1
|
Sarkari P, Marx H, Blumhoff ML, Mattanovich D, Sauer M, Steiger MG. An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger. BIORESOURCE TECHNOLOGY 2017; 245:1327-1333. [PMID: 28533066 DOI: 10.1016/j.biortech.2017.05.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Metabolic engineering requires functional genetic tools for easy and quick generation of multiple pathway variants. A genetic engineering toolbox for A. niger is presented, which facilitates the generation of strains carrying heterologous expression cassettes at a defined genetic locus. The system is compatible with Golden Gate cloning, which facilitates the DNA construction process and provides high design flexibility. The integration process is mediated by a CRISPR/Cas9 strategy involving the cutting of both the genetic integration locus (pyrG) as well as the integrating plasmid. Only a transient expression of Cas9 is necessary and the carrying plasmid is readily lost using a size-reduced AMA1 variant. A high integration efficiency into the fungal genome of up to 100% can be achieved, thus reducing the screening process significantly. The feasibility of the approach was demonstrated by the integration of an expression cassette enabling the production of aconitic acid in A. niger.
Collapse
|
|
8 |
87 |
2
|
Celińska E, Borkowska M, Białas W, Korpys P, Nicaud JM. Robust signal peptides for protein secretion in Yarrowia lipolytica: identification and characterization of novel secretory tags. Appl Microbiol Biotechnol 2018; 102:5221-5233. [PMID: 29704042 PMCID: PMC5959983 DOI: 10.1007/s00253-018-8966-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/13/2018] [Accepted: 03/24/2018] [Indexed: 12/18/2022]
Abstract
Upon expression of a given protein in an expression host, its secretion into the culture medium or cell-surface display is frequently advantageous in both research and industrial contexts. Hence, engineering strategies targeting folding, trafficking, and secretion of the proteins gain considerable interest. Yarrowia lipolytica has emerged as an efficient protein expression platform, repeatedly proved to be a competitive secretor of proteins. Although the key role of signal peptides (SPs) in secretory overexpression of proteins and their direct effect on the final protein titers are widely known, the number of reports on manipulation with SPs in Y. lipolytica is rather scattered. In this study, we assessed the potential of ten different SPs for secretion of two heterologous proteins in Y. lipolytica. Genomic and transcriptomic data mining allowed us to select five novel, previously undescribed SPs for recombinant protein secretion in Y. lipolytica. Their secretory potential was assessed in comparison with known, widely exploited SPs. We took advantage of Golden Gate approach, for construction of expression cassettes, and micro-volume enzymatic assays, for functional screening of large libraries of recombinant strains. Based on the adopted strategy, we identified novel secretory tags, characterized their secretory capacity, indicated the most potent SPs, and suggested a consensus sequence of a potentially robust synthetic SP to expand the molecular toolbox for engineering Y. lipolytica.
Collapse
|
Journal Article |
7 |
31 |
3
|
Einhaus A, Steube J, Freudenberg RA, Barczyk J, Baier T, Kruse O. Engineering a powerful green cell factory for robust photoautotrophic diterpenoid production. Metab Eng 2022; 73:82-90. [PMID: 35717002 DOI: 10.1016/j.ymben.2022.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Diterpenoids display a large and structurally diverse class of natural compounds mainly found as specialized plant metabolites. Due to their diverse biological functions they represent an essential source for various industrially relevant applications as biopharmaceuticals, nutraceuticals, and fragrances. However, commercial production utilizing their native hosts is inhibited by low abundances, limited cultivability, and challenging extraction, while the precise stereochemistry displays a particular challenge for chemical synthesis. Due to a high carbon flux through their native 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway towards photosynthetically active pigments, green microalgae hold great potential as efficient and sustainable heterologous chassis for sustainable biosynthesis of plant-derived diterpenoids. In this study, innovative synthetic biology and efficient metabolic engineering strategies were systematically combined to re-direct the metabolic flux through the MEP pathway for efficient heterologous diterpenoid synthesis in C. reinhardtii. Engineering of the 1-Deoxy-D-xylulose 5-phosphate synthase (DXS) as the main rate-limiting enzyme of the MEP pathway and overexpression of diterpene synthase fusion proteins increased the production of high-value diterpenoids. Applying fully photoautotrophic high cell density cultivations demonstrate potent and sustainable production of the high-value diterpenoid sclareol up to 656 mg L-1 with a maximal productivity of 78 mg L-1 day-1 in a 2.5 L scale photobioreactor, which is comparable to sclareol titers reached by highly engineered yeast. Consequently, this work represents a breakthrough in establishing a powerful phototrophic green cell factory for the competetive use in industrial biotechnology.
Collapse
|
|
3 |
25 |
4
|
Fräbel S, Wagner B, Krischke M, Schmidts V, Thiele CM, Staniek A, Warzecha H. Engineering of new-to-nature halogenated indigo precursors in plants. Metab Eng 2018; 46:20-27. [PMID: 29466700 DOI: 10.1016/j.ymben.2018.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/14/2017] [Accepted: 02/13/2018] [Indexed: 11/16/2022]
Abstract
Plants are versatile chemists producing a tremendous variety of specialized compounds. Here, we describe the engineering of entirely novel metabolic pathways in planta enabling generation of halogenated indigo precursors as non-natural plant products. Indican (indolyl-β-D-glucopyranoside) is a secondary metabolite characteristic of a number of dyers plants. Its deglucosylation and subsequent oxidative dimerization leads to the blue dye, indigo. Halogenated indican derivatives are commonly used as detection reagents in histochemical and molecular biology applications; their production, however, relies largely on chemical synthesis. To attain the de novo biosynthesis in a plant-based system devoid of indican, we employed a sequence of enzymes from diverse sources, including three microbial tryptophan halogenases substituting the amino acid at either C5, C6, or C7 of the indole moiety. Subsequent processing of the halotryptophan by bacterial tryptophanase TnaA in concert with a mutant of the human cytochrome P450 monooxygenase 2A6 and glycosylation of the resulting indoxyl derivatives by an endogenous tobacco glucosyltransferase yielded corresponding haloindican variants in transiently transformed Nicotiana benthamiana plants. Accumulation levels were highest when the 5-halogenase PyrH was utilized, reaching 0.93 ± 0.089 mg/g dry weight of 5-chloroindican. The identity of the latter was unambiguously confirmed by NMR analysis. Moreover, our combinatorial approach, facilitated by the modular assembly capabilities of the GoldenBraid cloning system and inspired by the unique compartmentation of plant cells, afforded testing a number of alternative subcellular localizations for pathway design. In consequence, chloroplasts were validated as functional biosynthetic venues for haloindican, with the requisite reducing augmentation of the halogenases as well as the cytochrome P450 monooxygenase fulfilled by catalytic systems native to the organelle. Thus, our study puts forward a viable alternative production platform for halogenated fine chemicals, eschewing reliance on fossil fuel resources and toxic chemicals. We further contend that in planta generation of halogenated indigoid precursors previously unknown to nature offers an extended view on and, indeed, pushes forward the established frontiers of biosynthetic capacity of plants.
Collapse
|
|
7 |
22 |
5
|
Geissler M, Volk J, Stehle F, Kayser O, Warzecha H. Subcellular localization defines modification and production of Δ 9-tetrahydrocannabinolic acid synthase in transiently transformed Nicotiana benthamiana. Biotechnol Lett 2018; 40:981-987. [PMID: 29619743 DOI: 10.1007/s10529-018-2545-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Through heterologous expression of the tetrahydrocannabinolic acid synthase (THCAS) coding sequence from Cannabis sativa L. in Nicotiana benthamiana, we evaluated a transient plant-based expression system for the production of enzymes involved in cannabinoid biosynthesis. RESULTS Thcas was modularized according to the GoldenBraid grammar and its expression tested upon alternative subcellular localization of the encoded catalyst with and without fusion to a fluorescent protein. THCAS was detected only when ER targeting was used; cytosolic and plastidal localization resulted in no detectable protein. Moreover, THCAS seems to be glycosylated in N. benthamiana, suggesting that this modification might have an influence on the stability of the protein. Activity assays with cannabigerolic acid as a substrate showed that the recombinant enzyme produced not only THCA (123 ± 12 fkat g FW-1 activity towards THCA production) but also cannabichromenic acid (CBCA; 31 ± 2.6 fkat g FW-1 activity towards CBCA production). CONCLUSION Nicotiana benthamiana is a suitable host for the generation of cannabinoid producing enzymes. To attain whole pathway integration, careful analysis of subcellular localization is necessary.
Collapse
|
|
7 |
10 |
6
|
Gerasymenko I, Sheludko Y, Fräbel S, Staniek A, Warzecha H. Combinatorial biosynthesis of small molecules in plants: Engineering strategies and tools. Methods Enzymol 2019; 617:413-442. [PMID: 30784411 DOI: 10.1016/bs.mie.2018.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biosynthetic capacity of plants, rooted in a near inexhaustible supply of photosynthetic energy and founded upon an intricate matrix of metabolic networks, makes them versatile chemists producing myriad specialized compounds. Along with tremendous success in elucidation of several plant biosynthetic routes, their reestablishment in heterologous hosts has been a hallmark of recent bioengineering endeavors. However, current efforts in the field are, in the main, aimed at grafting the pathways to fermentable recipient organisms, like bacteria or yeast. Conversely, while harboring orthologous metabolic trails, select plant species now emerge as viable vehicles for mobilization and engineering of complex biosynthetic pathways. Their distinctive features, like intricate cell compartmentalization and formation of specialized production and storage structures on tissue and organ level, make plants an especially promising chassis for the manufacture of considerable amounts of high-value natural small molecules. Inspired by the fundamental tenets of synthetic biology, capitalizing on the versatility of the transient plant transformation system, and drawing on the unique compartmentation of plant cells, we explore combinatorial approaches affording production of natural and new-to-nature, bespoke chemicals of potential importance. Here, we focus on the transient engineering of P450 monooxygenases, alone or in concert with other orthogonal catalysts, like tryptophan halogenases.
Collapse
|
|
6 |
8 |
7
|
Boes A, Reimann A, Twyman RM, Fischer R, Schillberg S, Spiegel H. A Plant-Based Transient Expression System for the Rapid Production of Malaria Vaccine Candidates. Methods Mol Biol 2016; 1404:597-619. [PMID: 27076325 DOI: 10.1007/978-1-4939-3389-1_39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There are currently no vaccines that provide sterile immunity against malaria. Various proteins from different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates, but none of them have fulfilled expectations. Therefore, combinations of key antigens from different stages of the parasites life cycle may be essential for the development of efficacious malaria vaccines. Following the identification of promising antigens using bioinformatics, proteomics, and/or immunological approaches, it is necessary to express, purify, and characterize these proteins and explore the potential of fusion constructs combining different antigens or antigen domains before committing to expensive and time-consuming clinical development. Here, using malaria vaccine candidates as an example, we describe how Agrobacterium tumefaciens-based transient expression in plants can be combined with a modular and flexible cloning strategy as a robust and versatile tool for the rapid production of candidate antigens during research and development.
Collapse
|
|
9 |
7 |
8
|
Grützner R, Marillonnet S. Generation of MoClo Standard Parts Using Golden Gate Cloning. Methods Mol Biol 2021; 2205:107-123. [PMID: 32809196 DOI: 10.1007/978-1-0716-0908-8_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Availability of efficient DNA assembly methods is a basic requirement for synthetic biology. A variety of modular cloning systems have been developed, based on Golden Gate cloning for DNA assembly, to enable users to assemble multigene constructs from libraries of standard parts using a series of successive one-pot assembly reactions. Standard parts contain the DNA sequence coding for a genetic element of interest such as a promoter , coding sequence or terminator . Standard parts for the modular cloning system MoClo must be flanked by two BsaI restriction sites and should not contain internal sequences for two type IIS restriction sites, BsaI and BpiI, and optionally for a third type IIS enzyme, BsmBI. We provide here a detailed protocol for cloning of basic parts. This protocol requires the following steps (1) defining the type of basic part that needs to be cloned, (2) designing primers for amplification, (3) performing PCR amplification, (4) cloning of the fragments using Golden Gate cloning, and finally (5) sequencing of the part. For large basic parts, it is preferable to first clone subparts as intermediate level -1 constructs. These subparts are sequenced individually and are then further assembled to make the final level 0 module.
Collapse
|
Journal Article |
4 |
7 |
9
|
Kar S, Bordiya Y, Rodriguez N, Kim J, Gardner EC, Gollihar JD, Sung S, Ellington AD. Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors. PLANT METHODS 2022; 18:42. [PMID: 35351174 PMCID: PMC8966344 DOI: 10.1186/s13007-022-00867-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The construction and application of synthetic genetic circuits is frequently improved if gene expression can be orthogonally controlled, relative to the host. In plants, orthogonality can be achieved via the use of CRISPR-based transcription factors that are programmed to act on natural or synthetic promoters. The construction of complex gene circuits can require multiple, orthogonal regulatory interactions, and this in turn requires that the full programmability of CRISPR elements be adapted to non-natural and non-standard promoters that have few constraints on their design. Therefore, we have developed synthetic promoter elements in which regions upstream of the minimal 35S CaMV promoter are designed from scratch to interact via programmed gRNAs with dCas9 fusions that allow activation of gene expression. RESULTS A panel of three, mutually orthogonal promoters that can be acted on by artificial gRNAs bound by CRISPR regulators were designed. Guide RNA expression targeting these promoters was in turn controlled by either Pol III (U6) or ethylene-inducible Pol II promoters, implementing for the first time a fully artificial Orthogonal Control System (OCS). Following demonstration of the complete orthogonality of the designs, the OCS was tied to cellular metabolism by putting gRNA expression under the control of an endogenous plant signaling molecule, ethylene. The ability to form complex circuitry was demonstrated via the ethylene-driven, ratiometric expression of fluorescent proteins in single plants. CONCLUSIONS The design of synthetic promoters is highly generalizable to large tracts of sequence space, allowing Orthogonal Control Systems of increasing complexity to potentially be generated at will. The ability to tie in several different basal features of plant molecular biology (Pol II and Pol III promoters, ethylene regulation) to the OCS demonstrates multiple opportunities for engineering at the system level. Moreover, given the fungibility of the core 35S CaMV promoter elements, the derived synthetic promoters can potentially be utilized across a variety of plant species.
Collapse
|
research-article |
3 |
6 |
10
|
Abstract
Efficient DNA assembly methods are essential tools for synthetic biology and metabolic engineering. Among several recently developed methods that allow assembly of multiple DNA fragments in a single step, DNA assembly using type IIS enzymes provides many advantages for complex pathway engineering. In particular, it provides the ability for the user to quickly assemble multigene constructs using a series of simple one-pot assembly steps starting from libraries of cloned and sequenced parts. We describe here a protocol for assembly of multigene constructs using the modular cloning system (MoClo). Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. Basic parts that are not yet available need to be made. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Collapse
|
|
6 |
3 |
11
|
Abstract
Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for complex pathway engineering. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the Modular Cloning system MoClo. Making constructs using the MoClo system requires users to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Collapse
|
|
5 |
3 |
12
|
Abstract
Genetic engineering of cyanobacteria is currently limited to genomic integration via homologous recombination and RSF1010-based conjugative vector systems. Here, we introduce a rationally designed conjugative vector with two BioBrick-based cloning sites which enables facilitated and modular cloning. This streamlined vector is suitable for a variety of synthetic biology applications, such as expression of multiple enzymes from metabolic pathways for the production of biofuels or secondary metabolites, or screening of modular parts such as promoters, further facilitating applications to improve crop plants using synthetic biology. Finally, we present a general approach to cloning of constructs, as well as detailed protocols for conjugation and culturing of strains carrying said constructs.
Collapse
|
|
3 |
1 |
13
|
Geissler M, Neubauer C, Sheludko YV, Brückner A, Warzecha H. Nepeta cataria L. (catnip) can serve as a chassis for the engineering of secondary metabolic pathways. Biotechnol Lett 2024; 46:843-850. [PMID: 38717662 DOI: 10.1007/s10529-024-03489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/08/2024] [Accepted: 04/14/2024] [Indexed: 09/21/2024]
Abstract
OBJECTIVE Evaluation of Nepeta cataria as a host with specific endogenous metabolite background for transient expression and metabolic engineering of secondary biosynthetic sequences. RESULTS The reporter gene gfp::licBM3 as well as three biosynthetic genes leading to the formation of the cannabinoid precursor olivetolic acid were adopted to the modular cloning standard GoldenBraid, transiently expressed in two chemotypes of N. cataria and compared to Nicotiana benthamiana. To estimate the expression efficiency in both hosts, quantification of the reporter activity was carried out with a sensitive and specific lichenase assay. While N. benthamiana exhibited lichenase activity of 676 ± 94 μmol g-1 s-1, N. cataria cultivar '1000', and the cultivar 'Citriodora' showed an activity of 37 ± 8 μmol g-1 s-1 and 18 ± 4 μmol g-1 s-1, respectively. Further, combinatorial expression of genes involved in cannabinoid biosynthetic pathway acyl-activating enzyme 1 (aae1), olivetol synthase (ols) and olivetolic acid cyclase (oac) in N. cataria cv. resulted presumably in the in vivo production of olivetolic acid glycosides. CONCLUSION Nepeta cataria is amenable to Agrobacterium-mediated transient expression and could serve as a novel chassis for the engineering of secondary metabolic pathways and transient evaluation of heterologous genes.
Collapse
|
|
1 |
|
14
|
Marillonnet S, Werner S. Golden Gate Cloning of Multigene Constructs Using the Modular Cloning System MoClo. Methods Mol Biol 2025; 2850:21-39. [PMID: 39363064 DOI: 10.1007/978-1-0716-4220-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for construct engineering for biological research and synthetic biology. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the modular cloning system MoClo. Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Collapse
|
|
1 |
|
15
|
Zumkeller C, Schindler D, Felder J, Waldminghaus T. Modular Assembly of Synthetic Secondary Chromosomes. Methods Mol Biol 2024; 2819:157-187. [PMID: 39028507 DOI: 10.1007/978-1-0716-3930-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of novel DNA assembly methods in recent years has paved the way for the construction of synthetic replicons to be used for basic research and biotechnological applications. A learning-by-building approach can now answer questions about how chromosomes must be constructed to maintain genetic information. Here we describe an efficient pipeline for the design and assembly of synthetic, secondary chromosomes in Escherichia coli based on the popular modular cloning (MoClo) system.
Collapse
|
|
1 |
|
16
|
de Vries ST, Kley L, Schindler D. Use of a Golden Gate Plasmid Set Enabling Scarless MoClo-Compatible Transcription Unit Assembly. Methods Mol Biol 2025; 2850:105-131. [PMID: 39363069 DOI: 10.1007/978-1-0716-4220-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Golden Gate cloning has become a powerful and widely used DNA assembly method. Its modular nature and the reusability of standardized parts allow rapid construction of transcription units and multi-gene constructs. Importantly, its modular structure makes it compatible with laboratory automation, allowing for systematic and highly complex DNA assembly. Golden Gate cloning relies on type IIS enzymes that cleave an adjacent undefined sequence motif at a defined distance from the directed enzyme recognition motif. This feature has been used to define hierarchical Golden Gate assembly standards with defined overhangs ("fusion sites") for defined part libraries. The simplest Golden Gate standard would consist of three-part libraries, namely promoter, coding and terminator sequences, respectively. Each library would have defined fusion sites, allowing a hierarchical Golden Gate assembly to generate transcription units. Typically, type IIS enzymes are used, which generate four nucleotide overhangs. This results in small scar sequences in hierarchical DNA assemblies, which can affect the functionality of transcription units. However, there are enzymes that generate three nucleotide overhangs, such as SapI. Here we provide a step-by-step protocol on how to use SapI to assemble transcription units using the start and stop codon for scarless transcription unit assembly. The protocol also provides guidance on how to perform multi-gene Golden Gate assemblies with the resulting transcription units using the Modular Cloning standard. The transcription units expressing fluorophores are used as an example.
Collapse
|
|
1 |
|
17
|
Grützner R, Marillonnet S. Golden Gate Cloning of MoClo Standard Parts. Methods Mol Biol 2025; 2850:1-19. [PMID: 39363063 DOI: 10.1007/978-1-0716-4220-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Efficient DNA assembly methods are an essential prerequisite in the field of synthetic biology. Modular cloning systems, which rely on Golden Gate cloning for DNA assembly, are designed to facilitate assembly of multigene constructs from libraries of standard parts through a series of streamlined one-pot assembly reactions. Standard parts consist of the DNA sequence of a genetic element of interest such as a promoter, coding sequence, or terminator, cloned in a plasmid vector. Standard parts for the modular cloning system MoClo, also called level 0 modules, must be flanked by two BsaI restriction sites in opposite orientations and should not contain internal sequences for two type IIS restriction sites, BsaI and BpiI, and optionally for a third type IIS enzyme, BsmBI. We provide here a detailed protocol for cloning of level 0 modules. This protocol requires the following steps: (1) defining the type of part that needs to be cloned, (2) designing primers for amplification, (3) performing polymerase chain reaction (PCR) amplification, (4) cloning of the fragments using Golden Gate cloning, and finally (5) sequencing of the part. For large standard parts, it is preferable to first clone sub-parts as intermediate level -1 constructs. These sub-parts are sequenced individually and are then further assembled to make the final level 0 module.
Collapse
|
|
1 |
|
18
|
Emelin P, Abdul-Mawla S, Willmund F. Golden Gate Cloning for the Standardized Assembly of Gene Elements with Modular Cloning in Chlamydomonas. Methods Mol Biol 2025; 2850:451-465. [PMID: 39363087 DOI: 10.1007/978-1-0716-4220-7_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Modern synthetic biology requires fast and efficient cloning strategies for the assembly of new transcription units or entire pathways. Modular Cloning (MoClo) is a standardized synthetic biology workflow, which has tremendously simplified the assembly of genetic elements for transgene expression. MoClo is based on Golden Gate Assembly and allows to combine genetic elements of a library through a hierarchical syntax-driven pipeline. Here we describe the assembly of a genetic cassette for transgene expression in the single-celled model alga Chlamydomonas reinhardtii.
Collapse
|
|
1 |
|
19
|
Harmer ZP, McClean MN. The Yeast Optogenetic Toolkit (yOTK) for Spatiotemporal Control of Gene Expression in Budding Yeast. Methods Mol Biol 2025; 2840:19-36. [PMID: 39724341 DOI: 10.1007/978-1-0716-4047-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Optogenetic systems utilize genetically encoded light-sensitive proteins to control cellular processes such as gene expression and protein localization. Like most synthetic systems, generation of an optogenetic system with desirable properties requires multiple design-test-build cycles. A yeast optogenetic toolkit (yOTK) allows rapid assembly of optogenetic constructs using Modular Cloning, or MoClo. In this protocol, we describe how to assemble, integrate, and test optogenetic systems in the budding yeast Saccharomyces cerevisiae. Generating an optogenetic system requires the user to first define the structure of the final construct and identify all basic parts and vectors required for the construction strategy, including light-sensitive proteins that need to be domesticated into the toolkit. The assembly is then defined following a set of standard rules. Multigene constructs are assembled using a series of one-pot assembly steps with the identified parts and vectors and transformed into yeast. Screening of the transformants allows optogenetic systems with optimal properties to be selected.
Collapse
|
|
1 |
|
20
|
Scoville S, Chiasson DM. Assembling DNA Plasmids with the Multi-Kingdom (MK) Cloning System. Methods Mol Biol 2025; 2850:467-479. [PMID: 39363088 DOI: 10.1007/978-1-0716-4220-7_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The Golden Gate cloning technique is used to assemble DNA parts into higher-order assemblies. Individual parts containing compatible overhangs generated by type IIS restriction enzymes are joined together using DNA ligase. The technique enables users to assemble custom transcription units (TUs) for a wide array of experimental assays. Several Golden Gate cloning systems have been developed; however, they are typically used with a narrow range of organisms. Here we describe the Multi-Kingdom (MK) cloning system that allows users to generate DNA plasmids for use in a broad range of organisms.
Collapse
|
|
1 |
|
21
|
Laborda-Mansilla J, García-Ruiz E. Advancements in Golden Gate Cloning: A Comprehensive Review. Methods Mol Biol 2025; 2850:481-500. [PMID: 39363089 DOI: 10.1007/978-1-0716-4220-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Researchers have dedicated efforts to refining genetic part assembly techniques, responding to the demand for complex DNA constructs. The optimization efforts, targeting enhanced efficiency, fidelity, and modularity, have yielded streamlined protocols. Among these, Golden Gate cloning has gained prominence, offering a modular and hierarchical approach for constructing complex DNA fragments. This method is instrumental in establishing a repository of reusable parts, effectively reducing the costs and proving highly valuable for high-throughput DNA assembly projects. In this review, we delve into the main protocol of Golden Gate cloning, providing refined insights to enhance protocols and address potential challenges. Additionally, we perform a thorough evaluation of the primary modular cloning toolkits adopted by the scientific community. The discussion includes an exploration of recent advances and challenges in the field, providing a comprehensive overview of the current state of Golden Gate cloning.
Collapse
|
Review |
1 |
|
22
|
Kowarschik K, Trujillo M. Coexpression and Reconstitution of Enzymatic Cascades in Bacteria Using UbiGate. Methods Mol Biol 2022; 2379:155-169. [PMID: 35188661 DOI: 10.1007/978-1-0716-1791-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coexpression of multiple genes of interest (GOIs) is advantageous for many purposes including the elucidation of protein complexes, reconstitution of enzymatic cascades that mediate the biosynthesis of compounds, the study of signaling cascades, or the elucidation of posttranslational modification. Additional advantages of coexpressing proteins is increased solubility and stability of proteins. For this purpose we developed UbiGate, a modular system based on Golden Gate cloning that enables the generation of polycistronic expression cassettes. Their generation is achieved in four simple steps: (1) GOIs are amplified via PCR, (2) and restriction-ligated into level 0 cloning vectors. Next, (3) the GOIs in a level 0 vector are restriction-ligated into a dedicated set of level 1 vectors that define the position of the GOI within the operon. In the last step (4), level 1 vectors are cloned into a modified pET28-GG expression vector. The resulting modules at each step can be reused to generate fusions with different tags in any desired order and orientation, to include up to six different proteins representing a useful tool facilitating the study of plant metabolic and signaling pathways.
Collapse
|
|
3 |
|
23
|
Zweng S, Mendoza-Rojas G, Lepak A, Altegoer F. Simplifying Recombinant Protein Production: Combining Golden Gate Cloning with a Standardized Protein Purification Scheme. Methods Mol Biol 2025; 2850:229-249. [PMID: 39363075 DOI: 10.1007/978-1-0716-4220-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Recombinant protein production is pivotal in molecular biology, enabling profound insights into cellular processes through biophysical, biochemical, and structural analyses of the purified samples. The demand for substantial biomolecule quantities often presents challenges, particularly for eukaryotic proteins. Escherichia coli expression systems have evolved to address these issues, offering advanced features such as solubility tags, posttranslational modification capabilities, and modular plasmid libraries. Nevertheless, existing tools are often complex, which limits their accessibility and necessitate streamlined systems for rapid screening under standardized conditions. Based on the Golden Gate cloning method, we have developed a simple "one-pot" approach for the generation of expression constructs using strategically chosen protein purification tags like hexahistidine, SUMO, MBP, GST, and GB1 to enhance solubility and expression. The system allows visual candidate screening through mScarlet fluorescence and solubility tags are removable via TEV protease cleavage. We provide a comprehensive protocol encompassing oligonucleotide design, cloning, expression, His-tag affinity chromatography, and size-exclusion chromatography. This method, therefore, streamlines prokaryotic and eukaryotic protein production, rendering it accessible to standard molecular biology laboratories with basic protein biochemical equipment.
Collapse
|
|
1 |
|