1
|
Nath K, Guo L, Nancolas B, Nelson DS, Shestov AA, Lee SC, Roman J, Zhou R, Leeper DB, Halestrap AP, Blair IA, Glickson JD. Mechanism of antineoplastic activity of lonidamine. Biochim Biophys Acta Rev Cancer 2016; 1866:151-162. [PMID: 27497601 DOI: 10.1016/j.bbcan.2016.08.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/19/2022]
Abstract
Lonidamine (LND) was initially introduced as an antispermatogenic agent. It was later found to have anticancer activity sensitizing tumors to chemo-, radio-, and photodynamic-therapy and hyperthermia. Although the mechanism of action remained unclear, LND treatment has been known to target metabolic pathways in cancer cells. It has been reported to alter the bioenergetics of tumor cells by inhibiting glycolysis and mitochondrial respiration, while indirect evidence suggested that it also inhibited l-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). Recent studies have demonstrated that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki 2.5μM) and cooperatively inhibits l-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevis oocytes with K0.5 and Hill coefficient values of 36-40μM and 1.65-1.85, respectively. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50~7μM) than other substrates including glutamate (IC50~20μM). LND inhibits the succinate-ubiquinone reductase activity of respiratory Complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through Complex II and has been reported to promote cell death by suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated l-lactic acid efflux, Complex II and glutamine/glutamate oxidation.
Collapse
|
Review |
9 |
100 |
2
|
Morrison BM, Tsingalia A, Vidensky S, Lee Y, Jin L, Farah MH, Lengacher S, Magistretti PJ, Pellerin L, Rothstein JD. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush. Exp Neurol 2014; 263:325-38. [PMID: 25447940 DOI: 10.1016/j.expneurol.2014.10.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 12/20/2022]
Abstract
Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
66 |
3
|
The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. J Bioenerg Biomembr 2016; 48:349-62. [PMID: 27457582 DOI: 10.1007/s10863-016-9670-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
At the beginning of the twenty-first century, 3-bromopyruvate (3BP), a simple alkylating chemical compound was presented to the scientific community as a potent anticancer agent, able to cause rapid toxicity to cancer cells without bystander effects on normal tissues. The altered metabolism of cancers, an essential hallmark for their progression, also became their Achilles heel by facilitating 3BP's selective entry and specific targeting. Treatment with 3BP has been administered in several cancer type models both in vitro and in vivo, either alone or in combination with other anticancer therapeutic approaches. These studies clearly demonstrate 3BP's broad action against multiple cancer types. Clinical trials using 3BP are needed to further support its anticancer efficacy against multiple cancer types thus making it available to more than 30 million patients living with cancer worldwide. This review discusses current knowledge about 3BP related to cancer and discusses also the possibility of its use in future clinical applications as it relates to safety and treatment issues.
Collapse
|
Review |
9 |
52 |
4
|
Draoui N, Schicke O, Fernandes A, Drozak X, Nahra F, Dumont A, Douxfils J, Hermans E, Dogné JM, Corbau R, Marchand A, Chaltin P, Sonveaux P, Feron O, Riant O. Synthesis and pharmacological evaluation of carboxycoumarins as a new antitumor treatment targeting lactate transport in cancer cells. Bioorg Med Chem 2013; 21:7107-17. [PMID: 24095010 DOI: 10.1016/j.bmc.2013.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/30/2013] [Accepted: 09/04/2013] [Indexed: 12/01/2022]
Abstract
Under hypoxia, cancer cells consume glucose and release lactate at a high rate. Lactate was recently documented to be recaptured by oxygenated cancer cells to fuel the TCA cycle and thereby to support tumor growth. Monocarboxylate transporters (MCT) are the main lactate carriers and therefore represent potential therapeutic targets to limit cancer progression. In this study, we have developed and implemented a stepwise in vitro screening procedure on human cancer cells to identify new potent MCT inhibitors. Various 7-substituted carboxycoumarins and quinolinone derivatives were synthesized and pharmacologically evaluated. Most active compounds were obtained using a palladium-catalyzed Buchwald-Hartwig type coupling reaction, which proved to be a quick and efficient method to obtain aminocarboxycoumarin derivatives. Inhibition of lactate flux revealed that the most active compound 19 (IC50 11 nM) was three log orders more active than the CHC reference compound. Comparison with warfarin, a conventional anticoagulant coumarin, further showed that compound 19 did not influence the prothrombin time which, together with a good in vitro ADME profile, supports the potential of this new family of compounds to act as anticancer drugs through inhibition of lactate flux.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
49 |
5
|
Muzzio AM, Noyes PD, Stapleton HM, Lema SC. Tissue distribution and thyroid hormone effects on mRNA abundance for membrane transporters Mct8, Mct10, and organic anion-transporting polypeptides (Oatps) in a teleost fish. Comp Biochem Physiol A Mol Integr Physiol 2013; 167:77-89. [PMID: 24113777 DOI: 10.1016/j.cbpa.2013.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022]
Abstract
Many of the actions of thyroid hormones (THs) occur via TH binding to intracellular receptors. Although it was long thought that THs diffused passively across plasma membranes, it is now recognized that cellular entry is mediated by a variety of membrane transporter proteins. In this study, we identified cDNAs encoding the TH transporters monocarboxylate transferases 8 (mct8) and 10 (mct10) as well as eight distinct organic anion-transporting polypeptide (oatp) proteins from fathead minnow (Pimephales promelas). Analysis of the tissue distribution of transporter mRNAs revealed that mct8 and mct10 transcripts were both abundant in liver, but also present at lower levels in brain, gonad and other tissues. Transcripts encoding oatp1c1 were highly abundant in brain, liver and gonad, and exhibited significant sex differences in the liver and gonad. Treatment of adult male minnows with 3,5,3'-triiodothyronine (T3) or the goitrogen methimazole altered gene transcript abundance for several transporters. Fish given exogenous T3 had reduced mct8 and oapt1c1 mRNA levels in the liver compared to methimazole-treated fish. In the brain, transcripts for mct8, mct10, oatp2b1, and oatp3a1 were each reduced in abundance in fish with elevated T3. As a whole, these results provide evidence that TH status influences the transcriptional dynamics of mct8, mct10 and several Oatp genes including oatp1c1 in teleost fish.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
37 |
6
|
Futagi Y, Kobayashi M, Narumi K, Furugen A, Iseki K. Identification of a selective inhibitor of human monocarboxylate transporter 4. Biochem Biophys Res Commun 2017; 495:427-432. [PMID: 28993194 DOI: 10.1016/j.bbrc.2017.10.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022]
Abstract
The human monocarboxylate transporters (hMCTs/SLC16As) mediate the uptake of various monocarboxylates. Several isoforms of hMCTs are expressed in cancerous tissue as well as in normal tissue. In cancerous tissue, hypoxia induces the expression of hMCT4, which transports the energetic metabolite l-lactate across the plasma membrane. Since hMCT4 is involved in pH regulation and the transport of l-lactate in cancer cells, an hMCT4 inhibitor could function as an anticancer agent. Although several non specific hMCT inhibitors have been developed, a selective hMCT4 inhibitor has not yet been identified. The aim of this study was therefore to identify a selective hMCT4 inhibitor for use as a pharmacological tool for studying hMCT4. The heterologous expression system of the Xenopus oocyte was used to assess the effects of test compounds on hMCT4, whereupon isobutyrate derivatives, fibrates, and bindarit (2-[(1-benzyl-1H-indazol-3-yl)methoxy]-2-methylpropanoic acid) were demonstrated to exhibit selective inhibitory effects against this transporter. It is suggested that the structure formed from the joining of an isobutyrate moiety and two aromatic rings by appropriate linkers is important for acquiring the selective hMCT4-inhibiting activity. These findings provide novel insights into the ligand recognition of hMCT4, and contribute to the development of novel anticancer agents.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
33 |
7
|
Yang S, Wu H, He K, Yan T, Zhou J, Zhao LL, Sun JL, Lian WQ, Zhang DM, Du ZJ, Luo W, He Z, Ye X, Li SJ. Response of AMP-activated protein kinase and lactate metabolism of largemouth bass (Micropterus salmoides) under acute hypoxic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1071-1079. [PMID: 30970473 DOI: 10.1016/j.scitotenv.2019.02.236] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 05/12/2023]
Abstract
To study adaptation of largemouth bass (Micropterus salmoides) to hypoxic stress, we investigated physiological responses and lactate metabolism of the fish under acute hypoxia. The objectives of this study were to (a) observe changes in glucose, glycogen, and lactate content; (b) detect the activity of lactate dehydrogenase (LDH) in serum, brain, heart, and liver tissues; and (c) quantify the dynamic gene expression of AMP activated protein kinase alpha (AMPKα), hypoxia-inducible factor-1 alpha (HIF-1α), monocarboxylate transporter 1 (MCT1), monocarboxylate transporter 4 (MCT4), and lactate dehydrogenase-a (LDHa) following exposure to hypoxia. The fish were subjected to two hypoxia stresses (dissolved oxygen [DO] 1.20 ± 0.2 mg/L and 3.50 ± 0.3 mg/L, respectively) for 24 h. Our results showed that hypoxic stress significantly increased the decomposition of liver glycogen and significantly increased the concentration of blood glucose; however, the muscle glycogen content was not significantly decreased, which indicates that liver glycogen was the main energy source under acute hypoxia. Moreover, hypoxia led to accumulation of a large amount of lactic acid in tissues, possibly due to the activity of lactic acid dehydrogenase, but this process was delayed in the heart and brain relative to the liver. Additionally, hypoxia induced the expression of AMPKα, HIF-1α, MCT1, MCT4, and LDHa, suggesting that glycometabolism had switched from aerobic to anaerobic. Our results contribute to a better understanding of the molecular mechanisms of the response to hypoxia in largemouth bass.
Collapse
|
|
6 |
33 |
8
|
Takada T, Takata K, Ashihara E. Inhibition of monocarboxylate transporter 1 suppresses the proliferation of glioblastoma stem cells. J Physiol Sci 2016; 66:387-96. [PMID: 26902636 PMCID: PMC10717967 DOI: 10.1007/s12576-016-0435-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/26/2016] [Indexed: 02/01/2023]
Abstract
Recent evidence suggests that a minor subset of cancer cells, termed cancer stem cells (CSCs), have self-renewal and tumorigenic potential. Therefore, the characterization of CSCs is important for developing therapeutic strategies against cancer. Cancer cells rely on anaerobic glycolysis to produce ATP even under normoxic conditions, resulting in the generation of excess acidic substances. Cancer cells maintain a weakly alkaline intracellular pH to support functions. Glioblastoma is an aggressive malignancy with a poor 5-year survival rate. Based on the hypothesis that ion transport-related molecules regulate the viability and function of CSCs, we investigated the expression of ion transport-related molecules in glioblastoma CSCs (GSCs). Quantitative RT-PCR analysis showed that monocarboxylate transporter1 (MCT1) were upregulated in GSCs, and inhibition of MCT1 decreased the viability of GSCs compared with that of non-GSCs. Our findings indicate that MCT1 is involved in the maintenance of GSCs and is a promising therapeutic target for glioblastoma.
Collapse
|
research-article |
9 |
33 |
9
|
Vohra R, Kolko M. Lactate: More Than Merely a Metabolic Waste Product in the Inner Retina. Mol Neurobiol 2020; 57:2021-2037. [PMID: 31916030 DOI: 10.1007/s12035-019-01863-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
The retina is an extension of the central nervous system and has been considered to be a simplified, more tractable and accessible version of the brain for a variety of neuroscience investigations. The optic nerve displays changes in response to underlying neurodegenerative diseases, such as stroke, multiple sclerosis, and Alzheimer's disease, as well as inner retinal neurodegenerative disease, e.g., glaucoma. Neurodegeneration has increasingly been linked to dysfunctional energy metabolism or conditions in which the energy supply does not meet the demand. Likewise, increasing lactate levels have been correlated with conditions consisting of unbalanced energy supply and demand, such as ischemia-associated diseases or excessive exercise. Lactate has thus been acknowledged as a metabolic waste product in organs with high energy metabolism. However, in the past decade, numerous beneficial roles of lactate have been revealed in the central nervous system. In this context, lactate has been identified as a valuable energy substrate, protecting against glutamate excitotoxicity and ischemia, as well as having signaling properties which regulate cellular functions. The present review aims to summarize and discuss protective roles of lactate in various model systems (in vitro, ex vivo, and in vivo) reflecting the inner retina focusing on lactate metabolism and signaling in inner retinal homeostasis and disease.
Collapse
|
Review |
5 |
29 |
10
|
Guo C, Huang T, Wang QH, Li H, Khanal A, Kang EH, Zhang W, Niu HT, Dong Z, Cao YW. Monocarboxylate transporter 1 and monocarboxylate transporter 4 in cancer-endothelial co-culturing microenvironments promote proliferation, migration, and invasion of renal cancer cells. Cancer Cell Int 2019; 19:170. [PMID: 31297034 PMCID: PMC6599352 DOI: 10.1186/s12935-019-0889-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background The Warburg effect demonstrates the importance of glycolysis in the development of primary and metastatic cancers. We aimed to explore the role of monocarboxylate transporter 1 (MCT1) and MCT4, two essential transporters of lactate, in renal cancer progression during cancer-endothelial cell co-culturing. Methods Renal cancer cells (786-O) and human vascular endothelial cells (HUVECs) were single-cultured or co-cultured in transwell membranes in the presence or absence of a MCT-1/MCT-4 specific blocker, 7ACC1. Cell proliferation was evaluated with the CCK-8 kit, while cell migration, after a scratch and invasion in transwell chambers, was evaluated under a microscope. Real-time qPCR and western blot were employed to determine the mRNA and protein levels of MCT1 and MCT4, respectively. The concentration of lactic acid in the culture medium was quantified with an l-Lactic Acid Assay Kit. Results 786-O cells and HUVECs in the co-culturing mode exhibited significantly enhanced proliferation and migration ability, compared with the cells in the single-culturing mode. The expression of MCT1 and MCT4 was increased in both 786-O cells and HUVECs in the co-culturing mode. Co-culturing promoted the invasive ability of 786-O cells, and markedly increased extracellular lactate. Treatments with 7ACC1 attenuated cell proliferation, migration, and invasion, and down-regulated the levels of MCT1/MCT4 expression and extracellular lactate. Conclusions The Warburg effect accompanied with high MCT1/MCT4 expression in the cancer-endothelial microenvironments contributed significantly to renal cancer progression, which sheds new light on targeting MCT1/MCT4 and glycolytic metabolism in order to effectively treat patients with renal cancers.
Collapse
|
Journal Article |
6 |
26 |
11
|
Harun-Or-Rashid M, Pappenhagen N, Zubricky R, Coughlin L, Jassim AH, Inman DM. MCT2 overexpression rescues metabolic vulnerability and protects retinal ganglion cells in two models of glaucoma. Neurobiol Dis 2020; 141:104944. [PMID: 32422282 DOI: 10.1016/j.nbd.2020.104944] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Improving cellular access to energy substrates is one strategy to overcome observed declines in energy production and utilization in the aged and pathologic central nervous system. Monocarboxylate transporters (MCTs), the movers of lactate, pyruvate, and ketone bodies into or out of a cell, are significantly decreased in the DBA/2 J mouse model of glaucoma. In order to confirm MCT decreases are disease-associated, we decreased MCT2 in the retinas of MCT2fl/+ mice using an injection of AAV2-cre, observing significant decline in ATP production and visual evoked potential. Restoring MCT2 levels in retinal ganglion cells (RGCs) via intraocular injection of AAV2-GFP-MCT2 in two models of glaucoma, the DBA/2 J (D2), and a magnetic bead model of ocular hypertension (OHT), preserved RGCs and their function. Viral-mediated overexpression of MCT2 increased RGC density and axon number, reduced energy imbalance, and increased mitochondrial function as measured by cytochrome c oxidase and succinate dehydrogenase activity in both models of glaucoma. Ocular hypertensive mice injected with AAV2:MCT2 had significantly greater P1 amplitude as measured by pattern electroretinogram than mice with OHT alone. These findings indicate overexpression of MCT2 improves energy homeostasis in the glaucomatous visual system, suggesting that expanding energy input options for cells is a viable option to combat neurodegeneration.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
25 |
12
|
Hasan Mahmood ASM, Mandal SK, Bheemanapally K, Ibrahim MMH, Briski KP. Norepinephrine control of ventromedial hypothalamic nucleus glucoregulatory neurotransmitter expression in the female rat: Role of monocarboxylate transporter function. Mol Cell Neurosci 2019; 95:51-58. [PMID: 30660767 PMCID: PMC6472905 DOI: 10.1016/j.mcn.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
The ventromedial hypothalamic nucleus (VMN) is a critical component of the neural circuitry that regulates glucostasis. Astrocyte glycogen is a vital reserve of glucose and its oxidizable metabolite L-lactate. In hypoglycemic female rats, estradiol-dependent augmentation of VMN glycogen phosphorylase (GP) protein requires hindbrain catecholamine input. Research here investigated the premise that norepinephrine (NE) regulation of VMN astrocyte metabolism shapes local glucoregulatory neurotransmitter signaling in this sex. Estradiol-implanted ovariectomized rats were pretreated by intra-VMN administration of the monocarboxylate transporter inhibitor alpha-cyano-4-hydroxy-cinnamic acid (4CIN) or vehicle before NE delivery to that site. NE caused 4CIN-reversible reduction or augmentation of VMN glycogen synthase and phosphorylase expression. 4CIN prevented NE stimulation of gluco-inhibitory (glutamate decarboxylase65/67) and suppression of gluco-stimulatory (neuronal nitric oxide synthase) neuron marker proteins. These outcomes imply that effects of noradrenergic stimulation of VMN astrocyte glycogen depletion on glucoregulatory transmitter signaling may be mediated, in part, by glycogen-derived substrate fuel provision. NE control of astrocyte glycogen metabolism may involve down-regulated adrenoreceptor (AR), e.g. alpha1 and alpha2, alongside amplified beta1 AR and estrogen receptor-beta signaling. Noradrenergic hypoglycemia was refractory to 4CIN, implying that additional NE-sensitive VMN glucoregulatory neurochemicals may be insensitive to monocarboxylate uptake. Augmentation of circulating free fatty acids by combinatory NE and 4CIN, but not NE alone implies that acute hypoglycemia induced here is an insufficient stimulus for mobilization of these fuels, but is adequate when paired with diminished brain monocarboxylate fuel availability.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
21 |
13
|
Srivastava S, Nakagawa K, He X, Kimura T, Fukutomi T, Miyauchi S, Sakurai H, Anzai N. Identification of the multivalent PDZ protein PDZK1 as a binding partner of sodium-coupled monocarboxylate transporter SMCT1 (SLC5A8) and SMCT2 (SLC5A12). J Physiol Sci 2019; 69:399-408. [PMID: 30604288 PMCID: PMC10717704 DOI: 10.1007/s12576-018-00658-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022]
Abstract
Sodium-coupled monocarboxylate transporters SMCT1 (SLC5A8) and SMCT2 (SLC5A12) mediate the high- and low-affinity transport of lactate in the kidney, but their regulatory mechanism is still unknown. Since these two transporters have the PDZ-motif at their C-terminus, the function of SMCTs may be modulated by a protein-protein interaction. To investigate the binding partner(s) of SMCTs in the kidney, we performed yeast two-hybrid (Y2H) screenings of a human kidney cDNA library with the C-terminus of SMCT1 (SMCT1-CT) and SMCT2 (SMCT2-CT) as bait. PDZK1 was identified as a partner for SMCTs. PDZK1 coexpression in SMCT1-expressing HEK293 cells enhanced their nicotinate transport activity. PDZK1, SMCT1, and URAT1 in vitro assembled into a single tri-molecular complex and their colocalization was confirmed in the renal proximal tubule in vivo by immunohistochemistry. These results indicate that the SMCT1-PDZK1 interaction thus plays an important role in both lactate handling as well as urate reabsorption in the human kidney.
Collapse
|
research-article |
6 |
20 |
14
|
Shima T, Jesmin S, Matsui T, Soya M, Soya H. Differential effects of type 2 diabetes on brain glycometabolism in rats: focus on glycogen and monocarboxylate transporter 2. J Physiol Sci 2018; 68:69-75. [PMID: 27987117 PMCID: PMC10717161 DOI: 10.1007/s12576-016-0508-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022]
Abstract
Astrocyte-neuron lactate shuttle (ANLS) is a pathway that supplies glycogen-derived lactate to active neurons via monocarboxylate transporter 2 (MCT2), and is important for maintaining brain functions. Our study revealed alterations of ANLS with hippocampal hyper-glycogen levels and downregulated MCT2 protein levels underlying hippocampal dysfunctions as a complication in type 2 diabetic (T2DM) animals. Since T2DM rats exhibit brain dysfunctions involving several brain regions, we examined whether there might also be T2DM effects on ANLS's disturbances in other brain loci. OLETF rats exhibited significantly higher glycogen levels in the hippocampus, hypothalamus, and cerebral cortex than did LETO rats. MCT2 protein levels in OLETF rats decreased significantly in the hippocampus and hypothalamus compared to their controls, but a significant correlation with glycogen levels was only observed in the hippocampus. This suggests that the hippocampus may be more vulnerable to T2DM compared to other brain regions in the context of ANLS disruption.
Collapse
|
research-article |
7 |
19 |
15
|
Kobayashi M, Narumi K, Furugen A, Iseki K. Transport function, regulation, and biology of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4). Pharmacol Ther 2021; 226:107862. [PMID: 33894276 DOI: 10.1016/j.pharmthera.2021.107862] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4) are involved in the proton-dependent transport of monocarboxylates such as L-lactate, which play an essential role in cellular metabolism and pH regulation. hMCT1 and 4 are overexpressed in a number of cancers, and polymorphisms in hMCT1 have been reported to be associated with the prognosis of some cancers. Accordingly, recent advances have focused on the inhibition of these transporters as a novel therapeutic strategy in cancers. To screen for MCT inhibitors for clinical application, it is important to study MCT function and regulation, and the effect of compounds on them, using human-derived cells. In this review, we focus on the transport function, regulation, and biology of hMCT1 and hMCT4, and the effects of genetic variation in these transporters in humans.
Collapse
|
Review |
4 |
18 |
16
|
Andersen S, Solstad Ø, Moi L, Donnem T, Eilertsen M, Nordby Y, Ness N, Richardsen E, Busund LT, Bremnes RM. Organized metabolic crime in prostate cancer: The coexpression of MCT1 in tumor and MCT4 in stroma is an independent prognosticator for biochemical failure. Urol Oncol 2015; 33:338.e9-17. [PMID: 26066969 DOI: 10.1016/j.urolonc.2015.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lactate import or export over cell membranes is facilitated by monocarboxylate transporters (MCTs) 1 and 4. Expression profiles can be markers of an oxidative or glycolytic phenotype. Descriptive studies and functional studies in neoplastic cells and fibroblasts in prostate cancer (PC) have suggested a distinct phenotype. We aimed to explore expression of MCT1 and MCT4 in PC cells and surrounding stroma in a large cohort. Additionally, we wanted to find out if distinct expression profiles were associated with biochemical failure-free survival (BFFS). METHODS Tissue microarrays were constructed from 535 patients with radical prostatectomies between January 1, 1995, and December 31, 2005. Immunohistochemistry was used to detect expression, and degrees of expression were evaluated semiquantitatively by 2 pathologists using light microscopy. RESULTS For MCT1, there was only epithelial expression, whereas there was a low level of expression of MCT4 in tumor and stroma. A total of 172 patients had a low expression of MCT1 in tumor and MCT4 in stroma. There were 232 patients who had a high expression of MCT1 and a low expression of MCT4 in stroma. Only 11 patients had a low tumoral MCT1 expression and a high stromal MCT4 expression, and 26 patients (5%) had a high expression of both. Patients with a high-high combination had a significantly reduced BFFS (P = 0.011), and when adjusting for other factors, its effect was significant and independent (HR = 1.99, CI 95%: 1.09-3.62; P = 0.024). CONCLUSIONS This study adds to the current understanding of the reversed Warburg effect to be a significant phenotype in PC. High coexpression of MCT1 in tumor and MCT4 in stroma is independently associated to a worse BFFS, and the strength of this association is as strong as having a Gleason score of ≥9.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
16 |
17
|
Glucose-dependent growth arrest of leukemia cells by MCT1 inhibition: Feeding Warburg's sweet tooth and blocking acid export as an anticancer strategy. Biomed Pharmacother 2017; 98:173-179. [PMID: 29253765 DOI: 10.1016/j.biopha.2017.12.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 11/23/2022] Open
Abstract
This study aims to investigate the utilization of The Warburg Effect, cancer's "sweet tooth" and natural greed for glucose to enhance the effect of monocarboxylate transporter inhibition on cellular acidification. By simulating hyperglycemia with high glucose we may increase the effectiveness of inhibition of lactate and proton export on the dysregulation of cell pH homeostasis causing cell death or disruption of growth in cancer cells. MCT1 and MCT4 expression was determined in MCF7 and K562 cell lines using RT-PCR. Cell viability, growth, intracellular pH and cell cycle analysis was measured in the cell lines grown in 5 mM and 25 mM glucose containing media in the presence and absence of the MCT1 inhibitor AR-C155858 (1 μM) and the NHE1 inhibitor cariporide (10 μM). The MCT1 inhibitor, AR-C155858 had minimal effect on the viability, growth and intracellular pH of MCT4 expressing MCF7 cells. AR-C155858 had no effect on the viability of the MCT1 expressing K562 cells, but decreased intracellular pH and cell proliferation, by a glucose-dependent mechanism. Inhibition of NHE1 on its own had a no effect on cell growth, but together with AR-C155858 showed an additive effect on inhibition of cell growth. In cancer cells that only express MCT1, increased glucose concentrations in the presence of an MCT1 inhibitor decreased intracellular pH and reduced cell growth by G1 phase cell-cycle arrest. Thus we propose a transient hyperglycemic-clamp in combination with proton export inhibitors be evaluated as an adjunct to cancer treatment in clinical studies.
Collapse
|
Journal Article |
8 |
15 |
18
|
Mori S, Kurimoto T, Miki A, Maeda H, Kusuhara S, Nakamura M. Aqp9 Gene Deletion Enhances Retinal Ganglion Cell (RGC) Death and Dysfunction Induced by Optic Nerve Crush: Evidence that Aquaporin 9 Acts as an Astrocyte-to-Neuron Lactate Shuttle in Concert with Monocarboxylate Transporters To Support RGC Function and Survival. Mol Neurobiol 2020; 57:4530-4548. [PMID: 32748371 PMCID: PMC7515957 DOI: 10.1007/s12035-020-02030-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
Aquaporin 9 (AQP9) is an aquaglyceroporin that can transport lactate. Accumulating evidence suggests that astrocyte-to-neuron lactate shuttle (ANLS) plays a critical role in energy metabolism in neurons, including retinal ganglion cells (RGCs). To test the hypothesis that AQP9, in concert with monocarboxylate transporters (MCTs), participates in ANLS to maintain function and survival of RGCs, Aqp9-null mice and wild-type (WT) littermates were subjected to optic nerve crush (ONC) with or without intravitreal injection of an MCT2 inhibitor. RGC density was similar between the Aqp9-null mice and WT mice without ONC, while ONC resulted in significantly more RGC density reduction in the Aqp9-null mice than in the WT mice at day 7. Positive scotopic threshold response (pSTR) amplitude values were similar between the two groups without ONC, but were significantly more reduced in the Aqp9-null mice than in the WT mice 7days after ONC. MCT2 inhibitor injection accelerated RGC death and pSTR amplitude reduction only in the WT mice with ONC. Immunolabeling revealed that both RGCs and astrocytes expressed AQP9, that ONC predominantly reduced astrocytic AQP9 expression, and that MCTs 1, 2, and 4 were co-localized with AQP9 at the ganglion cell layer. These retinal MCTs were also co-immunoprecipitated with AQP9 in the WT mice. ONC decreased the co-immunoprecipitation of MCTs 1 and 4, but did not impact co-immunoprecipitation of MCT2. Retinal glucose transporter 1 expression was increased in Aqp9-null mice. Aqp9 gene deletion reduced and increased the intraretinal L-lactate and D-glucose concentrations, respectively. Results suggest that AQP9 acts as the ANLS to maintain function and survival of RGCs.
Collapse
|
Journal Article |
5 |
15 |
19
|
Cao YW, Liu Y, Dong Z, Guo L, Kang EH, Wang YH, Zhang W, Niu HT. Monocarboxylate transporters MCT1 and MCT4 are independent prognostic biomarkers for the survival of patients with clear cell renal cell carcinoma and those receiving therapy targeting angiogenesis. Urol Oncol 2018; 36:311.e15-311.e25. [PMID: 29657088 DOI: 10.1016/j.urolonc.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/27/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Prognostic biomarkers for patients with clear cell renal cell carcinoma (ccRCC), particularly those receiving therapy targeting angiogenesis, are not well established. In this study, we examined the correlations of monocarboxylate transporter 1 (MCT1) and MCT4, 2 critical transporters for glycolytic metabolism, with various clinicopathological parameters as well as survival of patients with ccRCC and those treated with vascular endothelial growth factor receptor (VEGFR) inhibitors. METHODS A cohort of 150 ccRCC patients were recruited into this study. All patients underwent radical or partial nephrectomy as the first-line treatment, and 38 received targeted therapy (sorafenib or sunitinib) after the surgery. Expression levels of MCT1, MCT4, and CD34 were examined by immunohistochemistry. Correlations between MCT1 or MCT4 expression and different clinicopathological parameters or patient survival were analyzed among all as well as patients receiving targeted therapy. RESULTS MCT1 or MCT4 expression did not significantly correlate with sex, age, tumor diameter, microvascular density, tumor staging, pathological Furmann grade, or MSKCC (P>0.05). High expression of either MCT1 or MCT4 significantly correlated with reduced overall survival (OS) and progression-free survival (PFS) among the total cohort of ccRCC patients. For patients receiving targeted therapy, high expression of either MCT1 or MCT4 significantly correlated with reduced PFS, but not OS. Both conditions were independent prognostic biomarkers for reduced PFS among all patients or those receiving targeted therapy. CONCLUSION MCT1 and MCT4 are prognostic biomarkers for patients with ccRCC or those receiving targeted therapy. High expression of these 2 proteins predicts reduced PFS in these patients.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
15 |
20
|
Morris ME, Morse BL, Baciewicz GJ, Tessena MM, Acquisto NM, Hutchinson DJ, Dicenzo R. Monocarboxylate Transporter Inhibition with Osmotic Diuresis Increases γ-Hydroxybutyrate Renal Elimination in Humans: A Proof-of-Concept Study. ACTA ACUST UNITED AC 2011; 1:1000105. [PMID: 24772380 DOI: 10.4172/2161-0495.1000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVE The purpose of the current study was to demonstrate proof-of-concept that monocarboxylate transporter (MCT) inhibition with L-lactate combined with osmotic diuresis increases renal clearance of γ-hydroxybutyrate (GHB) in human subjects. GHB is a substrate for human and rodent MCTs, which are responsible for GHB renal reabsorption, and this therapy increases GHB renal clearance in rats. METHODS Ten healthy volunteers were administered GHB orally as sodium oxybate 50 mg/kg (4.5 gm maximum dose) on two different study days. On study day 1, GHB was administered alone. On study day 2, treatment of L-lactate 0.125 mmol/kg and mannitol 200 mg/kg followed by L-lactate 0.75 mmol/kg/hr was administered intravenously 30 minutes after GHB ingestion. Blood and urine were collected for 6 hours, analyzed for GHB, and pharmacokinetic and statistical analyses performed. RESULTS L-lactate/mannitol administration significantly increased GHB renal clearance compared to GHB alone, 439 vs. 615 mL/hr (P=0.001), and increased the percentage of GHB dose excreted in the urine, 2.2 vs. 3.3% (P=0.021). Total clearance was unchanged. CONCLUSIONS MCT inhibition with L-lactate combined with osmotic diuresis increases GHB renal elimination in humans. No effect on total clearance was observed in this study due to the negligible contribution of renal clearance to total clearance at this low GHB dose. Considering the nonlinear renal elimination of GHB, further research in overdose cases is warranted to assess the efficacy of this treatment strategy for increasing renal and total clearance at high GHB doses.
Collapse
|
Journal Article |
14 |
13 |
21
|
Brinkmann C, Brixius K. Hyperlactatemia in type 2 diabetes: Can physical training help? J Diabetes Complications 2015; 29:965-9. [PMID: 26122286 DOI: 10.1016/j.jdiacomp.2015.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 01/11/2023]
Abstract
Type 2 diabetic patients often exhibit hyperlactatemia in association with a reduced aerobic-oxidative capacity and a restricted lactate transport. Studies suggest a link between increased lactate levels and the manifestation and progression of insulin resistance. However, the specificities of molecular mechanisms remain unclear, and it is not entirely clear whether elevated lactate levels are a cause or consequence of type 2 diabetes. This review focuses on lactate as a key molecule in diabetes and provides an overview of how regular physical activity can be helpful in normalizing elevated lactate levels in type 2 diabetic patients. Physical training may reduce lactate production and reinforce lactate transport and clearance among this particular patient group. We emphasize the crucial role physical training plays in the therapy of type 2 diabetes due to evidence that pharmacological treatment with metformin, which is commonly used in the first-line therapy of type 2 diabetes, does not help reducing lactate levels.
Collapse
|
Review |
10 |
12 |
22
|
Jha MK, Ament XH, Yang F, Liu Y, Polydefkis MJ, Pellerin L, Morrison BM. Reducing monocarboxylate transporter MCT1 worsens experimental diabetic peripheral neuropathy. Exp Neurol 2020; 333:113415. [PMID: 32717355 PMCID: PMC7502508 DOI: 10.1016/j.expneurol.2020.113415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications in diabetic patients. Though the exact mechanism for DPN is unknown, it clearly involves metabolic dysfunction and energy failure in multiple cells within the peripheral nervous system. Lactate is an alternate source of metabolic energy that is increasingly recognized for its role in supporting neurons. The primary transporter for lactate in the nervous system, monocarboxylate transporter-1 (MCT1), has been shown to be critical for peripheral nerve regeneration and metabolic support to neurons/axons. In this study, MCT1 was reduced in both sciatic nerve and dorsal root ganglia in wild-type mice treated with streptozotocin (STZ), a common model of type-1 diabetes. Heterozygous MCT1 null mice that developed hyperglycemia following STZ treatment developed a more severe DPN compared to wild-type mice, as measured by greater axonal demyelination, decreased peripheral nerve function, and increased numbness to innocuous low-threshold mechanical stimulation. Given that MCT1 inhibitors are being developed as both immunosuppressive and chemotherapeutic medications, our results suggest that clinical development in patients with diabetes should proceed with caution. Collectively, our findings uncover an important role for MCT1 in DPN and provide a potential lead toward developing novel treatments for this currently untreatable disease.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
11 |
23
|
Ryou MG, Choudhury GR, Winters A, Xie L, Mallet RT, Yang SH. Pyruvate minimizes rtPA toxicity from in vitro oxygen-glucose deprivation and reoxygenation. Brain Res 2013; 1530:66-75. [PMID: 23891792 DOI: 10.1016/j.brainres.2013.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/24/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022]
Abstract
Clinical application of recombinant tissue plasminogen activator (rtPA) for stroke is limited by hemorrhagic transformation, which narrows rtPA's therapeutic window. In addition, mounting evidence indicates that rtPA is potentially neurotoxic if it traverses a compromised blood brain barrier. Here, we demonstrated that pyruvate protects cultured HT22 neuronal and primary microvascular endothelial cells co-cultured with primary astrocytes from oxygen glucose deprivation (OGD)/reoxygenation stress and rtPA cytotoxicity. After 3 or 6h OGD, cells were reoxygenated with 11mmol/L glucose±pyruvate (8mmol/L) and/or rtPA (10µg/ml). Measured variables included cellular viability (calcein AM and annexin-V/propidium iodide), reactive oxygen species (ROS; mitosox red and 2',7'-dichlorofluorescein diacetate), NADPH, NADP(+) and ATP contents (spectrophotometry), matrix metalloproteinase-2 (MMP2) activities (gelatin zymography), and cellular contents of MMP2, tissue inhibitor of metalloproteinase-2 (TIMP2), and phosphor-activation of anti-apoptotic p70s6 kinase, Akt and Erk (immunoblot). Pyruvate prevented the loss of HT22 cells after 3h OGD±rtPA. After 6h OGD, rtPA sharply lowered cell viability; pyruvate dampened this effect. Three hours OGD and 4h reoxygenation with rtPA increased ROS formation by about 50%. Pyruvate prevented this ROS formation and doubled cellular NADPH/NADP(+) ratio and ATP content. In endothelial cell monolayers, 3h OGD and 24h reoxygenation increased FITC-dextran leakage, indicating disruption of intercellular junctions. Although rtPA exacerbated this effect, pyruvate prevented it while sharply lowering MMP2/TIMP2 ratio and increasing phosphorylation of p70s6 kinase, Akt and Erk. Pyruvate protects neuronal cells and microvascular endothelium from hypoxia-reoxygenation and cytotoxic action of rtPA while reducing ROS and activating anti-apoptotic signaling. These results support the proposed use of pyruvate as an adjuvant to dampen the side effects of rtPA treatment, thereby extending rtPA's therapeutic window.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
11 |
24
|
Chen TC, Yu J, Nouri Nigjeh E, Wang W, Myint PT, Zandi E, Hofman FM, Schönthal AH. A perillyl alcohol-conjugated analog of 3-bromopyruvate without cellular uptake dependency on monocarboxylate transporter 1 and with activity in 3-BP-resistant tumor cells. Cancer Lett 2017; 400:161-174. [PMID: 28450161 DOI: 10.1016/j.canlet.2017.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 04/17/2017] [Indexed: 02/08/2023]
Abstract
The anticancer agent 3-bromopyruvate (3-BP) is viewed as a glycolytic inhibitor that preferentially kills glycolytic cancer cells through energy depletion. However, its cytotoxic activity is dependent on cellular drug import through transmembrane monocarboxylate transporter 1 (MCT-1), which restricts its anticancer potential to MCT-1-positive tumor cells. We created and characterized an MCT-1-independent analog of 3-BP, called NEO218. NEO218 was synthesized by covalently conjugating 3-BP to perillyl alcohol (POH), a natural monoterpene. The responses of various tumor cell lines to treatment with either compound were characterized in the presence or absence of supplemental pyruvate or antioxidants N-acetyl-cysteine (NAC) and glutathione (GSH). Drug effects on glyceraldehyde 3-phosphate dehydrogenase (GAPDH) enzyme activity were investigated by mass spectrometric analysis. The development of 3-BP resistance was investigated in MCT-1-positive HCT116 colon carcinoma cells in vitro. Our results show that NEO218: (i) pyruvylated GAPDH on all 4 of its cysteine residues and shut down enzymatic activity; (ii) severely lowered cellular ATP content below life-sustaining levels, and (iii) triggered rapid necrosis. Intriguingly, supplemental antioxidants effectively prevented cytotoxic activity of NEO218 as well as 3-BP, but supplemental pyruvate powerfully protected cells only from 3-BP, not from NEO218. Unlike 3-BP, NEO218 exerted its potent cytotoxic activity irrespective of cellular MCT-1 status. Treatment of HCT116 cells with 3-BP resulted in prompt development of resistance, based on the emergence of MCT-1-negative cells. This was not the case with NEO218, and highly 3-BP-resistant cells remained exquisitely sensitive to NEO218. Thus, our study identifies a mechanism by which tumor cells develop rapid resistance to 3-BP, and presents NEO218 as a superior agent not subject to this cellular defense. Furthermore, our results offer alternative interpretations of previously published models on the role of supplemental antioxidants: Rather than quenching reactive oxygen species (ROS), supplemental NAC or GSH directly interact with 3-BP, thereby neutralizing the drug's cytotoxic potential before it can trigger ROS production. Altogether, our study introduces new aspects of the cytotoxic mechanism of 3-BP, and characterizes NEO218 as an analog able to overcome a key cellular defense mechanism towards this drug.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
10 |
25
|
Kim TW, Park SS, Kim BK, Sim YJ, Shin MS. Effects of sildenafil citrate on peripheral fatigue and exercise performance after exhaustive swimming exercise in rats. J Exerc Rehabil 2019; 15:751-756. [PMID: 31938694 PMCID: PMC6944887 DOI: 10.12965/jer.1938712.356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Sildenafil citrate is a potent and selective inhibitor of phosphodiesterase type-5 used to treat erectile dysfunction. We investigated the effects of sildenafil citrate treatment on peripheral fatigue and exercise performance after exhaustive swimming exercise in rats. The rats in the sildenafil citrate-treated groups received sildenafil citrate orally once a day for 14 consecutive days at respective dosage. On the 14 days after starting experiment, each animal was submitted to swimming test with intensity equivalent to overload. The exhaustion was defined as a state in which coordinated movements did not return to the water surface for breathing within 10 sec. Western blot for monocarboxylate transporter (MCT)1, MCT4, and neuronal nitric oxide synthase (nNOS) were performed. Exhaustive swimming exercise decreased time of exhaustion and increased lactate concentration, however, sildenafil citrate enhanced time of exhaustion and decreased lactate concentration. Exhaustive swimming exercise increased MCT1 and MCT4 expressions in the gastrocnemius muscles and sildenafil citrate further enhanced MCT1 and MCT4 expressions in the exhaustive swimming exercise rats. Exhaustive swimming exercise decreased nNOS expression in the gastrocnemius muscles and sildenafil citrate enhanced nNOS expression in the exhaustive swimming exercise rats. The most potent effect appeared in the 20-mg/kg sildenafil citrate. Sildenafil citrate might be proposed as a potential ergogenic aid through antiperipheral fatigue.
Collapse
|
Journal Article |
6 |
9 |