1
|
Ramsay RR, Popovic-Nikolic MR, Nikolic K, Uliassi E, Bolognesi ML. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med 2018; 7:3. [PMID: 29340951 PMCID: PMC5770353 DOI: 10.1186/s40169-017-0181-2] [Citation(s) in RCA: 447] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/30/2017] [Indexed: 12/11/2022] Open
Abstract
Diseases of infection, of neurodegeneration (such as Alzheimer’s and Parkinson’s diseases), and of malignancy (cancers) have complex and varied causative factors. Modern drug discovery has the power to identify potential modulators for multiple targets from millions of compounds. Computational approaches allow the determination of the association of each compound with its target before chemical synthesis and biological testing is done. These approaches depend on the prior identification of clinically and biologically validated targets. This Perspective will focus on the molecular and computational approaches that underpin drug design by medicinal chemists to promote understanding and collaboration with clinical scientists.
Collapse
|
Journal Article |
7 |
447 |
2
|
Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease. OBJECTIVE This review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered. RESULTS AND CONCLUSION Several multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.
Collapse
|
Review |
4 |
73 |
3
|
Wang T, Liu XH, Guan J, Ge S, Wu MB, Lin JP, Yang LR. Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer's disease. Eur J Med Chem 2019; 169:200-223. [PMID: 30884327 DOI: 10.1016/j.ejmech.2019.02.076] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
Complex diseases (e.g., Alzheimer's disease) or infectious diseases are usually caused by complicated and varied factors, including environmental and genetic factors. Multi-target (polypharmacology) drugs have been suggested and have emerged as powerful and promising alternative paradigms in modern medicinal chemistry for the development of versatile chemotherapeutic agents to solve these medical challenges. The multifunctional agents capable of modulating multiple biological targets simultaneously display great advantages of higher efficacy, improved safety profile, and simpler administration compared to single-targeted agents. Therefore, multifunctional agents would certainly open novel avenues to rationally design the next generation of more effective but less toxic therapeutic agents. Herein, the authors review the recent progress made in the discovery and design processes of selective multi-targeted agents, especially the successful application of multi-target drugs for the treatment of Alzheimer's disease.
Collapse
|
Review |
6 |
53 |
4
|
Uddin MS, Al Mamun A, Kabir MT, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Multi-Target Drug Candidates for Multifactorial Alzheimer's Disease: AChE and NMDAR as Molecular Targets. Mol Neurobiol 2020; 58:281-303. [PMID: 32935230 DOI: 10.1007/s12035-020-02116-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia among elder people, which is a progressive neurodegenerative disease that results from a chronic loss of cognitive activities. It has been observed that AD is multifactorial, hence diverse pharmacological targets that could be followed for the treatment of AD. The Food and Drug Administration has approved two types of medications for AD treatment such as cholinesterase inhibitors (ChEIs) and N-methyl-D-aspartic acid receptor (NMDAR) antagonists. Rivastigmine, donepezil, and galantamine are the ChEIs that have been approved to treat AD. On the other hand, memantine is the only non-competitive NMDAR antagonist approved in AD treatment. As compared with placebo, it has been revealed through clinical studies that many single-target therapies are unsuccessful to treat multifactorial Alzheimer's symptoms or disease progression. Therefore, due to the complex nature of AD pathophysiology, diverse pharmacological targets can be hunted. In this article, based on the entwined link of acetylcholinesterase (AChE) and NMDAR, we represent several multifunctional compounds in the rational design of new potential AD medications. This review focus on the significance of privileged scaffolds in the generation of the multi-target lead compound for treating AD, investigating the idea and challenges of multi-target drug design. Furthermore, the most auspicious elementary units for designing as well as synthesizing hybrid drugs are demonstrated as pharmacological probes in the rational design of new potential AD therapeutics.
Collapse
|
Review |
5 |
45 |
5
|
de Castro S, Camarasa MJ. Polypharmacology in HIV inhibition: can a drug with simultaneous action against two relevant targets be an alternative to combination therapy? Eur J Med Chem 2018. [PMID: 29529501 DOI: 10.1016/j.ejmech.2018.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HIV infection still has a serious health and socio-economical impact and is one of the primary causes of morbidity and mortality all over the world. HIV infection and the AIDS pandemic are still matters of great concern, especially in less developed countries where the access to highly active antiretroviral therapy (HAART) is limited. Patient compliance is another serious drawback. Nowadays, HAART is the treatment of choice although it is not the panacea. Despite the fact that it suppresses viral replication at undetectable viral loads and prevents progression of HIV infection into AIDS HAART has several pitfalls, namely, long-term side-effects, drug resistance development, emergence of drug-resistant viruses, low compliance and the intolerance of some patients to these drugs. Moreover, another serious health concern is the event of co-infection with more than one pathogen at the same time (e.g. HIV and HCV, HBV, herpes viruses, etc). Currently, the multi-target drug approach has become an exciting strategy to address complex diseases and overcome drug resistance development. Such multifunctional molecules combine in their structure pharmacophores that may simultaneously interfere with multiple targets and their use may eventually be more safe and efficacious than that involving a mixture of separate molecules because of avoidance or delay of drug resistance, lower incidence of unwanted drug-drug interactions and improved compliance. In this review we focus on multifunctional molecules with dual activity against different targets of the HIV life cycle or able to block replication, not only of HIV but also of other viruses that are often co-pathogens of HIV. The different approaches are documented by selected examples.
Collapse
|
Review |
7 |
27 |
6
|
Zhang C, Lv Y, Bai R, Xie Y. Structural exploration of multifunctional monoamine oxidase B inhibitors as potential drug candidates against Alzheimer's disease. Bioorg Chem 2021; 114:105070. [PMID: 34126574 DOI: 10.1016/j.bioorg.2021.105070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
AD is one of the most typical neurodegenerative disorders that suffer many seniors worldwide. Recently, MAO inhibitors have received increasing attention not only for their roles involved in monoamine neurotransmitters metabolism and oxidative stress but also for their additional neuroprotective and neurorescue effects against AD. The curiosity in MAO inhibitors is reviving, and novel MAO-B inhibitors recently developed with ancillary activities (e.g., Aβ aggregation and AChE inhibition, anti-ROS and chelating activities) have been proposed as multitarget drugs foreshadowing a positive outlook for the treatment of AD. The current review describes the recent development of the design, synthesis, and screening of multifunctional ligands based on MAO-B inhibition for AD therapy. Structure-activity relationships and rational design strategies of the synthetic or natural product derivatives (chalcones, coumarins, chromones, and homoisoflavonoids) are discussed.
Collapse
|
Review |
4 |
14 |
7
|
de Oliveira Viana J, Ishiki HM, Scotti MT, Scotti L. Multi-Target Antitubercular Drugs. Curr Top Med Chem 2018; 18:750-758. [PMID: 29807515 DOI: 10.2174/1568026618666180528124414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/13/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022]
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, which has high levels of mortality worldwide and has already gained resistance to first- and second-line drugs. The study by new chemical entities with promising activities becomes paramount to broaden the therapeutic strategies in the cure of the patients affected with this disease. In this context, in this review we report the discovery of 3 classes of compounds that can simultaneously interact with more than one target of Mycobacterium tuberculosis.
Collapse
|
Review |
7 |
8 |
8
|
Chakraborty S, Rakshit J, Bandyopadhyay J, Basu S. Multi-target inhibition ability of neohesperidin dictates its neuroprotective activity: Implication in Alzheimer's disease therapeutics. Int J Biol Macromol 2021; 176:315-324. [PMID: 33581209 DOI: 10.1016/j.ijbiomac.2021.02.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/06/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023]
Abstract
The polygenic nature of Alzheimer's disease (AD) and cross-talk between several signaling cascades make it harder to decode the disease pathogenesis. β-secretase (BACE1) works upstream in the amyloidogenic processing of amyloid precursor protein (APP) to generate Aβ that rapidly aggregates to form fibrils, the most abundant component of plaques observed in AD brains. Here, we report dual inhibition of BACE1 and Aβ aggregation by neohesperidin, a flavonoid glycoconjugate, using multi-spectroscopic approaches, force microscopy, molecular modeling, and validated the potency in SH-SY5Y neuroblastoma cell lines. Steady-state and time-resolved fluorescence reveal that neohesperidin binds close to the catalytic aspartate dyad. This binding conformationally restricts the protein in closed form which possibly precludes APP recognition and thereby inhibits BACE1 activity. Neohesperidin also dose-dependently inhibits the amyloid fibril formation, as evident from ANS, ThT assay, and AFM. Neohesperidin ameliorates aggregated Aβ25-35 induced ROS generation and mitochondrial dysfunction in the SH-SY5Y cell line. As a result, the amyloid induced apoptosis is significantly prohibited and normal neuronal morphology is rescued. These findings suggest neohesperidin as an inhibitor of the pathogenic conversion of Aβ to fibrillar amyloid assembly. Neohesperidin thus emerges as a non-toxic multi-potent scaffold for the development of AD therapeutics.
Collapse
|
Journal Article |
4 |
8 |
9
|
Design, synthesis and anticancer evaluation of 6,7-disubstituted-4-phenoxyquinoline derivatives bearing 1,8-naphthyridine-3-carboxamide moiety as novel multi-target TKIs. Bioorg Chem 2022; 121:105672. [PMID: 35202851 DOI: 10.1016/j.bioorg.2022.105672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/01/2022] [Accepted: 02/07/2022] [Indexed: 12/20/2022]
Abstract
Giving the fact that the disorders of multiple receptor tyrosine kinases (RTKs) are characteristics of various cancers, we assumed that developing novel multi-target drugs might have an advantage in treating the complex cancers. Taking the multi-target c-Met inhibitor Foretinib as the leading compound, we discovered a novel series of 6,7-disubstituted-4-phenoxyquinoline derivatives bearing 1,8-naphthyridine-3-carboxamide moiety with the help of molecular docking. Among them, the most promising compound 33 showed a prominent activity against Hela (IC50 = 0.21 µM), A549 (IC50 = 0.39 µM), and MCF-7 (IC50 = 0.33 µM), which were 3.28-4.82 times more active than that of Foretinib. Additionally, compound 33 dose dependently induced apoptosis by arresting A549 cells at G1 phase. Enzymatic assays and docking analyses were further confirmed that compound 33 was a multi-target inhibitor with the strong potencies against c-Met (IC50 = 11.77 nM), MEK1 (IC50 = 10.71 nM), and Flt-3 (IC50 = 22.36 nM). In the A549 cells mediated xenograft mouse model, compound 33 inhibited the tumor growth (TGI = 64%) without obvious toxicity, establishing compound 33 as a promising candidate for cancer therapy.
Collapse
|
|
3 |
4 |
10
|
Regulation of Autophagy in Cardiovascular Diseases by Natural Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:731-736. [PMID: 32671790 DOI: 10.1007/978-981-15-4272-5_55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several major cardiovascular diseases, such as heart failure (HF) and atherosclerosis (AS), have been linked to autophagy dysfunction. The influence of autophagy on the occurrence and development of cardiovascular diseases has two sides. Generally, the induction of autophagy at a low level can provide energy and nutrients for cells through degradation of damaged organelles, protect cardiomyocytes and vascular endothelial cells, and stabilize atherosclerotic plaques. However, excessive autophagy may damage cardiomyocytes and vascular endothelial cells and even cause cell death. Therefore, the study on the role and mechanism of autophagy in the pathogenesis of cardiovascular diseases may not only provide new targets for the treatment of cardiac remodeling, myocardial ischemia and reperfusion injury, atherosclerosis and heart failure, but also provide clues for the developing new drugs on prevention and treatment of clinical cardiovascular diseases. In this chapter, we reviewed the research progress on resveratrol, curcumin, epigallocatechin-3-gallate, and cordyceps sinensis on their recent research progress for cardiovascular diseases. Regulating autophagy may be an effective strategy for the treatment of cardiovascular diseases in the future.
Collapse
|
Review |
5 |
3 |
11
|
Saroj Devi N, Shanmugam R, Ghorai J, Ramanan M, Anbarasan P, Doble M. Ligand-based Modeling for the Prediction of Pharmacophore Features for Multi-targeted Inhibition of the Arachidonic Acid Cascade. Mol Inform 2017; 37. [PMID: 28991413 DOI: 10.1002/minf.201700073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/21/2017] [Indexed: 01/22/2023]
Abstract
The single-target drugs against the arachidonic acid inflammatory pathway are associated with serious side effects, hence, as a first step towards multi-target drugs, we have studied the pharmacophoric features common to the inhibitors of 5-lipoxygenase-activating protein (FLAP), microsomal prostaglandin E-synthase 1 (mPGES-1) and leukotriene A4 hydrolase (LTA4H). FLAP and mPGES-1 shared subfamily-specific positions (SSPs) and four mPGES-1 inhibitors binding to them mapped onto the pharmacophore derived from FLAP inhibitors (Ph-FLAP). The reactions of mPGES-1 and LTA4H had high structural similarity. The pharmacophore derived from two substrate mimic inhibitors of LTA4H (Ph-LTA4H) also mapped onto three mPGES-1 inhibitors. Screening of in-house database for Ph-FLAP and Ph-LTA4H identified one compound, C1. It inhibited the production of the mPGES-1 product, prostaglandin E2 (PGE2) by 97.8±1.6 % at 50 μM in HeLa cells and can be a starting point for designing molecules inhibiting all three targets simultaneously.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
3 |
12
|
Dogan B, Durdagi S. Drug Re-positioning Studies for Novel HIV-1 Inhibitors Using Binary QSAR Models and Multi-target-driven In Silico Studies. Mol Inform 2020; 40:e2000012. [PMID: 33405326 DOI: 10.1002/minf.202000012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
Current antiretroviral therapies against HIV involve the usage of at least two drugs that target different stages of HIV life cycle. However, potential drug interactions and side effects pose a problem. A promising concept for complex disease treatment is 'one molecule-multiple target' approach to overcome undesired effects of multiple drugs. Additionally, it is beneficial to consider drug re-purposing due to the cost of taking a drug into the market. Taking these into account, here potential anti-HIV compounds are suggested by virtually screening small approved drug molecules and clinical candidates. Initially, binary QSAR models are used to predict the therapeutic activity of around 7900 compounds against HIV and to predict the toxicity of molecules with high therapeutic activities. Selected compounds are considered for molecular docking studies against two targets, HIV-1 protease enzyme, and chemokine co-receptor CCR5. The top docking poses for all 549 molecules are then subjected to short (1 ns) individual molecular dynamics (MD) simulations and they are ranked based on their calculated relative binding free energies. Finally, 25 molecules are selected for long (200 ns) MD simulations, and 5 molecules are suggested as promising multi-target HIV agents. The results of this study may open new avenues for the designing of new dual HIV-1 inhibitor scaffolds.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
3 |
13
|
Carvajal-Barriga EJ, Fields RD. Sulfated polysaccharides as multi target molecules to fight COVID 19 and comorbidities. Heliyon 2023; 9:e13797. [PMID: 36811015 PMCID: PMC9936785 DOI: 10.1016/j.heliyon.2023.e13797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
The majority of research to combat SARS-CoV-2 infection exploits the adaptive immune system, but innate immunity, the first line of defense against pathogenic microbes, is equally important in understanding and controlling infectious diseases. Various cellular mechanisms provide physiochemical barriers to microbe infection in mucosal membranes and epithelia, with extracellular polysaccharides, particularly sulfated polysaccharides, being among the most widespread and potent extracellular and secreted molecules blocking and deactivating bacteria, fungi, and viruses. New research reveals that a range of polysaccharides effectively inhibits COV-2 infection of mammalian cells in culture. This review provides an overview of sulfated polysaccharides nomenclature, its significance as immunomodulators, antioxidants, antitumors, anticoagulants, antibacterial, and as potent antivirals. It summarizes current research on various interactions of sulfated polysaccharide with a range of viruses, including SARS-CoV-2, and their application for potential treatments for COVID-19. These molecules interact with biochemical signaling in immune cell responses, by actions in oxidative reactions, cytokine signaling, receptor binding, and through antiviral and antibacterial toxicity. These properties provide the potential for the development of novel therapeutic treatments for SARS-CoV-2 and other infectious diseases from modified polysaccharides.
Collapse
|
Review |
2 |
2 |
14
|
Abstract
PURPOSE OF REVIEW This article reviews recent advances in drug discovery and development for geriatric psychiatry. Drug discovery for disorders of the central nervous system is a long and challenging process, with a high attrition rate from the preclinical stages through to marketing a compound. Developing drugs for geriatric neuropsychiatric conditions presents additional challenges, due to the complexity of the symptoms, comorbid diagnoses, and the variability of the population. Despite there being limited success over the past two decades, a number of new approaches have identified potential targets for preclinical development and ultimately clinical testing. RECENT FINDINGS Recent approaches have tried to address specific mechanisms that relate to the disease progression. These approaches include combining a number of ligands into to multi-target compounds, or targeting specific types of cells such as protein kinases or myeloid cells. In addition, the increased use of induced pluripotent stem cell cultures has enabled new compounds to be tested on disease-specific tissues, increasing the success rate of the lead compounds going through the preclinical stages. New pharmacological agents designed with advanced screening techniques and the shift towards systems pharmacology is changing the landscape of drug discovery in geriatric psychiatry. There is potential for these new agents to produce targeted effects in the framework of disorders that have long been untreatable.
Collapse
|
research-article |
7 |
2 |
15
|
Imtiyaz Z, Lin YT, Cheong UH, Jassey A, Liu HK, Lee MH. Compounds isolated from Euonymus spraguei Hayata induce ossification through multiple pathways. Saudi J Biol Sci 2020; 27:2227-2237. [PMID: 32884403 PMCID: PMC7451737 DOI: 10.1016/j.sjbs.2020.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/23/2022] Open
Abstract
The process of bone metabolism includes catabolism of old or mature bone and anabolism of new bone, carried out by osteoclasts and osteoblasts respectively. Any imbalance in this process results in loss of bone mass or osteoporosis. Drugs available to combat osteoporosis have certain adverse effects and are unable to improve bone formation, hence identifying new agents to fulfil these therapeutic gaps is required. To expand the scope of potential agents that enhance bone formation, we identified Euonymus spraguei Hayata as a plant material that possesses robust osteogenic potential using human osteoblast cells. We isolated three compounds, syringaresinol (1), syringin (2), and (−)-epicatechin (3), from E. spraguei. Results demonstrated that syringin (2), and (−)-epicatechin (3), increased alkaline phosphatase activity significantly up to 131.01% and 130.67%, respectively; they also elevated mineral deposition with respective values of up to 139.39% and 138.33%. In addition, 2 and 3 modulated autophagy and the bone morphogenetic protein (BMP)-2 signaling pathway. Our findings demonstrated that 2 and 3 induced osteogenesis by targeting multiple pathways and therefore can be considered as potent multi-targeted drugs for bone formation against osteoporosis.
Collapse
|
|
5 |
0 |
16
|
Vahid ZF, Eskandani M, Dadashi H, Vandghanooni S, Rashidi MR. Recent advances in potential enzymes and their therapeutic inhibitors for the treatment of Alzheimer's disease. Heliyon 2024; 10:e40756. [PMID: 39717593 PMCID: PMC11664286 DOI: 10.1016/j.heliyon.2024.e40756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disease, is clinically characterized by loss of memory and learning ability among other neurological deficits. Amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles involve in AD etiology. Meanwhile, enzymes and their inhibitors have become the focus of research in AD treatment. In this review, the molecular mechanisms involved in the pathogenesis of AD were overviewed and various enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, monoamine oxidase (MAO), and receptor of advanced glycation end products (RAGE) were highlighted as potential targets for AD treatment. Several hybrid molecules with essential substructures derived from various chemotypes have demonstrated desired pharmacological activity. It is envisioned that the development of new drugs that inhibit enzymes involved in AD is a future trend in the management of the disease.
Collapse
|
Review |
1 |
|
17
|
Qu L, Jiao M, Zhang Z, Ou Y, Zhao X, Zhang Y, Zhao X. A strategy for selective screening of dual-target bioactive compounds against hypertrophic scar through inhibiting angiotensin II type 1 receptor while stimulating type 2 receptor from Chinese herbs. Chin Med 2025; 20:15. [PMID: 39871267 PMCID: PMC11771114 DOI: 10.1186/s13020-025-01065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/10/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Cutaneous hypertrophic scar is a fibro-proliferative hard-curing disease. Recent studies have proved that antagonists of angiotensin II type 1 receptor (AT1R) and agonists of type 2 receptor (AT2R) were able to relieve hypertrophic scar. Therefore, establishing new methods to pursue dual-target lead compounds from Chinese herbs is in much demand for treating scar. METHODS To this end, we immobilized AT1R or AT2R onto the surface of silica gel from cell lysates through a specific covalent bond by bioorthogonal chemistry. The columns containing immobilized AT1R or AT2R were jointly utilized to pursue potential bioactive compounds simultaneously binding to AT1R and AT2R from the extract of Rhei Radix et Rhizoma. Their functions on AT1R and AT2R expressions were investigated by in vitro and in vivo experiments. RESULTS Aloe-emodin and emodin were identified as the potential bioactive compounds binding to both of the two receptors, thereby improving the appearance and pathomorphology of hypertrophic scar. They blocked the AT1R pathway to down-regulate the expression of transforming growth factor-β1 (TGF-β1) and stimulate matrix metalloproteinase-1 (MMP-1) expression. As such, the expression of collagen I/III reduced. Conversely, the bindings of the two compounds to AT2R reduced the production of nuclear factor-кB1 (NF-кB1), whereby the generation of interleukin-6 (IL-6) was blocked. CONCLUSION We reasoned that aloe-emodin and emodin had the potential to become dual-target candidates against hypertrophic scar through the regulation of AT1R and AT2R signaling pathways. It showed considerable potential to become a universal strategy for pursuing multi-target bioactive compounds from Chinese herbs by the utilization of diverse immobilized receptors in a desired order.
Collapse
|
research-article |
1 |
|
18
|
Ryszkiewicz P, Malinowska B, Schlicker E. Polypharmacology: new drugs in 2023-2024. Pharmacol Rep 2025:10.1007/s43440-025-00715-8. [PMID: 40095348 DOI: 10.1007/s43440-025-00715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Polypharmacology is an emerging approach to drug design and development that involves the use of multi-target-directed ligands (MTDLs), agents capable of interacting with multiple biological targets simultaneously. The effective treatment of chronic and multifactorial conditions, driven by the dysregulation of multiple interconnected pathways, such as cancer, autoimmune and metabolic disorders, cardiovascular and neurodegenerative diseases, is one of the most substantial challenges in contemporary pharmacology. 'Traditional' single-target-based treatment frequently shows limited effectiveness, as resistance to therapy develops or relapses occur. The rational use of MTDLs seems therefore a promising way to address the complexity of biological systems, feedback mechanisms, crosstalk, and molecular pathways. Many MTDLs have been successfully marketed to date. Moreover, plenty of them offer an additional benefit in comparison to 'traditional' treatment approaches. To assess whether the polypharmacological trend remains prevalent, we thoroughly analysed drugs approved in the years of 2023-2024 in Germany. Among 73 newly introduced substances, 18 are in line with the polypharmacology concept, including 10 antitumor agents, 5 drugs indicated for autoimmune disorders, 1 indicated for hand eczema, 1 antidiabetic (and anti-obesity) drug, and 1 modified corticosteroid.
Collapse
|
Review |
1 |
|
19
|
Ryszkiewicz P, Malinowska B, Schlicker E. Polypharmacology: promises and new drugs in 2022. Pharmacol Rep 2023:10.1007/s43440-023-00501-4. [PMID: 37278927 PMCID: PMC10243259 DOI: 10.1007/s43440-023-00501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Polypharmacology is an emerging strategy of design, synthesis, and clinical implementation of pharmaceutical agents that act on multiple targets simultaneously. It should not be mixed up with polytherapy, which is based on the use of multiple selective drugs and is considered a cornerstone of current clinical practice. However, this 'classic' approach, when facing urgent medical challenges, such as multifactorial diseases, increasing resistance to pharmacotherapy, and multimorbidity, seems to be insufficient. The 'novel' polypharmacology concept leads to a more predictable pharmacokinetic profile of multi-target-directed ligands (MTDLs), giving a chance to avoid drug-drug interactions and improve patient compliance due to the simplification of dosing regimens. Plenty of recently marketed drugs interact with multiple biological targets or disease pathways. Many offer a significant additional benefit compared to the standard treatment regimens. In this paper, we will briefly outline the genesis of polypharmacology and its differences to polytherapy. We will also present leading concepts for obtaining MTDLs. Subsequently, we will describe some successfully marketed drugs, the mechanisms of action of which are based on the interaction with multiple targets. To get an idea, of whether MTDLs are indeed important in contemporary pharmacology, we also carefully analyzed drugs approved in 2022 in Germany: 10 out of them were found multi-targeting, including 7 antitumor agents, 1 antidepressant, 1 hypnotic, and 1 drug indicated for eye disease.
Collapse
|
Review |
2 |
|
20
|
Chen YJ, Ferdousi F, Bejaoui M, Sasaki K, Isoda H. Microarray meta-analysis reveals comprehensive effects of 3,4,5-tricaffeolyquinic acid in cell differentiation and signaling. Eur J Pharmacol 2023; 960:176143. [PMID: 37866748 DOI: 10.1016/j.ejphar.2023.176143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Caffeoylquinic acids (CQA) are polyphenolic compounds found in fruits, vegetables, coffee, and spices that have exhibited several beneficial activities, including antioxidant, antibacterial, neuroprotective, anti-inflammatory, anticancer, antiviral, antidiabetic, and cardiovascular effects. A derivative, TCQA (3,4,5-Tri-O-caffeoylquinic acid), has also shown both neurogenic and pigment differentiation potential. A transcriptomic-based meta-analysis was conducted to explore potential biochemical processes and molecular targets of TCQA. This approach involved integrating data from various cell and tissue types, including human amniotic stem cells, human neural stem cells, human dermal papilla cells, and the brain cortex of aging model mice. It offered a comprehensive perspective on the significant gene regulations in response to TCQA treatment. The objective was to uncover the mechanism and novel targets of TCQA, facilitating a further understanding of its functions. New areas of interest found were TCQA's effect on adipogenesis, heart, and muscle tissue development. In addition, significantly enhanced biological activities found through meta-analysis included cell cycle, VEGFA-VEGFR2 pathway, and BMP signaling. Overall, a comprehensive functional and visual analysis using available biological databases uncovered the multi-target potential of this natural compound.
Collapse
|
Meta-Analysis |
2 |
|
21
|
Doostmohammadi A, Jooya H, Ghorbanian K, Gohari S, Dadashpour M. Potentials and future perspectives of multi-target drugs in cancer treatment: the next generation anti-cancer agents. Cell Commun Signal 2024; 22:228. [PMID: 38622735 PMCID: PMC11020265 DOI: 10.1186/s12964-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer is a major public health problem worldwide with more than an estimated 19.3 million new cases in 2020. The occurrence rises dramatically with age, and the overall risk accumulation is combined with the tendency for cellular repair mechanisms to be less effective in older individuals. Conventional cancer treatments, such as radiotherapy, surgery, and chemotherapy, have been used for decades to combat cancer. However, the emergence of novel fields of cancer research has led to the exploration of innovative treatment approaches focused on immunotherapy, epigenetic therapy, targeted therapy, multi-omics, and also multi-target therapy. The hypothesis was based on that drugs designed to act against individual targets cannot usually battle multigenic diseases like cancer. Multi-target therapies, either in combination or sequential order, have been recommended to combat acquired and intrinsic resistance to anti-cancer treatments. Several studies focused on multi-targeting treatments due to their advantages include; overcoming clonal heterogeneity, lower risk of multi-drug resistance (MDR), decreased drug toxicity, and thereby lower side effects. In this study, we'll discuss about multi-target drugs, their benefits in improving cancer treatments, and recent advances in the field of multi-targeted drugs. Also, we will study the research that performed clinical trials using multi-target therapeutic agents for cancer treatment.
Collapse
|
Review |
1 |
|
22
|
Shi Q, Tong Y, Zheng Y, Liu Y, Yin T. PDT-sensitized ROS-responsive dextran nanosystem for maximizing antitumor potency of multi-target drugs. Int J Pharm 2023; 633:122567. [PMID: 36586628 DOI: 10.1016/j.ijpharm.2022.122567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/03/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
The heterogeneity of tumor microenvironment leads to uneven distribution of bio-stimuli. Thus, the multi-site delivery efficiency of responsive drug delivery systems (DDS) inner tumor was always limited. Herein, we proposed a combination strategy of photodynamic therapy (PDT) with ROS-responsive nanosystem which was constructed from dextran-phenylboronic acid pinacol ester conjugates. This combination utilized PDT to amplify and homogenize tissular oxidation level, and achieve effective multi-site response and release of multi-target drugs like gambogic acid (GA). Our research demonstrated the successful preparation of GA and protoporphyrin IX (PpIX) co-loaded nanoparticles, and the PDT-mediated spatiotemporal controlled multi-site drug release in simulated conditions. Furthermore, data from in vitro and in vivo researches on B16F10 cells, HUVEC, and B16F10-bearing C57BL/6 mice potently confirmed the enhanced multi-mechanism regulations of GA mediated by the effective and homogeneous tumoral release. This tactic based on bio-stimuli amplification and homogenization proposes a paradigm to maximize the potency of multi-target drugs.
Collapse
|
|
2 |
|