1
|
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhanced Pyruvate Production in Candida glabrata by Engineering ATP Futile Cycle System. ACS Synth Biol 2019; 8:787-795. [PMID: 30856339 DOI: 10.1021/acssynbio.8b00479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Energy metabolism plays an important role in the growth and central metabolic pathways of cells. Manipulating energy metabolism is an efficient strategy to improve the formation of target products and to understand the effects of altering intracellular energy levels on global metabolic networks. Candida glabrata, as a dominant yeast strain for producing pyruvate, principally converts glucose to pyruvate through the glycolytic pathway. However, this process can be severely inhibited by a high intracellular ATP content. Here, in combination with the physiological characteristics of C. glabrata, efforts have been made to construct an ATP futile cycle system (ATP-FCS) in C. glabrata to decrease the intracellular ATP level without destroying F0F1-ATPase function. ATP-FCS was capable of decreasing the intracellular ATP level by 51.0% in C. glabrata. The decrease in the ATP level directly led to an increased pyruvate production and glycolysis efficiency. Moreover, we further optimized different aspects of the ATP-FCS to maximize pyruvate accumulation. Combining ATP-FCS with further genetic optimization strategies, we achieved a final pyruvate titer of 40.2 g/L, with 4.35 g pyruvate/g dry cell weight and a 0.44 g/g substrate conversion rate in 500 mL flasks, which represented increases of 98.5%, 322.3%, and 160%, respectively, compared with the original strain. Thus, these strategies hold great potential for increasing the synthesis of other organic acids in microbes.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
17 |
2
|
Meng DH, Du RR, Chen LZ, Li MT, Liu F, Hou J, Shi YK, Wang FS, Sheng JZ. Cascade synthesis of uridine-5'-diphosphate glucuronic acid by coupling multiple whole cells expressing hyperthermophilic enzymes. Microb Cell Fact 2019; 18:118. [PMID: 31262296 PMCID: PMC6604206 DOI: 10.1186/s12934-019-1168-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/26/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Enzymatic glycan synthesis has leapt forward in recent years and a number of glucuronosyltransferase (EC 2.4.1.17) have been identified and prepared, which provides a guide to an efficient approach to prepare glycans containing glucuronic acid (GlcA) residues. The uridine 5'-diphosphate (UDP) activated form, UDP-GlcA, is the monosaccharide donor for these glucuronidation reactions. RESULTS To produce UDP-GlcA in a cost-effective way, an efficient three-step cascade route was developed using whole cells expressing hyperthermophilic enzymes to afford UDP-GlcA from starch. By coupling a coenzyme regeneration system with an appropriate expression level with UDP-glucose 6-dehydrogenase in a single strain, the cells were able to meet NAD+ requirements. Without addition of exogenous NAD+, the reaction produced 1.3 g L-1 UDP-GlcA, representing 100% and 46% conversion of UDP-Glc and UTP respectively. Finally, an anion exchange chromatography purification method was developed. UDP-GlcA was successfully obtained from the cascade system. The yield of UDP-GlcA during purification was about 92.0%. CONCLUSIONS This work built a de novo hyperthermophilic biosynthetic cascade into E. coli host cells, with the cells able to meet NAD+ cofactor requirements and act as microbial factories for UDP-GlcA synthesis, which opens a door to large-scale production of cheaper UDP-GlcA.
Collapse
|
research-article |
6 |
7 |
3
|
Du J, Liu J, Zhao Z, Dai J, Li K, Lin Y. Nonmetallic N/C Nanozyme Performs Continuous Consumption of Glu for Inhibition of Colorectal Cancer Cells. ACS APPLIED BIO MATERIALS 2023; 6:267-276. [PMID: 36573905 DOI: 10.1021/acsabm.2c00875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related mortality. 5-Fluorouracil (5-FU) is the first choice for treatment of CRC, but it cannot avoid the negative effects from local high glucose (Glu) in tumor. Recently, 5-FU therapy has been combined with other treatment modalities for CRC synergistic therapy. Although these combination therapy strategies are more effective in cancer therapy, the toxicity side effects to the liver and cause metabolic acidosis still exist. Herein, we report an emerging amorphous honeycomb-like nitrogen-doped carbon (N/C) nanozyme with nicotinamide adenine dinucleotide (NADH) oxidase and catalase (CAT) activity and cascade it with natural glucose dehydrogenase (GDH) to realize NAD+ regeneration and further hyperglycemia management. In this case, by the coupling of N/C nanozyme with natural GDH to form a N/C-GDH system, the electron transfer route can switch from Glu to a common but limited electron receptor, i.e., NAD+ to ubiquitous large amounts of oxygen, achieving the purpose of sustainable consumption of Glu under NAD+ circulation and regeneration, and importantly escaping the generation of toxic H2O2. The combination of the N/C-GDH system and 5-FU on CRC cells was investigated to assess their synergistic bioeffects. Notably, our results showed that the N/C-GDH system and 5-FU in combination significantly suppress the proliferation of human colon cancer cells (HCT-116) by reducing the sugar level and induced apoptosis compared with either material or drug used alone. This work expands the nanozymes in blood Glu management as well as the promising cancer cell inhibition and provides the possibility of nonmetallic nanomaterials in the realization of effective treatment of cancer.
Collapse
|
|
2 |
5 |
4
|
Ottone C, Pugliese D, Laurenti M, Hernández S, Cauda V, Grez P, Wilson L. ZnO Materials as Effective Anodes for the Photoelectrochemical Regeneration of Enzymatically Active NAD . ACS APPLIED MATERIALS & INTERFACES 2021;13:10719-10727. [PMID: 33645209 DOI: 10.1021/acsami.0c20630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work reports the study of ZnO-based anodes for the photoelectrochemical regeneration of the oxidized form of nicotinamide adenine dinucleotide (NAD+). The latter is the most important coenzyme for dehydrogenases. However, the high costs of NAD+ limit the use of such enzymes at the industrial level. The influence of the ZnO morphologies (flower-like, porous film, and nanowires), showing different surface area and crystallinity, was studied. The detection of diluted solutions (0.1 mM) of the reduced form of the coenzyme (NADH) was accomplished by the flower-like and the porous films, whereas concentrations greater than 20 mM were needed for the detection of NADH with nanowire-shaped ZnO-based electrodes. The photocatalytic activity of ZnO was reduced at increasing concentrations of NAD+ because part of the ultraviolet irradiation was absorbed by the coenzyme, reducing the photons available for the ZnO material. The higher electrochemical surface area of the flower-like film makes it suitable for the regeneration reaction. The illumination of the electrodes led to a significant increase on the NAD+ regeneration with respect to both the electrochemical oxidation in dark and the only photochemical reaction. The tests with formate dehydrogenase demonstrated that 94% of the regenerated NAD+ was enzymatically active.
Collapse
|
|
4 |
4 |
5
|
Lim K, Lee YS, Simoska O, Dong F, Sima M, Stewart RJ, Minteer SD. Rapid Entrapment of Phenazine Ethosulfate within a Polyelectrolyte Complex on Electrodes for Efficient NAD + Regeneration in Mediated NAD +-Dependent Bioelectrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10942-10951. [PMID: 33646753 DOI: 10.1021/acsami.0c22302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Over the past two decades, the designs of redox polymers have become critical to the field of mediated bioelectrocatalysis and are used in commercial glucose biosensors, as well as other bioelectrochemical applications (e.g., energy harvesting). These polymers are specifically used to immobilize redox mediators on electrode surfaces, allowing for self-exchange-based conduction of electrons from enzymes far from the electrode to the electrode surface. However, the synthesis of redox polymers is challenging and results in large batch-to-batch variability. Herein, we report a rapid entrapment of mediators for NAD+-dependent bioelectrocatalysis within reverse ionically condensed polyelectrolytes. A high ionic strength aqueous solution of oppositely charged polyelectrolytes, composed of cationic polyguanidinium (PG) chloride and anionic sodium hexametaphosphate (P6), undergoes phase inversion into a solid microporous polyelectrolyte complex (PEC) when introduced into a low ionic strength aqueous solution. The ionic strength-triggered phase inversion of PGP6 solutions was investigated as a means to entrap mediators on the surface of electrodes for mediated bioelectrocatalysis. Compared to the traditional cross-linked immobilizations using redox polymers, this phase inversion takes place within seconds and requires up to 60 min for complete stabilization. In this work, redox mediator phenazine ethosulfate (PES) was entrapped within PGP6 on electrode surfaces for nicotinamide adenine dinucleotide (NAD+)-dependent bioelectrocatalysis. In the bulk solution, NAD+-dependent dehydrogenase enzymes catalyze the oxidation of the substrate while reducing NAD to reduced nicotinamide adenine dinucleotide (NADH). The resulting NADH is reoxidized to NAD+ by the entrapped PES that gets reduced on the electrode, completing the NAD+-regeneration-based bioelectrocatalysis. To show the use of these new materials in an application, biofuel cells were evaluated using four different anodic enzyme systems (alcohol dehydrogenase, lactate hydrogenase, glycerol dehydrogenase, and glucose dehydrogenase).
Collapse
|
|
4 |
4 |
6
|
Yang T, Pan L, Wu W, Pan X, Xu M, Zhang X, Rao Z. N20D/N116E Combined Mutant Downward Shifted the pH Optimum of Bacillus subtilis NADH Oxidase. BIOLOGY 2023; 12:522. [PMID: 37106723 PMCID: PMC10135872 DOI: 10.3390/biology12040522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Cofactor regeneration is indispensable to avoid the addition of large quantities of cofactor NADH or NAD+ in oxidation-reduction reactions. Water-forming NADH oxidase (Nox) has attracted substantive attention as it can oxidize cytosolic NADH to NAD+ without concomitant accumulation of by-products. However, its applications have some limitations in some oxidation-reduction processes when its optimum pH is different from its coupled enzymes. In this study, to modify the optimum pH of BsNox, fifteen relevant candidates of site-directed mutations were selected based on surface charge rational design. As predicted, the substitution of this asparagine residue with an aspartic acid residue (N22D) or with a glutamic acid residue (N116E) shifts its pH optimum from 9.0 to 7.0. Subsequently, N20D/N116E combined mutant could not only downshift the pH optimum of BsNox but also significantly increase its specific activity, which was about 2.9-fold at pH 7.0, 2.2-fold at pH 8.0 and 1.2-fold at pH 9.0 that of the wild-type. The double mutant N20D/N116E displays a higher activity within a wide range of pH from 6 to 9, which is wider than the wide type. The usability of the BsNox and its variations for NAD+ regeneration in a neutral environment was demonstrated by coupling with a glutamate dehydrogenase for α-ketoglutaric acid (α-KG) production from L-glutamic acid (L-Glu) at pH 7.0. Employing the variation N20D/N116E as an NAD+ regeneration coenzyme could shorten the process duration; 90% of L-Glu were transformed into α-KG within 40 min vs. 70 min with the wild-type BsNox for NAD+ regeneration. The results obtained in this work suggest the promising properties of the BsNox variation N20D/N116E are competent in NAD+ regeneration applications under a neutral environment.
Collapse
|
research-article |
2 |
3 |
7
|
Niu K, Cheng XL, Qin HB, Liu JS, Zheng YG. Investigation of the key factors on 3-hydroxypropionic acid production with different recombinant strains. 3 Biotech 2017; 7:314. [PMID: 28955611 DOI: 10.1007/s13205-017-0966-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 12/26/2022] Open
Abstract
3-Hydroxypropionic acid (3-HP) is an important compound and precursor for a series of chemicals and polymeric materials. In this study, the 3-HP producing bacteria were constructed and studied for efficient synthesis of 3-HP. The results indicated that the instability of glycerol dehydratase (GDHt) affected the 3-HP production significantly, which was successfully solved by the expression of glycerol dehydratase reactivase (GdrB), with fivefold increase in 3-HP yield. Meanwhile, NAD+-regenerating enzymes GPD1 (glycerol-3-phosphate dehydrogenase) was expressed; however, the results showed 3-HP was significantly decreased from 56.73-4 mM, and malic acid was obviously increased. Analysis of the C flux distribution showed that the main reason for the results was the lack of NAD+. The addition of NAD+ further increased the 3-HP production to 23.87 mM, demonstrating that the "regeneration of NAD+" was the major factor for enhancing 3-HP production.
Collapse
|
Journal Article |
8 |
3 |
8
|
Li XY, Xu MQ, Liu H, Zhou Q, Gao J, Zhang YW. Preparation of combined cross-linked enzyme aggregates containing galactitol dehydrogenase and NADH oxidase for L-tagatose synthesis via in situ cofactor regeneration. Bioprocess Biosyst Eng 2021; 45:353-364. [PMID: 34797400 DOI: 10.1007/s00449-021-02665-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
The combined cross-linked enzyme aggregates (combi-CLEAs) containing galactitol dehydrogenase (Gdh) and NADH oxidase (Nox) were prepared for L-tagatose synthesis. To prevent the excess consumption of cofactor, Nox in the combi-CLEAs was used to in situ regenerate NAD+. In the immobilization process, ammonia sulfate and glutaraldehyde were used as the precipitant and cross-linking reagent, respectively. The preparation conditions were optimized as follows: 60% ammonium sulfate, 1:1 (molar ratio) of Gdh to Nox, 20:1 (molar ratio) of protein to glutaraldehyde, and 6 h of cross-linking time at 35 °C. Under these conditions, the activity of the combi-CLEAs was 210 U g-1. The combi-CLEAs exhibited higher thermostability and preserved 51.5% of the original activity after eight cycles of reuses at 45 °C. The combi-CLEAs were utilized for the preparation of L-tagatose without by-products. Therefore, the combi-CLEAs have the industrial potential for the bioconversion of galactitol to L-tagatose.
Collapse
|
|
4 |
2 |
9
|
Genetic Analysis of Peroxisomal Genes Required for Longevity in a Yeast Model of Citrin Deficiency. Diseases 2020; 8:diseases8010002. [PMID: 31936501 PMCID: PMC7151034 DOI: 10.3390/diseases8010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 12/02/2022] Open
Abstract
Citrin is a liver-specific mitochondrial aspartate–glutamate carrier encoded by SLC25A13. Citrin deficiency caused by SLC25A13 mutation results in carbohydrate toxicity, citrullinemia type II, and fatty liver diseases, the mechanisms of some of which remain unknown. Citrin shows a functional homolog in yeast aspartate-glutamate carrier (Agc1p) and agc1Δ yeasts are used as a model organism of citrin deficiency. Here, we found that agc1Δ yeasts decreased fat utilization, impaired NADH balance in peroxisomes, and decreased chronological lifespan. The activation of GPD1-mediated NAD+ regeneration in peroxisomes by GPD1 over-expression or activation of the malate–oxaloacetate NADH peroxisomal shuttle, by increasing flux in this NADH shuttle and over-expression of MDH3, resulted in lifespan extension of agc1Δ yeasts. In addition, over-expression of PEX34 restored longevity of agc1Δ yeasts as well as wild-type cells. The effect of PEX34-mediated longevity required the presence of the GPD1-mediated NADH peroxisomal shuttle, which was independent of the presence of the peroxisomal malate–oxaloacetate NADH shuttle and PEX34-induced peroxisome proliferation. These data confirm that impaired NAD+ regeneration in peroxisomes is a key defect in the yeast model of citrin deficiency, and enhancing peroxisome function or inducing NAD+ regeneration in peroxisomes is suggested for further study in patients’ hepatocytes.
Collapse
|
|
5 |
2 |
10
|
Pietricola G, Chamorro L, Castellino M, Maureira D, Tommasi T, Hernández S, Wilson L, Fino D, Ottone C. Covalent Immobilization of Dehydrogenases on Carbon Felt for Reusable Anodes with Effective Electrochemical Cofactor Regeneration. Chemistry 2022; 11:e202200102. [PMID: 35856864 PMCID: PMC9630042 DOI: 10.1002/open.202200102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Indexed: 01/31/2023]
Abstract
This study presents the immobilization with aldehyde groups (glyoxyl carbon felt) of alcohol dehydrogenase (ADH) and formate dehydrogenase (FDH) on carbon-felt-based electrodes. The compatibility of the immobilization method with the electrochemical application was studied with the ADH bioelectrode. The electrochemical regeneration process of nicotinamide adenine dinucleotide in its oxidized form (NAD+ ), on a carbon felt surface, has been deeply studied with tests performed at different electrical potentials. By applying a potential of 0.4 V versus Ag/AgCl electrode, a good compromise between NAD+ regeneration and energy consumption was observed. The effectiveness of the regeneration of NAD+ was confirmed by electrochemical oxidation of ethanol catalyzed by ADH in the presence of NADH, which is the no active form of the cofactor for this reaction. Good reusability was observed by using ADH immobilized on glyoxyl functionalized carbon felt with a residual activity higher than 60 % after 3 batches.
Collapse
|
research-article |
3 |
1 |
11
|
Zhou Q, Gao J, Zhang YW. Optimal pH shift of the NADH oxidase from Lactobacillus rhamnosus with a single mutation. Biotechnol Lett 2021; 43:1413-1420. [PMID: 33844097 DOI: 10.1007/s10529-021-03129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To improve the activity of a water-forming NADH oxidase from Lactobacillus rhamnosus under neutral or alkaline pH for coupling NAD+-dependent dehydrogenases with an alkaline optimal pH. RESULTS The water-forming NADH oxidase from Lactobacillus rhamnosus was engineered by replacing the aspartic acid or glutamic acid with arginine on the surface. The mutant D251R improved the activity with a 112%, 111%, and 244% relative activity to the wild-type at pH 6.5, pH 7.0, and pH 7.5, respectively. Docking substrate into the D251R mutant reveals that the NADH is access to the substrate-binding site with a larger substrate loop due to the enhanced electrostatic repulsion between ARG-251 and ARG-243. In the D251R-NADH complex, the carboxyl of NADH additionally forms two hydrogen bonds (2.6 and 2.9 Å) with G154 due to the changed interaction of substrate and the residues in the catalytic sites, and the hydrogen bond with the oxygen of carbonyl in P295 is shortened from 2.9 to 2.0 Å, which could account for the enhanced specific activity. CONCLUSIONS The D251R mutant displayed higher catalytic activity than the wild-type in the pH range 6.5-7.5, and further insight into those shorter and newly formed hydrogen bonds in substrate docking analysis could account for the higher bind affinity and catalytic efficiency of D251R mutant.
Collapse
|
Journal Article |
4 |
0 |
12
|
Wu L, Li J, Zhang Y, Tian Z, Jin Z, Liu L, Zhang D. Multiple Cofactor Engineering Strategies to Enhance Pyridoxine Production in Escherichia coli. Microorganisms 2024; 12:933. [PMID: 38792763 PMCID: PMC11123869 DOI: 10.3390/microorganisms12050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Pyridoxine, also known as vitamin B6, is an essential cofactor in numerous cellular processes. Its importance in various applications has led to a growing interest in optimizing its production through microbial biosynthesis. However, an imbalance in the net production of NADH disrupts intracellular cofactor levels, thereby limiting the efficient synthesis of pyridoxine. In our study, we focused on multiple cofactor engineering strategies, including the enzyme design involved in NAD+-dependent enzymes and NAD+ regeneration through the introduction of heterologous NADH oxidase (Nox) coupled with the reduction in NADH production during glycolysis. Finally, the engineered E. coli achieved a pyridoxine titer of 676 mg/L in a shake flask within 48 h by enhancing the driving force. Overall, the multiple cofactor engineering strategies utilized in this study serve as a reference for enhancing the efficient biosynthesis of other target products.
Collapse
|
research-article |
1 |
|