Sinorhizobium- and Rhodobacter-type Pmt enzymes suggesting a conserved architecture of α-helical membrane-binding regions in these methyltransferases. As representatives of the two Pmt families, we investigated the membrane binding and remodeling capacity of Bradyrhizobium japonicum PmtA (Sinorhizobium-type) and PmtX1 (Rhodobacter-type), which act cooperatively to produce PC in consecutive methylation steps. We found that the αA regions in both enzymes bind anionic lipids similar to αA of A. tumefaciens PmtA. Membrane binding of PmtX1 αA is enhanced by its substrate monomethyl-PE indicating a substrate-controlled membrane association. The αA regions of all investigated enzymes remodel spherical liposomes into tubular filaments suggesting a conserved membrane-remodeling capacity of bacterial Pmts. Based on these results we propose that the molecular details of membrane-binding and remodeling are conserved among bacterial Pmts.
Collapse
|
|
8 |
4 |
25
|
Cheppali SK, Dharan R, Sorkin R. Forces of Change: Optical Tweezers in Membrane Remodeling Studies. J Membr Biol 2022; 255:677-690. [PMID: 35616705 DOI: 10.1007/s00232-022-00241-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Optical tweezers allow precise measurement of forces and distances with piconewton and nanometer precision, and have thus been instrumental in elucidating the mechanistic details of various biological processes. Some examples include the characterization of motor protein activity, studies of protein-DNA interactions, and characterizing protein folding trajectories. The use of optical tweezers (OT) to study membranes is, however, much less abundant. Here, we review biophysical studies of membranes that utilize optical tweezers, with emphasis on various assays that have been developed and their benefits and limitations. First, we discuss assays that employ membrane-coated beads, and overview protein-membrane interactions studies based on manipulation of such beads. We further overview a body of studies that make use of a very powerful experimental tool, the combination of OT, micropipette aspiration, and fluorescence microscopy, that allow detailed studies of membrane curvature generation and sensitivity. Finally, we describe studies focused on membrane fusion and fission. We then summarize the overall progress in the field and outline future directions.
Collapse
|
Review |
3 |
3 |