1
|
Novel ligand-based docking; molecular dynamic simulations; and absorption, distribution, metabolism, and excretion approach to analyzing potential acetylcholinesterase inhibitors for Alzheimer's disease. J Pharm Anal 2017; 8:413-420. [PMID: 30595949 PMCID: PMC6308024 DOI: 10.1016/j.jpha.2017.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/02/2022] Open
Abstract
Acetylcholinesterase (AChE) plays an important role in Alzheimer's disease (AD). The excessive activity of AChE causes various neuronal problems, particularly dementia and neuronal cell deaths. Generally, anti-AChE drugs induce some serious neuronal side effects in humans. Therefore, this study sought to identify alternative drug molecules from natural products with fewer side effects than those of conventional drugs for treating AD. To achieve this, we developed computational methods for predicting drug and target binding affinities using the Schrodinger suite. The target and ligand molecules were retrieved from established databases. The target enzyme has 539 amino acid residues in its sequence alignment. Ligand molecules of 20 bioactive molecules were obtained from different kinds of plants, after which we performed critical analyses such as molecular docking; molecular dynamic (MD) simulations; and absorption, distribution, metabolism, and excretion (ADME) analysis. In the docking studies, the natural compound rutin showed a superior docking score of −12.335 with a good binding energy value of −73.313 kcal/mol. Based on these findings, rutin and the target complex was used to perform MD simulations to analyze rutin stability at 30 ns. In conclusion, our study demonstrates that rutin is a superior drug candidate for AD. Therefore, we propose that this molecule is worth further investigation using in vitro studies.
Collapse
|
Journal Article |
8 |
37 |
2
|
Cai Z, Zhang G, Tang B, Liu Y, Fu X, Zhang X. Promising Anti-influenza Properties of Active Constituent of Withania somnifera Ayurvedic Herb in Targeting Neuraminidase of H1N1 Influenza: Computational Study. Cell Biochem Biophys 2017; 72:727-39. [PMID: 25627548 DOI: 10.1007/s12013-015-0524-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuraminidase (NA) is a membrane surface antigen which helps in the release of influenza viruses from the host cells after replication. Anti-influenza drugs such as zanamivir bind with eight highly conserved functional residues (R118, D151, R152, R224, E276, R292, R371, and Y406) in the active site of NA, thus restricting the viral release the from host cells. Binding of the drug in active site inhibits the ability of enzyme to cleave sialic acid residues on the cell membrane. Reports on the emergence of zanamivir-resistant strains of H1N1 Influenza virus necessitated a search for alternative drug candidates, preferably from plant source due to their known benefits such as less or no side effects, availability, and low cost. Withaferin A (WA), an active constituent of Withania somnifera ayurvedic herb, has been shown to have a broad range of medicinal properties including its anti-viral activity. The present study demonstrated that WA has the potential to attenuate the neuraminidase of H1N1 influenza. Our docking and simulation results predicted high binding affinity of the WA toward NA and revealed several interesting molecular interactions with the residues which are catalytically important during molecular dynamic simulations. The results presented in the article could be of high importance for further designing of target-specific anti-influenza drug candidates.
Collapse
|
Journal Article |
8 |
32 |
3
|
Khatoon S, Aroosh A, Islam A, Kalsoom S, Ahmad F, Hameed S, Abbasi SW, Yasinzai M, Naseer MM. Novel coumarin-isatin hybrids as potent antileishmanial agents: Synthesis, in silico and in vitro evaluations. Bioorg Chem 2021; 110:104816. [PMID: 33799180 DOI: 10.1016/j.bioorg.2021.104816] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
Leishmaniasis being one of the six major tropical diseases that affects nearly 0.7-1.3 million people annually, has so far limited and high toxic therapeutic options. Herein, we report the synthesis, in silico, and in vitro evaluations of novel coumarin-incorporated isatin hydrazones (Spf-1 - Spf-10) as highly potent and safe antileishmanial agents. Molecular docking was initially carried out to decipher the binding confirmation of lead molecules towards the active cavity of the target protein (Leishmanolysin gp63) of Leishmania tropica. Among all the docked compounds, only Spf-6, Spf-8, and Spf-10 showed high binding affinities due to a pattern of strong conventional hydrogen bonds and hydrophobic π-interactions. The molecular dynamics simulations showed the stable pattern of such bonding and structure-based confirmation with a time scale of 50 ns towards the top compound (Spf-10) and protein. These analyses affirmed the high stability of the system. Three out of ten compounds evaluated for their antileishmanial activity against Leishmania tropica promastigotes and amastigotes were found to be active at micromolar concentrations (IC50 range 0.1-4.13 μmol/L), and most importantly, they were also found to be highly biocompatible when screened for their toxicity in human erythrocytes.
Collapse
|
Journal Article |
4 |
25 |
4
|
In silico molecular docking and dynamic simulation of eugenol compounds against breast cancer. J Mol Model 2021; 28:17. [PMID: 34962586 DOI: 10.1007/s00894-021-05010-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Breast cancer is one of the most severe problems, and it is the primary cause of cancer-related death in females worldwide. The adverse effects and therapeutic resistance development are among the most potent clinical issues for potent medications for breast cancer treatment. The eugenol molecules have a significant affinity for breast cancer receptors. The aim of the study has been on the eugenol compounds, which has potent actions on Erα, PR, EGFR, CDK2, mTOR, ERBB2, c-Src, HSP90, and chemokines receptors inhibition. Initially, the drug-likeness property was examined to evaluate the anti-breast cancer activity by applying Lipinski's rule of five on 120 eugenol molecules. Further, structure-based virtual screening was performed via molecular docking, as protein-like interactions play a vital role in drug development. The 3D structure of the receptors has been acquired from the protein data bank and is docked with 87 3D PubChem and ZINC structures of eugenol compounds, and five FDA-approved anti-cancer drugs using AutoDock Vina. Then, the compounds were subjected to three replica molecular dynamic simulations run of 100 ns per system. The results were evaluated using root mean square deviation (RMSD), root mean square fluctuation (RMSF), and protein-ligand interactions to indicate protein-ligand complex stability. The results confirm that Eugenol cinnamaldehyde has the best docking score for breast cancer, followed by Aspirin eugenol ester and 4-Allyl-2-methoxyphenyl cinnamate. From the results obtained from in silico studies, we propose that the selected eugenols can be further investigated and evaluated for further lead optimization and drug development.
Collapse
|
|
4 |
24 |
5
|
Karimzadeh S, Safaei B, Jen TC. Investigate the importance of mechanical properties of SWCNT on doxorubicin anti-cancer drug adsorption for medical application: A molecular dynamic study. J Mol Graph Model 2020; 101:107745. [PMID: 32977299 DOI: 10.1016/j.jmgm.2020.107745] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
|
|
5 |
20 |
6
|
Mohammad A, Marafie SK, Alshawaf E, Abu-Farha M, Abubaker J, Al-Mulla F. Structural analysis of ACE2 variant N720D demonstrates a higher binding affinity to TMPRSS2. Life Sci 2020; 259:118219. [PMID: 32768580 PMCID: PMC7405906 DOI: 10.1016/j.lfs.2020.118219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Aims Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel member of the betacoronaviruses family affecting the lower respiratory tract mainly through binding to angiotensin converting enzyme 2 (ACE2) via its S-protein. Genetic analysis of (ACE2) gene revealed several variants that have been suggested to regulate the interaction with S protein. This study investigates the N720D variant, positioned in the collectrin-like domain (CLD) at proximity to type II transmembrane serine protease (TMPRSS2) cleavage site. Main methods The effect of N720D variant on ACE2 structure and thermodynamic stability was studied by DynaMut. HDOCK was utilised to model TMPRSS2 protease binding to ACE2 WT and D720 variant cleavage site. PRODIGY was used to calculate binding affinities and MD simulation tools calculated the at 100 ns for ACE2 apo structure and the ACE2-TMPRSS2 complex. Key findings The N720D variant is a more dynamic structure with a free energy change (ΔΔG): −0.470 kcal/mol. As such, introducing a tighter binding affinity of Kd = 3.2 × 10−10 M between TMPRSS2 and N720D variant. RMSD, RMSF calculations showed the N720D variant is less stable, however, RMSF values of the D720-TMPRSS2 complex reflected a slower dynamic motion. Significance The hotspot N720D variant in the CLD of ACE2 affected the stability and flexibility of ACE2 by increasing the level of motion in the loop region, resulting in a more favourable site for TMPRSS2 binding and cleavage. Consequently, this would facilitate S-protein binding and can potentially increase viral entry highlighting the importance of variants affecting the ACE2-TMPRSS2 complex.
Collapse
|
Journal Article |
5 |
19 |
7
|
Navarro G, Gonzalez A, Campanacci S, Rivas-Santisteban R, Reyes-Resina I, Casajuana-Martin N, Cordomí A, Pardo L, Franco R. Experimental and computational analysis of biased agonism on full-length and a C-terminally truncated adenosine A 2A receptor. Comput Struct Biotechnol J 2020; 18:2723-2732. [PMID: 33101610 PMCID: PMC7550916 DOI: 10.1016/j.csbj.2020.09.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Biased agonism, the ability of agonists to differentially activate downstream signaling pathways by stabilizing specific receptor conformations, is a key issue for G protein-coupled receptor (GPCR) signaling. The C-terminal domain might influence this functional selectivity of GPCRs as it engages G proteins, GPCR kinases, β-arrestins, and several other proteins. Thus, the aim of this paper is to compare the agonist-dependent selectivity for intracellular pathways in a heterologous system expressing the full-length (A2AR) and a C-tail truncated (A2AΔ40R lacking the last 40 amino acids) adenosine A2A receptor, a GPCR that is already targeted in Parkinson’s disease using a first-in-class drug. Experimental data such as ligand binding, cAMP production, β-arrestin recruitment, ERK1/2 phosphorylation and dynamic mass redistribution assays, which correspond to different aspects of signal transduction, were measured upon the action of structurally diverse compounds (the agonists adenosine, NECA, CGS-21680, PSB-0777 and LUF-5834 and the SCH-58261 antagonist) in cells expressing A2AR and A2AΔ40R. The results show that taking cAMP levels and the endogenous adenosine agonist as references, the main difference in bias was obtained with PSB-0777 and LUF-5834. The C-terminus is dispensable for both G-protein and β-arrestin recruitment and also for MAPK activation. Unrestrained molecular dynamics simulations, at the μs timescale, were used to understand the structural arrangements of the binding cavity, triggered by these chemically different agonists, facilitating G protein binding with different efficacy.
Collapse
|
Journal Article |
5 |
19 |
8
|
Dong X, Tang Y, Zhan C, Wei G. Green tea extract EGCG plays a dual role in Aβ 42 protofibril disruption and membrane protection: A molecular dynamic study. Chem Phys Lipids 2020; 234:105024. [PMID: 33278382 DOI: 10.1016/j.chemphyslip.2020.105024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/29/2020] [Indexed: 11/18/2022]
Abstract
Amyloid plaques accumulated by the amyloid-β (Aβ) fibrillar aggregates are the major pathological hallmark of the Alzheimer's disease (AD). Inhibiting aggregation and disassembling preformed fibrils of Aβ by natural small molecules have developed into a promising therapeutic strategy for AD. Previous experiments reported that the green tea extract epigallocatechin-3-gallate (EGCG) can disrupt Aβ fibril and reduce Aβ cytotoxicity. The inhibitory ability of EGCG can also be affected by cellular membranes. Thus, it is essential to consider the membrane influences in the investigation of protofibril-disruptive capability of EGCG. Here, we performed multiple all-atom molecular dynamic simulations to investigate the effect of EGCG on the Aβ42 protofibril in the presence of a mixed POPC/POPG (7:3) lipid bilayer and the underlying molecular mechanisms of action. Our simulations show that in the presence of membrane bilayers, EGCG has a preference to bind to the membrane, and this binding alters the binding modes between Aβ42 protofibril and the lipid bilayer, leading to a reduced membrane thinning, indicative of a protective effect of EGCG on the membrane. And EGCG still displays a disruptive effect on Aβ42 protofibril, albeit with a lesser extent of disruption than that in the membrane-free environment. EGCG destabilizes the two hydrophobic core regions (L17-F19-I31 and F4-L34-V36), and disrupts the intrachain K28-A42 salt bridges. Our results reveal that in the presence of lipid bilayers, EGCG plays a dual role in Aβ42 protofibril disruption and membrane protection, suggesting that EGCG could be a potential effective drug candidate for the treatment of AD.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
19 |
9
|
Molecular dynamics of the membrane interaction and localisation of prodigiosin. J Mol Graph Model 2020; 98:107614. [PMID: 32289740 DOI: 10.1016/j.jmgm.2020.107614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023]
Abstract
The tripyrrolic antibiotic prodigiosin causes diverse reactions on its targets like energy spilling, membrane leakage, loss of motility and phototoxicity. It has bacteriostatic, bactericidal, anti-fungal, anti-cancer and immunosuppressive properties. Most of the functions suggest the role of prodigiosin in membrane disruption but the exact mechanism remains unknown. A molecular dynamics study was performed to understand the interactions of prodigiosin with the membrane. It was seen that prodigiosin from the solvent enters the membrane immediately either individually or as small clusters. Prodigiosin clusters with more than eight molecules do not appear to enter the membrane. Upon entry, the molecules orient themselves along the membrane-water interface with the pyrrole rings interacting with lipid head groups and with water. This orientation is stabilised by hydrogen bonding and hydrophobic interactions. The presence of prodigiosin molecules in the membrane changes the local lipid architecture and reduces the solvent accessibility of the membrane. The membrane fluidity, thickness or area per lipid head are largely unaffected. This suggests that prodigiosin could cause most damage in the vicinity of a membrane protein and thus could also explain the reason for varied effects on the targets.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
19 |
10
|
Mackinnon JAG, Gallastegui N, Osguthorpe DJ, Hagler AT, Estébanez-Perpiñá E. Allosteric mechanisms of nuclear receptors: insights from computational simulations. Mol Cell Endocrinol 2014; 393:75-82. [PMID: 24911885 DOI: 10.1016/j.mce.2014.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 01/07/2023]
Abstract
The traditional structural view of allostery defines this key regulatory mechanism as the ability of one conformational event (allosteric site) to initiate another in a separate location (active site). In recent years computational simulations conducted to understand how this phenomenon occurs in nuclear receptors (NRs) has gained significant traction. These results have yield insights into allosteric changes and communication mechanisms that underpin ligand binding, coactivator binding site formation, post-translational modifications, and oncogenic mutations. Moreover, substantial efforts have been made in understanding the dynamic processes involved in ligand binding and coregulator recruitment to different NR conformations in order to predict cell/tissue-selective pharmacological outcomes of drugs. They also have improved the accuracy of in silico screening protocols so that nowadays they are becoming part of optimisation protocols for novel therapeutics. Here we summarise the important contributions that computational simulations have made towards understanding the structure/function relationships of NRs and how these can be exploited for rational drug design.
Collapse
|
Review |
11 |
18 |
11
|
Jain P, Joshi A, Akhtar N, Krishnan S, Kaushik V. An immunoinformatics study: designing multivalent T-cell epitope vaccine against canine circovirus. J Genet Eng Biotechnol 2021; 19:121. [PMID: 34406518 PMCID: PMC8371590 DOI: 10.1186/s43141-021-00220-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Canine circovirus is a deadly pathogen of dogs and causes vasculitis and hemorrhagic enteritis. It causes lethal gastroenteritis in pigs, fox, and dogs. Canine circovirus genome contains two main (and opposite) transcription units which encode two open reading frames (ORFs), a replicase-associated protein (Rep) and the capsid (Cap) protein. The replicase protein and capsid protein consist of 303 amino acids and 270 amino acids respectively. Several immuno-informatics methods such as epitope screening, molecular docking, and molecular-dynamics simulations were used to craft peptide-based vaccine construct against canine circovirus. RESULTS The vaccine construct was designed by joining the selected epitopes with adjuvants by suitable linker. The cloning and expression of the vaccine construct was also performed using in silico methods. Screening of epitopes was conducted by NetMHC server that uses ANN (Artificial neural networking) algorithm. These methods are fast and cost-effective for screening epitopes that can interact with dog leukocyte antigens (DLA) and initiate an immune response. Overall, 5 epitopes, YQHLPPFRF, YIRAKWINW, ALYRRLTLI, HLQGFVNLK, and GTMNFVARR, were selected and used to design a vaccine construct. The molecular docking and molecular dynamics simulation studies show that these epitopes can bind with DLA molecules with stability. The codon adaptation and in silico cloning studies show that the vaccine can be expressed by Escherichia coli K12 strain. CONCLUSION The results suggest that the vaccine construct can be useful in preventing the dogs from canine circovirus infections. However, the results need further validation by performing other in vitro and in vivo experiments.
Collapse
|
|
4 |
16 |
12
|
Chen P, Wang R, Yang J, Zhong W, Liu M, Yi S, Zhu L. Stronger estrogenic and antiandrogenic effects on zebrafish larvae displayed by 6:2 polyfluoroalkyl phosphate diester than the 8:2 congener at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133907. [PMID: 31425999 DOI: 10.1016/j.scitotenv.2019.133907] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) are one kind of emerging polyfluoroalkyl substances in the environment. However, their in vivo toxicities are largely unknown, especially at environmental relevant concentrations. To fill this gap, zebrafish embryos were exposed to 6:2 or 8:2 diPAP at environmentally relevant concentrations (0.5, 5, 50 ng/L) for 7 d. 6:2 and 8:2 diPAPs upregulated the mRNA and protein levels of aromatase in the exposed larvae, and elevated estradiol (E2) and vitellogenin (VTG) levels, but reduced testosterone (T) and 11-ketotestosterone (11-KT) levels, demonstrating estrogenic and antiandrogenic effects. Among the three ER subtypes, ERβ2 displayed the highest in vivo mRNA expression and the lowest in silico binding energies, suggesting that it was the main target ER subtype responsible for the estrogenic effect. Molecular simulation results indicated that diPAPs and E2 could bind to one common residue, arginine (Arg) 87, in the binding pocket of ERβ2, inducing similar estrogenic disruption mechanisms as E2. Both compounds could form hydrophobic interaction with glutamic acid (Glu) 12 and tryptophan (Trp) 80 and two hydrogen bonds with Arg81 of androgen receptor (AR) ligand-binding domains (LBDs) in antagonistic mode, resulting in a reduced level of AR upon exposure. The in silico binding energies of 6:2 diPAP with both ER and AR were lower than 8:2 diPAP, explaining the observed greater in vivo estrogenic and antiandrogenic activities of 6:2 diPAP. This study provided the first line of evidences that diPAPs could display adverse effects on the endocrine functions of fish species.
Collapse
|
|
6 |
16 |
13
|
Shehata M, Timucin E, Venturini A, Sezerman OU. Understanding thermal and organic solvent stability of thermoalkalophilic lipases: insights from computational predictions and experiments. J Mol Model 2020; 26:122. [PMID: 32383051 DOI: 10.1007/s00894-020-04396-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/28/2020] [Indexed: 11/25/2022]
Abstract
Bacillus thermocatenulatus lipase (BTL2), a member of the isolated lipase family known as thermoalkalophilic lipases, carries potential for industrial applications owing to its ability to catalyze versatile reactions under extreme conditions. This study investigates the molecular effects of distinct solvents on the stability of BTL2 at different temperatures, aiming to contribute to lipase use in industrial applications. Initially, molecular dynamic (MD) simulations were carried out to address for the molecular impacts of distinct solvents on the structural stability of BTL2 at different temperatures. Two lipase conformations representing the active and inactive forms were simulated in 5 solvents including water, ethanol, methanol, cyclohexane, and toluene. Low temperature simulations showed that polar solvents led to enhanced lid fluctuations compared with non-polar solvents reflecting a more dynamic equilibrium between active and inactive lipase conformations in polar solvents including water, while the overall structure of the lipase in both forms became more rigid in non-polar solvents than they were in polar solvent. Notably, the native lipase fold was maintained in non-polar solvents even at high temperatures, indicating an enhancement of lipase's thermostability in non-polar organic solvents. Next, we conducted experiments for which BTL2 was expressed in a heterologous host and purified to homogeneity, and its thermostability in different solvents was assessed. Parallel to the computational findings, experimental results suggested that non-polar organic solvents contributed to BTL2's thermostability at concentrations as high as 70% (v/v). Altogether, this study provides beneficial insights to the lipase use under extreme conditions. Graphical Abstract.
Collapse
|
Journal Article |
5 |
15 |
14
|
Yuan Y, Liu X, Liu T, Liu W, Zhu Y, Zhang H, Zhao C. Molecular dynamics exploring of atmosphere components interacting with lung surfactant phospholipid bilayers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140547. [PMID: 32659550 DOI: 10.1016/j.scitotenv.2020.140547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Sulfur dioxide (SO2), nitrogen oxide (NO2) and ozone (O3) in the atmosphere are significantly correlated with various respiratory and cardiovascular diseases. High doses of each of these gases or a mixture can change the physical and chemical properties of the lung membrane, thus leading to an increased pulmonary vascular permeability and structural failure of the alveolar cell membrane. In the present study, detailed molecular dynamic (MD) modeling was applied to investigate the effects of SO2, NO2, O3 and mixtures of these gases on the dipalmitoyl phosphatidylcholine (DPPC) phospholipid bilayer. The results showed that several key physical properties, including the mass density, lipid ordering parameter, lipid diffusion, and electrostatic potential of the cell membrane, have been changed by the binding of different compounds. This resulted in significant variations and more disorder in the DPPC bilayer. The multiple analyses of membrane properties proved the toxicity of NO2, O3, and SO2 to the DPPC bilayer, providing a theoretical basis for the experimental phenomenon that SO2, NO2 and O3 can cause lung cell apoptosis. For the single systems, the damage to DPPC bilayer caused by O3 was more serious than NO2 and SO2. More importantly, the MD simulations using the mixtures of SO2, NO2, and O3 showed a much greater decline of membrane fluidity and the aggravation of membrane damage than the single systems, indicating a synergistic effect when NO2, SO2, and O3 coexisted in the atmosphere, which could lead to much more severe damage and greater toxicities to the lung.
Collapse
|
|
5 |
15 |
15
|
Chitrala KN, Yang X, Nagarkatti P, Nagarkatti M. Comparative analysis of interactions between aryl hydrocarbon receptor ligand binding domain with its ligands: a computational study. BMC STRUCTURAL BIOLOGY 2018; 18:15. [PMID: 30522477 PMCID: PMC6282305 DOI: 10.1186/s12900-018-0095-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Aryl hydrocarbon receptor (AhR) ligands may act as potential carcinogens or anti-tumor agents. Understanding how some of the residues in AhR ligand binding domain (AhRLBD) modulate their interactions with ligands would be useful in assessing their divergent roles including toxic and beneficial effects. To this end, we have analysed the nature of AhRLBD interactions with 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), 6-formylindolo[3,2-b]carbazole (FICZ), indole-3-carbinol (I3C) and its degradation product, 3,3'-diindolylmethane (DIM), Resveratrol (RES) and its analogue, Piceatannol (PTL) using molecular modeling approach followed by molecular dynamic simulations. RESULTS Results showed that each of the AhR ligands, TCDD, FICZ, I3C, DIM, RES and PTL affect the local and global conformations of AhRLBD. CONCLUSION The data presented in this study provide a structural understanding of AhR with its ligands and set the basis for its functions in several pathways and their related diseases.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
15 |
16
|
Kumar N, Singh A, Gulati HK, Bhagat K, Kaur K, Kaur J, Dudhal S, Duggal A, Gulati P, Singh H, Singh JV, Bedi PMS. Phytoconstituents from ten natural herbs as potent inhibitors of main protease enzyme of SARS-COV-2: In silico study. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100083. [PMID: 35403086 PMCID: PMC8180089 DOI: 10.1016/j.phyplu.2021.100083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 04/13/2023]
Abstract
BACKGROUND Lack of treatment of novel Coronavirus disease led to the search of specific antivirals that are capable to inhibit the replication of the virus. The plant kingdom has demonstrated to be an important source of new molecules with antiviral potential. PURPOSE The present study aims to utilize various computational tools to identify the most eligible drug candidate that have capabilities to halt the replication of SARS-COV-2 virus by inhibiting Main protease (Mpro) enzyme. METHODS We have selected plants whose extracts have inhibitory potential against previously discovered coronaviruses. Their phytoconstituents were surveyed and a library of 100 molecules was prepared. Then, computational tools such as molecular docking, ADMET and molecular dynamic simulations were utilized to screen the compounds and evaluate them against Mpro enzyme. RESULTS All the phytoconstituents showed good binding affinities towards Mpro enzyme. Among them laurolitsine possesses the highest binding affinity i.e. -294.1533 kcal/mol. On ADMET analysis of best three ligands were simulated for 1.2 ns, then the stable ligand among them was further simulated for 20 ns. Results revealed that no conformational changes were observed in the laurolitsine w.r.t. protein residues and low RMSD value suggested that the Laurolitsine-protein complex was stable for 20 ns. CONCLUSION Laurolitsine, an active constituent of roots of Lindera aggregata, was found to be having good ADMET profile and have capabilities to halt the activity of the enzyme. Therefore, this makes laurolitsine a good drug candidate for the treatment of COVID-19.
Collapse
Key Words
- ACE-2, Angiotensin converting enzyme- 2
- ADMET
- ADMET, absorption, Distribution, metabolism, excretion and toxicity
- Ala, Alanine
- Approx., approximately
- Arg, arginine
- Asn, Asparagine
- Asp, Aspartic acid
- CADD, Computer Aided Drug Design
- CHARMM, Chemistry at Harvard Macromolecular Mechanics
- COV, coronavirus
- COVID, Novel corona-virus disease
- Covid-19
- Cys, cysteine
- DSBDS, Dassault's Systems Biovia's Discovery studio
- Gln, Glutamine
- Glu, glutamate
- Gly, Glycine
- His, histidine
- Ile, isoleucine
- K, Kelvin
- Kcal/mol, kilo calories per mol
- Leu, Leucine
- Leu, leucine
- Lys, Lysine
- MD, Molecular Dynamics
- Met, Methionine
- MoISA, Molecular Surface Area
- Molecular dynamic simulations
- Mpro protein
- Mpro, Main protease enzyme
- N protein, nucleocapsid protein
- NI, N-(4-methylpyridin-3-yl) acetamide inhibitor
- NPT, amount of substance (N), pressure (P) and temperature (T)
- NVT, amount of substance (N), volume (V) and temperature (T)
- Natural Antiviral herbs
- PDB, protein data bank
- PPB, plasma protein binding
- PSA, Polar Surface Area
- Phi, Phenylalanine
- Pro, Proline
- RCSB, Research Collaboratory for Structural Bioinformatics
- RMS, Root Mean Square
- RMSD, Root Mean Square Deviation
- RMSF, root mean square fluctuations
- RNA, Ribonucleic acid
- SAR-COV-2, severe acute respiratory syndrome coronavirus 2
- SDF, structure data format
- Ser, serine
- T, Temperature
- Thr, Threonine
- Trp, Tryptophan
- Tyr, Tyrosine
- Val, Valine
- kDa, kilo Dalton
- nCOV-19, Novel Coronavirus 2019
- ns/nsec, nano seconds
- ps, pentoseconds
- rGyr, Radius of gyration
- w.r.t., with respect to
- Å, angstrom
- α, alpha
- β, beta
Collapse
|
research-article |
4 |
14 |
17
|
Sohraby F, Bagheri M, Aliyar M, Aryapour H. In silico drug repurposing of FDA-approved drugs to predict new inhibitors for drug resistant T315I mutant and wild-type BCR-ABL1: A virtual screening and molecular dynamics study. J Mol Graph Model 2017; 74:234-240. [PMID: 28458002 DOI: 10.1016/j.jmgm.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/24/2022]
Abstract
The BCR-ABL fusion gene is one of the major causes of 95% of Chronic Myeloid Leukemia (CML). While, BCR-ABL protein is currently being used as a major target to treat CML. Although, current FDA-approved drugs such as; Imatinib and Nilotinib have stupendously improved the patients 5-year's survival rates, the drug resistance has dramatically reduced their effects. So, more accurate and effective alternative treatments are crucially needed. To address this issue, we screened the FDA-approved drugs by virtual screening and binding free energy calculations to identify new inhibitors for the wild-type and T315I gatekeeper mutant ABL1. It was invigorating to identify that chlorohexidine, paromomycin and deferoxamine could inhibit the wild-type ABL1, while chlorohexidine and ritonavir could inhibit the T315I mutant ABL1. The applications of these newly identified drugs are not just an effortless hypothesis in drug discovery. These drugs can be evaluated in phase 2 clinical trials after a simple kinase selectivity assay.
Collapse
|
Journal Article |
8 |
14 |
18
|
Ahmad S, Zaib S, Jalil S, Shafiq M, Ahmad M, Sultan S, Iqbal M, Aslam S, Iqbal J. Synthesis, characterization, monoamine oxidase inhibition, molecular docking and dynamic simulations of novel 2,1-benzothiazine-2,2-dioxide derivatives. Bioorg Chem 2018; 80:498-510. [PMID: 29996111 DOI: 10.1016/j.bioorg.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
In this research work, we report the synthesis and biological evaluation of two new series of 1-benzyl-4-(benzylidenehydrazono)-3,4-dihydro-1H-benzo[c] [1,2]thiazine 2,2-dioxides and 1-benzyl-4-((1-phenylethylidene)hydrazono)-3,4-dihydro-1H-benzo[c][1,2]thiazine 2,2-dioxides. The synthetic plan involves the mesylation of methyl anthranilate with subsequent N-benzylation of the product. The methyl 2-(N-benzylmethylsulfonamido)benzoate was subjected to cyclization reaction in the presence of sodium hydride to obtain 1-benzyl-1H-benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide which was treated with hydrazine hydrate to get corresponding hydrazone precursor. Finally, the titled compounds were obtained by reaction of hydrazone with various substituted aldehydes and ketones. The synthesized derivatives were subjected to carry out their inhibition activities against monoamine oxidases along with modelling investigations to evaluate their binding interactions and dynamic stability during the docking studies. The inhibition profile of potent compounds was found as competitive for both the isozymes. The compounds were more selective inhibitors of MAO-A as compared to MAO-B. Moreover, drug likeness profile of the derivatives was evaluated to have an additional insight into the physicochemical properties. The molecular dynamic simulations predicted the behaviour of amino acids with the active site residues.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
14 |
19
|
Identification of promising multi-targeting inhibitors of obesity from Vernonia amygdalina through computational analysis. Mol Divers 2023; 27:1-25. [PMID: 35179699 DOI: 10.1007/s11030-022-10397-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
Vernonia amygdalina, a widely consumed West African food herb, can be a boon in the discovery of safe anti-obesity agents given the extensive reports on its anti-obesity and antidiabetic potentials. The main aim of this study was to screen 78 Vernonia-Derived Phytocompounds (VDPs) against the active site regions of Human Pancreatic Lipase (HPL), Human Pancreatic Amylase and Human Glucosidase (HG) as drug targets associated with obesity in silico. Structure-based virtual screening helped to identify Luteolin 7-O-glucuronoside and Andrographidoid D2 as hit compounds with dual targeting tendency towards the HPL and HG. Analysis of the molecular dynamic simulation trajectory files of the ligand-receptor complexes as computed from the thermodynamic parameters plots showed not only increased flexibility and greater interaction potential of the active site residues of the receptor towards the VDPs as indicated by the root mean square fluctuation but also higher stability as indicated by the root mean square deviation, radius of gyration and number of hydrogen bonds. The cluster analysis further showed that the interactions with important residues were preserved in the dynamic environment. These observations were further verified from Molecular Mechanics Generalized Born Surface Area Analysis, which also showed that residual contributions to the binding free energies were mainly from catalytic residues at the active sites of the enzymes. The hit compounds also feature desirable physicochemical properties and drug-likeness. This study provides in silico evidence for the inhibitory potential of phytochemicals from Vernonia amygdalina against two target enzymes in obesity.
Collapse
|
|
2 |
12 |
20
|
Design, synthesis, spectroscopic characterization, in vitro tyrosinase inhibition, antioxidant evaluation, in silico and kinetic studies of substituted indole-carbohydrazides. Bioorg Chem 2022; 129:106140. [PMID: 36150231 DOI: 10.1016/j.bioorg.2022.106140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
In the current study, twenty-five indole-carbohydrazide derivatives linked to different aryl substitutions were rationally designed and synthesized. The structures of all derivatives were confirmed using different spectroscopic techniques including 1H NMR, 13C NMR, Mass spectrometry, and elemental analysis. The tyrosinase inhibitory activities of all synthetic compounds exhibited IC50 values in the range of 0.070 to > 100 μM. Structure-activity relationships showed that compounds 4f (R = 4-OH, IC50 = 0.070 μM), 8f (R = 4-OH, IC50 = 0.072 μM), and 19e (IC50 = 0.19 μM) with para-OH substituent at the R position was found to be the most active members of all three tested series. Kinetic studies exhibited that compounds 4f, 8f, and 19e are mixed-type inhibitors. Furthermore, toxicity and cell-based anti-melanogenesis assessments were performed on the most potent derivatives and it was shown that 4f, 8f, and 19e had no toxicity at 8 µM and reduced the percent of melanin content to 68.43, 72.61, 73.47 at 8 μM, respectively. In silico analyses of absorption, distribution, metabolism, and excretion (ADME) profile of synthesized compounds showed that these molecules followed drug-likeness rules and acceptable predictive ADMET features. Results of the docking study were almost in line with biological results with ChemPLP values of 53.56 to 79.33. Also, the docking study showed the critical interactions of potent inhibitors with the active site of the enzyme which affects the potency of the synthesized hybrids. Based on molecular dynamic simulations, compound 4f exhibited pronounced interaction with the critical residues of the tyrosinase active site so that the indole ring participated in H-bond interaction with Gly281 and 4-hydroxy benzylidene recorded another H-bond interaction with Asp289 plus hydrophobic interactions with Phe292. Hydrazide linker also exhibited three H-bond interactions with His263 and Gly281.
Collapse
|
|
3 |
11 |
21
|
Glucose derivatives substitution and cyclic peptide diameter effects on the stability of the self-assembled cyclic peptide nanotubes; a joint QM/MD study. J Mol Graph Model 2016; 71:28-39. [PMID: 27837688 DOI: 10.1016/j.jmgm.2016.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/30/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023]
Abstract
Dynamical behavior and the stability of eighteen nanostructures composed of cyclic peptide (CP) with the general structure of the cyclo(CO(CH2)n=4, 6, 10COCyst), in the gas phase, water and chloroform were investigated during 50ns molecular dynamic (MD) simulations. CP dimers and cyclic peptide nanotubes (CPNTs) are more stable in chloroform than water and this stability is reversely correlated with the ring size of the CP units. Also the effect of glucose derivatives substitution, d-glucose (S1) and N-methyl-d-glucamine (S2), on the stability and other physicochemical properties of the CP dimers and CPNTs were evaluated. These substitutions increase the inner-subunits hydrogen bonds (H-bond) which in turn increase the stability of these structures. Moreover, the S2 substitution in comparison to the S1 makes dimers and CPNTs more stable. Gibbs free energy analysis based on the MM-PBSA and MM-GBSA calculations confirmed that substitutions affect the stability of the studied nanostructures, considerably and an increase in the length of the CPNT units reduces their stability. Quantum chemistry calculations on the dimer structures using the density functional theory (DFT) and DFT-D3 methods were performed. Based on the DFT-D3 calculations, it was revealed that the dispersion interactions play a key role in the dimerization process. The ring size increment, elevates the dispersion interaction energy which is accordance with the MD results. H-bond formation between the CO and NH groups of the CP units inside the dimers have been analyzed by using the quantum theory of atoms in molecules and natural bond orbital description. Finally, through these analyses, the electrostatic interaction between the mentioned groups have been evaluated.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
11 |
22
|
Abbasi M, Sadeghi-Aliabadi H, Hassanzadeh F, Amanlou M. Prediction of dual agents as an activator of mutant p53 and inhibitor of Hsp90 by docking, molecular dynamic simulation and virtual screening. J Mol Graph Model 2015; 61:186-95. [PMID: 26277488 DOI: 10.1016/j.jmgm.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 11/30/2022]
Abstract
Heat shock protein90s (Hsp90s) play a crucial role in the development of cancer, and their inhibitors are a main target for tumor suppression. P53 also is a tumor suppressor, but in cancer cells, mutations in the p53 gene lead to the inactivation and accumulation of protein. For instance, the ninth p53 cancer mutation, Y220C, destabilizes the p53 core domain. Small molecules have been assumed to bind to Y220C DNA-binding domain and reactivate cellular mutant p53 functions. In this study, one of the mutant p53 activators is suggested as an Hsp90 inhibitor according to a pyrazole scaffold. To confirm a new ligand as a dual agent, molecular docking and molecular dynamic simulations were performed on both proteins (p53 and Hsp90). Molecular dynamic simulations were also conducted to evaluate the obtained results on the other two pyrazole structures, one known as Hsp90 inhibitor and the other as the reported mutant p53 activator. The findings indicate that the new ligand was stable in the active site of both proteins. Finally, a virtual screening was performed on ZINC database, and a set of new dual agents was proposed according to the new ligand scaffold.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
11 |
23
|
Kumar N, Singh A, Gulati HK, Bhagat K, Kaur K, Kaur J, Dudhal S, Duggal A, Gulati P, Singh H, Singh JV, Bedi PMS. Phytoconstituents from ten natural herbs as potent inhibitors of main protease enzyme of SARS-COV-2: In silico study. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021. [PMID: 35403086 DOI: 10.1016/j.phyplu.2021.100139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lack of treatment of novel Coronavirus disease led to the search of specific antivirals that are capable to inhibit the replication of the virus. The plant kingdom has demonstrated to be an important source of new molecules with antiviral potential. PURPOSE The present study aims to utilize various computational tools to identify the most eligible drug candidate that have capabilities to halt the replication of SARS-COV-2 virus by inhibiting Main protease (Mpro) enzyme. METHODS We have selected plants whose extracts have inhibitory potential against previously discovered coronaviruses. Their phytoconstituents were surveyed and a library of 100 molecules was prepared. Then, computational tools such as molecular docking, ADMET and molecular dynamic simulations were utilized to screen the compounds and evaluate them against Mpro enzyme. RESULTS All the phytoconstituents showed good binding affinities towards Mpro enzyme. Among them laurolitsine possesses the highest binding affinity i.e. -294.1533 kcal/mol. On ADMET analysis of best three ligands were simulated for 1.2 ns, then the stable ligand among them was further simulated for 20 ns. Results revealed that no conformational changes were observed in the laurolitsine w.r.t. protein residues and low RMSD value suggested that the Laurolitsine-protein complex was stable for 20 ns. CONCLUSION Laurolitsine, an active constituent of roots of Lindera aggregata, was found to be having good ADMET profile and have capabilities to halt the activity of the enzyme. Therefore, this makes laurolitsine a good drug candidate for the treatment of COVID-19.
Collapse
Key Words
- ACE-2, Angiotensin converting enzyme- 2
- ADMET
- ADMET, absorption, Distribution, metabolism, excretion and toxicity
- Ala, Alanine
- Approx., approximately
- Arg, arginine
- Asn, Asparagine
- Asp, Aspartic acid
- CADD, Computer Aided Drug Design
- CHARMM, Chemistry at Harvard Macromolecular Mechanics
- COV, coronavirus
- COVID, Novel corona-virus disease
- Covid-19
- Cys, cysteine
- DSBDS, Dassault's Systems Biovia's Discovery studio
- Gln, Glutamine
- Glu, glutamate
- Gly, Glycine
- His, histidine
- Ile, isoleucine
- K, Kelvin
- Kcal/mol, kilo calories per mol
- Leu, Leucine
- Leu, leucine
- Lys, Lysine
- MD, Molecular Dynamics
- Met, Methionine
- MoISA, Molecular Surface Area
- Molecular dynamic simulations
- Mpro protein
- Mpro, Main protease enzyme
- N protein, nucleocapsid protein
- NI, N-(4-methylpyridin-3-yl) acetamide inhibitor
- NPT, amount of substance (N), pressure (P) and temperature (T)
- NVT, amount of substance (N), volume (V) and temperature (T)
- Natural Antiviral herbs
- PDB, protein data bank
- PPB, plasma protein binding
- PSA, Polar Surface Area
- Phi, Phenylalanine
- Pro, Proline
- RCSB, Research Collaboratory for Structural Bioinformatics
- RMS, Root Mean Square
- RMSD, Root Mean Square Deviation
- RMSF, root mean square fluctuations
- RNA, Ribonucleic acid
- SAR-COV-2, severe acute respiratory syndrome coronavirus 2
- SDF, structure data format
- Ser, serine
- T, Temperature
- Thr, Threonine
- Trp, Tryptophan
- Tyr, Tyrosine
- Val, Valine
- kDa, kilo Dalton
- nCOV-19, Novel Coronavirus 2019
- ns/nsec, nano seconds
- ps, pentoseconds
- rGyr, Radius of gyration
- w.r.t., with respect to
- Å, angstrom
- α, alpha
- β, beta
Collapse
|
|
4 |
11 |
24
|
Claro B, González-Freire E, Calvelo M, Bessa LJ, Goormaghtigh E, Amorín M, Granja JR, Garcia-Fandiño R, Bastos M. Membrane targeting antimicrobial cyclic peptide nanotubes - an experimental and computational study. Colloids Surf B Biointerfaces 2020; 196:111349. [PMID: 32992285 DOI: 10.1016/j.colsurfb.2020.111349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
The search of new antibiotics, particularly with new mechanisms of action, is nowadays a very important public health issue, due to the worldwide increase of resistant pathogens. Within this effort, much research has been done on antimicrobial peptides, because having the membrane as a target, they represent a new antibiotic paradigm. Among these, cyclic peptides (CPs) made of sequences of D- and L-amino acids have emerged as a new class of potential antimicrobial peptides, due to their expected higher resistance to protease degradation. These CPs are planar structures that can form Self-assembled Cyclic Peptide Nanotubes (SCPNs), in particular in the presence of lipid membranes. Aiming at understanding their mechanism of action, we used biophysical experimental techniques (DSC and ATR-FTIR) together with Coarse-grained molecular dynamics (CG-MD) simulations, to characterize the interaction of these CPs with model membranes of different electrostatic charges' contents. DSC results revealed that the CPs show a strong interaction with negatively charged membranes, with differences in the strength of interactions depending on peptide and on membrane charge content, at odds with no or mild interactions with zwitterionic membranes. ATR-FTIR suggested that the peptides self-assemble at the membrane surface, adopting mainly a β-structure. The experiments with polarized light showed that in most cases they lie parallel to the membrane surface, but other forms and orientations are also apparent, depending on peptide structure and lipid:peptide ratio. The nanotube formation and orientation, as well as the dependence on membrane charge were also confirmed by the CG-MD simulations. These provide detail on the position and interactions, in agreement with the experimental results. Based on the findings reported here, we could proceed to the design and synthesis of a second-generation CPs, based on CP2 (soluble peptide), with increased activity and reduced toxicity.
Collapse
|
Journal Article |
5 |
11 |
25
|
Molecular dynamics simulations reveal the destabilization mechanism of Alzheimer's disease-related tau R3-R4 Protofilament by norepinephrine. Biophys Chem 2021; 271:106541. [PMID: 33515860 DOI: 10.1016/j.bpc.2021.106541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Aggregation of Tau protein into neurofibrillary tangles is associated with the pathogenesis of Alzheimer's disease (AD) which has no cure yet. Clearing neurofibrillary tangles is one of major therapeutic strategies. Experimental studies reported that norepinephrine (NE) has the ability to disrupt Tau filament and cause Tau degradation. However, the underlying mechanism remains elusive. Herein, we performed molecular dynamic simulations to investigate the influence of NE on the C-shaped Tau R3-R4 protofilament. Our simulations show that NE compound destabilizes Tau protofilament by mostly disrupting β6/β8 and altering the β2-β3 and β6-β7 angles. NE binds mainly with aromatic residues Y310/P312/H374/F378 through ππ stacking and charged residues E338/E342/D348/D358/E372 via hydrogen-bonding interactions. Our results, together with the findings that exercise can markedly increase NE level, suggest that exercise might be a potent therapy against AD. This study reveals the disruptive mechanism of Tau protofilament by NE molecules, which may provide new clues for AD drug candidate design.
Collapse
|
Journal Article |
4 |
10 |