1
|
Torre M, Vasudevaraja V, Serrano J, DeLorenzo M, Malinowski S, Blandin AF, Pages M, Ligon AH, Dong F, Meredith DM, Nasrallah MP, Horbinski C, Dahiya S, Ligon KL, Santi M, Ramkissoon SH, Filbin MG, Snuderl M, Alexandrescu S. Molecular and clinicopathologic features of gliomas harboring NTRK fusions. Acta Neuropathol Commun 2020; 8:107. [PMID: 32665022 PMCID: PMC7362646 DOI: 10.1186/s40478-020-00980-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023] Open
Abstract
Fusions involving neurotrophic tyrosine receptor kinase (NTRK) genes are detected in ≤2% of gliomas and can promote gliomagenesis. The remarkable therapeutic efficacy of TRK inhibitors, which are among the first Food and Drug Administration-approved targeted therapies for NTRK-fused gliomas, has generated significant clinical interest in characterizing these tumors. In this multi-institutional retrospective study of 42 gliomas with NTRK fusions, next generation DNA sequencing (n = 41), next generation RNA sequencing (n = 1), RNA-sequencing fusion panel (n = 16), methylation profile analysis (n = 18), and histologic evaluation (n = 42) were performed. All infantile NTRK-fused gliomas (n = 7) had high-grade histology and, with one exception, no other significant genetic alterations. Pediatric NTRK-fused gliomas (n = 13) typically involved NTRK2, ranged from low- to high-histologic grade, and demonstrated histologic overlap with desmoplastic infantile ganglioglioma, pilocytic astrocytoma, ganglioglioma, and glioblastoma, among other entities, but they rarely matched with high confidence to known methylation class families or with each other; alterations involving ATRX, PTEN, and CDKN2A/2B were present in a subset of cases. Adult NTRK-fused gliomas (n = 22) typically involved NTRK1 and had predominantly high-grade histology; genetic alterations involving IDH1, ATRX, TP53, PTEN, TERT promoter, RB1, CDKN2A/2B, NF1, and polysomy 7 were common. Unsupervised principal component analysis of methylation profiles demonstrated no obvious grouping by histologic grade, NTRK gene involved, or age group. KEGG pathway analysis detected methylation differences in genes involved in PI3K/AKT, MAPK, and other pathways. In summary, the study highlights the clinical, histologic, and molecular heterogeneity of NTRK-fused gliomas, particularly when stratified by age group.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
89 |
2
|
Millat G, Chanavat V, Rousson R. Evaluation of a new NGS method based on a custom AmpliSeq library and Ion Torrent PGM sequencing for the fast detection of genetic variations in cardiomyopathies. Clin Chim Acta 2014; 433:266-71. [PMID: 24721642 DOI: 10.1016/j.cca.2014.03.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hypertrophic and dilated cardiomyopathies are common genetic cardiac diseases. Due to large cohorts to investigate, large number of causative genes and high rate of private mutations, mutational screening must be performed using an extremely sensitive and specific detection method. METHODS NGS workflow based on a custom AmpliSeq panel was designed for sequencing most prevalent cardiomyopathy-causing genes on the Ion PGM™ Sequencer. A cohort of 75 previously studied patients was screened to evaluate this strategy in terms of sensibility, specificity, practicability and cost. In silico analysis was performed using the NextGENe® software. RESULTS Our AmpliSeq custom panel allowed us to efficiently explore 96% of targeted sequences. Using adjusted alignment settings, all genetic variants (57 substitutions, 34 indels) present in covered regions and previously detected by HRM/sequencing were readily identified except a 73-bp MYBPC3 deletion (analytical sensitivity: 98.9%). Uncovered targeted regions were further analysed by a HRM/sequencing strategy. Complete molecular investigation was performed faster and cheaper than with previously used mutation detection methods. CONCLUSION Finally, these results suggested that our new NGS approach based on Ampliseq libraries and Ion PGM sequencing is a highly efficient, fast and cheap high-throughput mutation detection method that is ready to be deployed in clinical laboratories.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
41 |
3
|
Sharon I, Quijada NM, Pasolli E, Fabbrini M, Vitali F, Agamennone V, Dötsch A, Selberherr E, Grau JH, Meixner M, Liere K, Ercolini D, de Filippo C, Caderni G, Brigidi P, Turroni S. The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept. Nutrients 2022; 14:2872. [PMID: 35889831 PMCID: PMC9323970 DOI: 10.3390/nu14142872] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
The core microbiome, which refers to a set of consistent microbial features across populations, is of major interest in microbiome research and has been addressed by numerous studies. Understanding the core microbiome can help identify elements that lead to dysbiosis, and lead to treatments for microbiome-related health states. However, defining the core microbiome is a complex task at several levels. In this review, we consider the current state of core human microbiome research. We consider the knowledge that has been gained, the factors limiting our ability to achieve a reliable description of the core human microbiome, and the fields most likely to improve that ability. DNA sequencing technologies and the methods for analyzing metagenomics and amplicon data will most likely facilitate higher accuracy and resolution in describing the microbiome. However, more effort should be invested in characterizing the microbiome's interactions with its human host, including the immune system and nutrition. Other components of this holobiontic system should also be emphasized, such as fungi, protists, lower eukaryotes, viruses, and phages. Most importantly, a collaborative effort of experts in microbiology, nutrition, immunology, medicine, systems biology, bioinformatics, and machine learning is probably required to identify the traits of the core human microbiome.
Collapse
|
Review |
3 |
33 |
4
|
Bonito G, Benucci GMN, Hameed K, Weighill D, Jones P, Chen KH, Jacobson D, Schadt C, Vilgalys R. Fungal-Bacterial Networks in the Populus Rhizobiome Are Impacted by Soil Properties and Host Genotype. Front Microbiol 2019; 10:481. [PMID: 30984119 PMCID: PMC6450171 DOI: 10.3389/fmicb.2019.00481] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/25/2019] [Indexed: 02/03/2023] Open
Abstract
Plant root-associated microbial symbionts comprise the plant rhizobiome. These microbes function in provisioning nutrients and water to their hosts, impacting plant health and disease. The plant microbiome is shaped by plant species, plant genotype, soil and environmental conditions, but the contributions of these variables are hard to disentangle from each other in natural systems. We used bioassay common garden experiments to decouple plant genotype and soil property impacts on fungal and bacterial community structure in the Populus rhizobiome. High throughput amplification and sequencing of 16S, ITS, 28S and 18S rDNA was accomplished through 454 pyrosequencing. Co-association patterns of fungal and bacterial taxa were assessed with 16S and ITS datasets. Community bipartite fungal-bacterial networks and PERMANOVA results attribute significant difference in fungal or bacterial communities to soil origin, soil chemical properties and plant genotype. Indicator species analysis identified a common set of root bacteria as well as endophytic and ectomycorrhizal fungi associated with Populus in different soils. However, no single taxon, or consortium of microbes, was indicative of a particular Populus genotype. Fungal-bacterial networks were over-represented in arbuscular mycorrhizal, endophytic, and ectomycorrhizal fungi, as well as bacteria belonging to the orders Rhizobiales, Chitinophagales, Cytophagales, and Burkholderiales. These results demonstrate the importance of soil and plant genotype on fungal-bacterial networks in the belowground plant microbiome.
Collapse
|
Journal Article |
6 |
27 |
5
|
Chanavat V, Janin A, Millat G. A fast and cost-effective molecular diagnostic tool for genetic diseases involved in sudden cardiac death. Clin Chim Acta 2015; 453:80-5. [PMID: 26688388 DOI: 10.1016/j.cca.2015.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cardiomyopathies and arrhythmia syndromes are common genetic cardiac diseases that account for a significant number of sudden cardiac death (SCD) cases. METHODS NGS workflow based on a panel of 95 genes was developed on Illumina NextSeq500™ sequencer for sequencing prevalent SCD-causing genes. A cohort of 90 patients (56 genotype-positive, 27 genotype-negative and 7 new cases) was screened to evaluate this strategy in terms of sensitivity, specificity, practicability and cost. In silico analysis were performed using a pipeline based on NextGENe® software and a personalized Sophia Genetics pipeline. RESULTS Using our panel custom, 100% of targeted sequences were efficiently covered and all previously identified genetic variants were readily detected. Applied to 27 genotype-negative patients, this molecular strategy allowed the identification of pathogenic or likely pathogenic variants into 12 cases. It confirmed the involvement of HCN4 mutations in the combined bradycardia–myocardial non-compaction phenotype, and also suggested, for the first time, the involvement of PKP2, usually associated with arrhythmogenic right ventricular dysplasia, in ventricular non-compaction. CONCLUSION This NGS approach is a fast, cheap, sensitive and high-throughput mutation detection method that is ready to be deployed in clinical laboratories and would provide new insights on physiopathology of SCD, more particularly of cardiomyopathies and arrhythmia syndromes.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
21 |
6
|
Mahmud MR, Jian C, Uddin MK, Huhtinen M, Salonen A, Peltoniemi O, Venhoranta H, Oliviero C. Impact of Intestinal Microbiota on Growth Performance of Suckling and Weaned Piglets. Microbiol Spectr 2023; 11:e0374422. [PMID: 37022154 PMCID: PMC10269657 DOI: 10.1128/spectrum.03744-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/13/2022] [Indexed: 04/07/2023] Open
Abstract
Small-scale studies investigating the relationship between pigs' intestinal microbiota and growth performance have generated inconsistent results. We hypothesized that on farms under favorable environmental conditions (e.g., promoting sow nest-building behavior, high colostrum production, low incidence of diseases and minimal use of antimicrobials), the piglet gut microbiota may develop toward a population that promotes growth and reduces pathogenic bacteria. Using 16S rRNA gene amplicon sequencing, we sampled and profiled the fecal microbiota from 170 individual piglets throughout suckling and postweaning periods (in total 670 samples) to track gut microbiota development and its potential association with growth. During the suckling period, the dominant genera were Lactobacillus and Bacteroides, the latter being gradually replaced by Clostridium sensu scricto 1 as piglets aged. The gut microbiota during the nursery stage, not the suckling period, predicted the average daily growth (ADG) of piglets. The relative abundances of SCFA-producing genera, in particular Faecalibacterium, Megasphaera, Mitsuokella, and Subdoligranulum, significantly correlated with high ADG of weaned piglets. In addition, the succession of the gut microbiota in high-ADG piglets occurred faster and stabilized sooner upon weaning, whereas the gut microbiota of low-ADG piglets continued to mature after weaning. Overall, our findings suggest that weaning is the major driver of gut microbiota variation in piglets with different levels of overall growth performance. This calls for further research to verify if promotion of specific gut microbiota, identified here at weaning transition, is beneficial for piglet growth. IMPORTANCE The relationship between pigs' intestinal microbiota and growth performance is of great importance for improving piglets' health and reducing antimicrobial use. We found that gut microbiota variation is significantly associated with growth during weaning and the early nursery period. Importantly, transitions toward a mature gut microbiota enriched with fiber-degrading bacteria mostly complete upon weaning in piglets with better growth. Postponing the weaning age may therefore favor the development of fiber degrading gut bacteria, conferring the necessary capacity to digest and harvest solid postweaning feed. The bacterial taxa associated with piglet growth identified herein hold potential to improve piglet growth and health.
Collapse
|
research-article |
2 |
17 |
7
|
Hot in Cold: Microbial Life in the Hottest Springs in Permafrost. Microorganisms 2020; 8:microorganisms8091308. [PMID: 32867302 PMCID: PMC7565842 DOI: 10.3390/microorganisms8091308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Chukotka is an arctic region located in the continuous permafrost zone, but thermal springs are abundant there. In this study, for the first time, the microbial communities of the Chukotka hot springs (CHS) biofilms and sediments with temperatures 54–94 °C were investigated and analyzed by NGS sequencing of 16S rRNA gene amplicons. In microbial mats (54–75 °C), phototrophic bacteria of genus Chloroflexus dominated (up to 89% of all prokaryotes), while Aquificae were the most numerous at higher temperatures in Fe-rich sediments and filamentous “streamers” (up to 92%). The electron donors typical for Aquificae, such as H2S and H2, are absent or present only in trace amounts, and the prevalence of Aquificae might be connected with their ability to oxidize the ferrous iron present in CHS sediments. Armatimonadetes, Proteobacteria, Deinococcus-Thermus, Dictyoglomi, and Thermotogae, as well as uncultured bacteria (candidate divisions Oct-Spa1-106, GAL15, and OPB56), were numerous, and Cyanobacteria were present in low numbers. Archaea (less than 8% of the total community of each tested spring) belonged to Bathyarchaeota, Aigarchaeota, and Thaumarchaeota. The geographical location and the predominantly autotrophic microbial community, built on mechanisms other than the sulfur cycle-based ones, make CHS a special and unique terrestrial geothermal ecosystem.
Collapse
|
Journal Article |
5 |
12 |
8
|
Engel NW, Reinert J, Borchert NM, Panagiota V, Gabdoulline R, Thol F, Heuser M, Fiedler W. Newly diagnosed isolated myeloid sarcoma-paired NGS panel analysis of extramedullary tumor and bone marrow. Ann Hematol 2020; 100:499-503. [PMID: 33108522 PMCID: PMC7817572 DOI: 10.1007/s00277-020-04313-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/15/2020] [Indexed: 11/15/2022]
Abstract
Isolated myeloid sarcoma (MS) is a rare malignancy in which myeloid blast forms tumors at various locations while the bone marrow (BM) remains cytomorphologically free from disease. We analyzed isolated MS from four patients and their BMs at initial diagnosis and follow-up, using a custom next-generation sequencing (NGS) panel. We observed possible clonal evolution and a clonal hematopoiesis of indeterminate potential (CHIP)-like finding in the BM of one of three cases with detectable mutations. Clinical presentation of one patient suggested extramedullary confined homing of blasts to distal sites in the relapse situation still sparing the BM. In summary, our findings shall motivate future work regarding signals of extramedullary blast trafficking and clonal evolution in MS.
Collapse
|
Journal Article |
5 |
10 |
9
|
Ramos RTJ, Carneiro AR, Azevedo V, Schneider MP, Barh D, Silva A. Simplifier: a web tool to eliminate redundant NGS contigs. Bioinformation 2012; 8:996-9. [PMID: 23275695 PMCID: PMC3524941 DOI: 10.6026/97320630008996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Modern genomic sequencing technologies produce a large amount of data with reduced cost per base; however, this data consists of short reads. This reduction in the size of the reads, compared to those obtained with previous methodologies, presents new challenges, including a need for efficient algorithms for the assembly of genomes from short reads and for resolving repetitions. Additionally after abinitio assembly, curation of the hundreds or thousands of contigs generated by assemblers demands considerable time and computational resources. We developed Simplifier, a stand-alone software that selectively eliminates redundant sequences from the collection of contigs generated by ab initio assembly of genomes. Application of Simplifier to data generated by assembly of the genome of Corynebacterium pseudotuberculosis strain 258 reduced the number of contigs generated by ab initio methods from 8,004 to 5,272, a reduction of 34.14%; in addition, N50 increased from 1 kb to 1.5 kb. Processing the contigs of Escherichia coli DH10B with Simplifier reduced the mate-paired library 17.47% and the fragment library 23.91%. Simplifier removed redundant sequences from datasets produced by assemblers, thereby reducing the effort required for finalization of genome assembly in tests with data from Prokaryotic organisms. AVAILABILITY Simplifier is available at http://www.genoma.ufpa.br/rramos/softwares/simplifier.xhtmlIt requires Sun jdk 6 or higher.
Collapse
|
research-article |
13 |
10 |
10
|
Koppolu A, Maksym RB, Paskal W, Machnicki M, Rak B, Pępek M, Garbicz F, Pełka K, Kuśmierczyk Z, Jacko J, Rydzanicz M, Banach-Orłowska M, Stokłosa T, Płoski R, Malejczyk J, Włodarski PK. Epithelial Cells of Deep Infiltrating Endometriosis Harbor Mutations in Cancer Driver Genes. Cells 2021; 10:749. [PMID: 33805315 PMCID: PMC8065889 DOI: 10.3390/cells10040749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Endometriosis is an inflammatory condition manifested by the presence of endometrial-like tissue outside of the uterine cavity. The most common clinical presentations of endometriosis are dysmenorrhea, infertility, and severe pelvic pain. Few hypotheses attempt to explain the pathogenesis of endometriosis; however, none of the theories have been fully confirmed or considered universal. We examined somatic mutations in eutopic endometrium samples, deep endometriotic nodules and peripheral blood from 13 women with deep endometriosis of the rectovaginal space. Somatic variants were identified in laser microdissected samples using next-generation sequencing. A custom panel of 1296 cancer-related genes was employed, and selected genes representing cancer drivers and non-drivers for endometrial and ovarian cancer were thoroughly investigated. All 59 detected somatic variants were of low mutated allele frequency (<10%). In deep ectopic lesions, detected variants were significantly more often located in cancer driver genes, whereas in eutopic endometrium, there was no such distribution. Our results converge with other reports, where cancer-related mutations were found in endometriosis without cancer, particularly recurrent KRAS mutations. Genetic alterations located in ectopic endometriotic nodules could contribute to their formation; nevertheless, to better understand the pathogenesis of this disease, more research in this area must be performed.
Collapse
|
research-article |
4 |
10 |
11
|
Staphylococcus arlettae Genomics: Novel Insights on Candidate Antibiotic Resistance and Virulence Genes in an Emerging Opportunistic Pathogen. Microorganisms 2019; 7:microorganisms7110580. [PMID: 31752379 PMCID: PMC6920755 DOI: 10.3390/microorganisms7110580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Coagulase Negative Staphylococci (CoNS) are becoming increasingly recognized as an important cause of human and animal infections. Notwithstanding their clinical relevance, annotation of genes potentially involved in pathogenicity and/or antibiotic resistance in the CoNS species Staphylococcus arlettae (SAR) is currently very limited. In the current work we describe the genome of a novel methicillin resistant isolate of SAR, which we named Bari, and present a comprehensive analysis of predicted antibiotic resistance profiles and virulence determinants for all the 22 currently available SAR genomes. By comparing predicted antibiotic resistance and virulence-associated genes with those obtained from a manual selection of 148 bacterial strains belonging to 14 different species of staphylococci and to two “outgroup” species, Bacillus subtilis (BS) and Macrococcus caseoliticus (MC), we derived some interesting observations concerning the types and number of antibiotic resistance-related and virulence-like genes in SAR. Interestingly, almost 50% of the putative antibiotic resistance determinants identified in this work, which include the clinically relevant mec, van, and cls genes, were shared among all the SAR strains herein considered (Bari included). Moreover, comparison of predicted antibiotic resistance profiles suggest that SAR is closely related to well-known pathogenic Staphylococcus species, such as Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE). A similar analysis of predicted virulence factors, revealed that several genes associated with pathogenesis (including, for example, ica, nuc, and ssp), which are commonly found in the genomes of pathogenic staphylococci such as Staphylococcus haemolyticus (SH) and Staphylococcus saprophyticus (SS), are observed also in the SAR strains for which a genomic sequence is available. All in all, we believe that the analyses presented in the current study, by providing a consistent and comprehensive annotation of virulence and antibiotic resistance-related genes in SAR, can constitute a valuable resource for the study of molecular mechanisms of opportunistic pathogenicity in this species.
Collapse
|
Journal Article |
6 |
9 |
12
|
Sominina A, Danilenko D, Komissarov A, Karpova L, Pisareva M, Fadeev A, Konovalova N, Eropkin M, Stolyarov K, Shtro A, Burtseva E, Lioznov D. Resurgence of Influenza Circulation in the Russian Federation during the Delta and Omicron COVID-19 Era. Viruses 2022; 14:1909. [PMID: 36146716 PMCID: PMC9506591 DOI: 10.3390/v14091909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Influenza circulation was substantially reduced after March 2020 in the European region and globally due to the wide introduction of non-pharmaceutical interventions (NPIs) against COVID-19. The virus, however, has been actively circulating in natural reservoirs. In summer 2021, NPIs were loosened in Russia, and influenza activity resumed shortly thereafter. Here, we summarize the epidemiological and virological data on the influenza epidemic in Russia in 2021-2022 obtained by the two National Influenza Centers. We demonstrate that the commonly used baseline for acute respiratory infection (ARI) is no longer sufficiently sensitive and BL for ILI incidence was more specific for early recognition of the epidemic. We also present the results of PCR detection of influenza, SARS-CoV-2 and other respiratory viruses as well as antigenic and genetic analysis of influenza viruses. Influenza A(H3N2) prevailed this season with influenza B being detected at low levels at the end of the epidemic. The majority of A(H3N2) viruses were antigenically and genetically homogenous and belonged to the clade 3C.2a1b.2a.2 of the vaccine strain A/Darwin/9/2021 for the season 2022-2023. All influenza B viruses belonged to the Victoria lineage and were similar to the influenza B/Austria/1359417/2021 virus. No influenza A(H1N1)pdm09 and influenza B/Yamagata lineage was isolated last season.
Collapse
|
research-article |
3 |
8 |
13
|
Araujo NDS, Arias MC. Mitochondrial genome characterization of Melipona bicolor: Insights from the control region and gene expression data. Gene 2019; 705:55-59. [PMID: 31002891 DOI: 10.1016/j.gene.2019.04.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
The stingless bee Melipona bicolor is the only bee in which true polygyny occurs. Its mitochondrial genome was first sequenced in 2008, but it was incomplete and no information about its transcription was known. We combined short and long reads of M. bicolor DNA with RNASeq data to obtain insights about mitochondrial evolution and gene expression in bees. The complete genome has 15,001 bp, including a control region of 255 bp that contains all conserved structures described in honeybees with the highest AT content reported so far for bees (98.1%), displaying a compact but functional region. Gene expression control is similar to other insects however unusual patterns of expression may suggest the existence of different isoforms for the mitochondrially encoded 12S rRNA. Results reveal unique and shared features of the mitochondrial genome in terms of sequence evolution and gene expression making M. bicolor an interesting model to study mitochondrial genomic evolution.
Collapse
|
Journal Article |
6 |
7 |
14
|
Lin MY, Koppers N, Denton A, Schlüter U, Weber APM. Whole genome sequencing and assembly data of Moricandia moricandioides and M. arvensis. Data Brief 2021; 35:106922. [PMID: 33748364 PMCID: PMC7966999 DOI: 10.1016/j.dib.2021.106922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 11/29/2022] Open
Abstract
Moricandia is a genus belonging to the family Brassicaceae. C3 and C3—C4 photosynthesis Moricandia species exist in a close phylogenetic proximity, as well as to Brassica crops. Here, we performed PacBio genome sequencing on M. moricandioides and M. arvensis. The genomes were assembled using Flye assembler, then polished with Illumina reads and reduced duplication with Purge Haplotigs. The total length of genome assemblies of M. moricandioides and M. arvensis was 498 Mbp and 759 Mbp, respectively. These data will be useful for studies of the genetic control of C3—C4 characteristics, therefore gaining new insights into the early evolutionary steps of C4 photosynthesis. Further, it can be integrated into Brassica crop breeding. The data can be accessed at ENA under the project number PRJEB39764.
Collapse
|
Journal Article |
4 |
6 |
15
|
Olech M, Ropka-Molik K, Szmatoła T, Piórkowska K, Kuźmak J. Transcriptome Analysis for Genes Associated with Small Ruminant Lentiviruses Infection in Goats of Carpathian Breed. Viruses 2021; 13:v13102054. [PMID: 34696484 DOI: 10.3390/v13102054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Small ruminant lentiviruses (SRLV) are economically important viral pathogens of sheep and goats. SRLV infection may interfere in the innate and adaptive immunity of the host, and genes associated with resistance or susceptibility to infection with SRLV have not been fully recognized. The presence of animals with relatively high and low proviral load suggests that some host factors are involved in the control of virus replication. To better understand the role of the genes involved in the host response to SRLV infection, RNA sequencing (RNA-seq) method was used to compare whole gene expression profiles in goats carrying both a high (HPL) and low (LPL) proviral load of SRLV and uninfected animals. Data enabled the identification of 1130 significant differentially expressed genes (DEGs) between control and LPL groups: 411 between control and HPL groups and 1434 DEGs between HPL and LPL groups. DEGs detected between the control group and groups with a proviral load were found to be significantly enriched in several gene ontology (GO) terms, including an integral component of membrane, extracellular region, response to growth factor, inflammatory and innate immune response, transmembrane signaling receptor activity, myeloid differentiation primary response gene 88 (MyD88)-dependent toll-like receptor signaling pathway as well as regulation of cytokine secretion. Our results also demonstrated significant deregulation of selected pathways in response to viral infection. The presence of SRLV proviral load in blood resulted in the modification of gene expression belonging to the toll-like receptor signaling pathway, the tumor necrosis factor (TNF) signaling pathway, the cytokine-cytokine receptor interaction, the phagosome, the Ras signaling pathway, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) (PI3K-Akt) signaling pathway and rheumatoid arthritis. It is worth mentioning that the most predominant in all pathways were genes represented by toll-like receptors, tubulins, growth factors as well as interferon gamma receptors. DEGs detected between LPL and HPL groups were found to have significantly enriched regulation of signaling receptor activity, the response to toxic substances, nicotinamide adenine dinucleotide (NADH) dehydrogenase complex assembly, cytokine production, vesicle, and vacuole organization. In turn, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway tool classified DEGs that enrich molecular processes such as B and T-cell receptor signaling pathways, natural killer cell-mediated cytotoxicity, Fc gamma R-mediated phagocytosis, toll-like receptor signaling pathways, TNF, mammalian target of rapamycin (mTOR) signaling and forkhead box O (Foxo) signaling pathways, etc. Our data indicate that changes in SRLV proviral load induced altered expression of genes related to different biological processes such as immune response, inflammation, cell locomotion, and cytokine production. These findings provide significant insights into defense mechanisms against SRLV infection. Furthermore, these data can be useful to develop strategies against SRLV infection by selection of animals with reduced SRLV proviral concentration that may lead to a reduction in the spread of the virus.
Collapse
|
|
4 |
5 |
16
|
Itzhar-Baikian N, Boisseau P, Joly B, Veyradier A. Updated overview on von Willebrand disease: focus on the interest of genotyping. Expert Rev Hematol 2019; 12:1023-1036. [PMID: 31536379 DOI: 10.1080/17474086.2019.1670638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Von Willebrand disease (VWD) is the most common inherited bleeding disorder, characterized by a quantitative or qualitative defect of von Willebrand factor (VWF), a multimeric glycoprotein crucial for primary hemostasis and coagulation. VWD pathophysiology is heterogeneous as it includes several types and subtypes which therapeutic management is different. The mainstays of VWD treatment are desmopressin and replacement therapy based on both plasma-derived concentrates and a recently developed recombinant VWF. VWD definitive diagnosis is achieved by a battery of phenotypic biologic assays and genotyping is currently performed mostly for research.Areas covered: This narrative review will firstly present a general overview on VWD epidemiology, pathophysiology, classification, clinics, phenotypic biologic diagnosis, and treatment. Secondly, a focus on VWD genotyping will be presented with specific emphasis on the evolution of its technical aspects, its applications for research dedicated to a better understanding of VWD pathophysiology and epidemiology and its interest in both a faster diagnosis and an optimal treatment of VWD.Expert opinion: Based on analysis of the literature, it can be concluded that the fast evolution of genetic techniques together with the development of innovating treatments may significantly change diagnostic flow charts for VWD and their use for specific and personalized treatment.
Collapse
|
Review |
6 |
5 |
17
|
Manuto L, Grazioli M, Spitaleri A, Fontana P, Bianco L, Bertolotti L, Bado M, Mazzotti G, Bianca F, Onelia F, Lorenzin G, Simeoni F, Lazarevic D, Franchin E, Vecchio CD, Dorigatti I, Tonon G, Cirillo DM, Lavezzo E, Crisanti A, Toppo S. Rapid SARS-CoV-2 Intra-Host and Within-Household Emergence of Novel Haplotypes. Viruses 2022; 14:399. [PMID: 35215992 PMCID: PMC8877413 DOI: 10.3390/v14020399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In February 2020, the municipality of Vo', a small town near Padua (Italy) was quarantined due to the first coronavirus disease 19 (COVID-19)-related death detected in Italy. To investigate the viral prevalence and clinical features, the entire population was swab tested in two sequential surveys. Here we report the analysis of 87 viral genomes, which revealed that the unique ancestor haplotype introduced in Vo' belongs to lineage B, carrying the mutations G11083T and G26144T. The viral sequences allowed us to investigate the viral evolution while being transmitted within and across households and the effectiveness of the non-pharmaceutical interventions implemented in Vo'. We report, for the first time, evidence that novel viral haplotypes can naturally arise intra-host within an interval as short as two weeks, in approximately 30% of the infected individuals, regardless of symptom severity or immune system deficiencies. Moreover, both phylogenetic and minimum spanning network analyses converge on the hypothesis that the viral sequences evolved from a unique common ancestor haplotype that was carried by an index case. The lockdown extinguished both the viral spread and the emergence of new variants.
Collapse
|
research-article |
3 |
5 |
18
|
Xu S, Guan Z, Huang Q, Xu L, Vierstraete A, Dumont HJ, Lin Q. The mitochondrial genome of Atrocalopteryx melli Ris, 1912 (Zygoptera: Calopterygidae) via Ion Torrent PGM NGS sequencing. Mitochondrial DNA B Resour 2018; 3:115-117. [PMID: 33474087 PMCID: PMC7800031 DOI: 10.1080/23802359.2017.1413307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/01/2017] [Indexed: 11/03/2022] Open
Abstract
The mitochondrial genome of Atrocalopteryx melli was sequenced and assembled via Next-Generation Sequencing (NGS) and iteratively assembly process with a reference seed. This genome is 15,562 bp long and A + T biased (71%), with 37 genes arranged in common order of Odonata. All protein-coding genes are initiated by typical "ATN" codon, and 9 genes are terminated with a complete stop codon, except nad4, nad5, cox2, and cox3, which are terminated with an incomplete codon "T(aa)". The S5 intergenic spacer is absent in this genome, supporting that lacking of S5 as a specific character for damselflies. The A + T rich region of A. melli is 267 bp longer than that of A. atrata. This mitogenome provides new molecular information for understanding of A. melli and Atrocalopteryx.
Collapse
|
research-article |
7 |
4 |
19
|
AMLVaran: a software approach to implement variant analysis of targeted NGS sequencing data in an oncological care setting. BMC Med Genomics 2020; 13:17. [PMID: 32019565 PMCID: PMC7001226 DOI: 10.1186/s12920-020-0668-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Next-Generation Sequencing (NGS) enables large-scale and cost-effective sequencing of genetic samples in order to detect genetic variants. After successful use in research-oriented projects, NGS is now entering clinical practice. Consequently, variant analysis is increasingly important to facilitate a better understanding of disease entities and prognoses. Furthermore, variant calling allows to adapt and optimize specific treatments of individual patients, and thus is an integral part of personalized medicine.However, the analysis of NGS data typically requires a number of complex bioinformatics processing steps. A flexible and reliable software that combines the variant analysis process with a simple, user-friendly interface is therefore highly desirable, but still lacking. RESULTS With AMLVaran (AML Variant Analyzer), we present a web-based software, that covers the complete variant analysis workflow of targeted NGS samples. The software provides a generic pipeline that allows free choice of variant calling tools and a flexible language (SSDL) for filtering variant lists. AMLVaran's interactive website presents comprehensive annotation data and includes curated information on relevant hotspot regions and driver mutations. A concise clinical report with rule-based diagnostic recommendations is generated.An AMLVaran configuration with eight variant calling tools and a complex scoring scheme, based on the somatic variant calling pipeline appreci8, was used to analyze three datasets from AML and MDS studies with 402 samples in total. Maximum sensitivity and positive predictive values were 1.0 and 0.96, respectively. The tool's usability was found to be satisfactory by medical professionals. CONCLUSION Coverage analysis, reproducible variant filtering and software usability are important for clinical assessment of variants. AMLVaran performs reliable NGS variant analyses and generates reports fulfilling the requirements of a clinical setting. Due to its generic design, the software can easily be adapted for use with different targeted panels for other tumor entities, or even for whole-exome data. AMLVaran has been deployed to a public web server and is distributed with Docker scripts for local use.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
4 |
20
|
Kringel D, Lötsch J. Next-generation sequencing of human opioid receptor genes based on a custom AmpliSeq™ library and ion torrent personal genome machine. Clin Chim Acta 2016; 463:32-38. [PMID: 27725223 PMCID: PMC5352731 DOI: 10.1016/j.cca.2016.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/12/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The opioid system is involved in the control of pain, reward, addictive behaviors and vegetative effects. Opioids exert their pharmacological actions through the agonistic binding at opioid receptors and variation in the coding genes has been found to modulate opioid receptor expression or signaling. However, a limited selection of functional opioid receptor variants is perceived as insufficient in providing a genetic diagnosis of clinical phenotypes and therefore, unrestricted access to opioid receptor genetics is required. METHODS Next-generation sequencing (NGS) workflow was based on a custom AmpliSeq™ panel and designed for sequencing of human genes related to the opioid receptor group (OPRM1, OPRD1, OPRK1, SIGMA1, OPRL1) on an Ion PGM™ Sequencer. A cohort of 79 previously studied chronic pain patients was screened to evaluate and validate the detection of exomic sequences of the coding genes with 25 base pair exon padding. In-silico analysis was performed using SNP and Variation Suite® software. RESULTS The amplicons covered approximately 90% of the target sequence. A median of 2.54×106 reads per run was obtained generating a total of 35,447 nucleotide reads from each DNA sample. This identified approximately 100 chromosome loci where nucleotides deviated from the reference sequence GRCh37 hg19, including functional variants such as the OPRM1 rs1799971 SNP (118 A>G) as the most scientifically regarded variant or rs563649 SNP coding for μ-opioid receptor splice variants. Correspondence between NGS and Sanger derived nucleotide sequences was 100%. CONCLUSION Results suggested that the NGS approach based on AmpliSeq™ libraries and Ion PGM sequencing is a highly efficient mutation detection method. It is suitable for large-scale sequencing of opioid receptor genes. The method includes the variants studied so far for functional associations and adds a large amount of genetic information as a basis for complete analysis of human opioid receptor genetics and its functional consequences.
Collapse
|
Journal Article |
9 |
4 |
21
|
Petrukhina NB, Zorina OA, Shikh EV, Kartysheva EV. [Microbiocenosis of subgingival biofilm and intestinal content in chronic periodontal disease in patients with metabolic syndrome]. STOMATOLOGII︠A︡ 2018; 96:11-19. [PMID: 28858273 DOI: 10.17116/stomat201796411-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of the study was to assess correlations of subgingival biofilm and intestinal microbiota in patients with chronic periodontal disease (CPD) and metabolic syndrome (MS). The study included 80 patients divided in 2 groups: 40 healthy individuals with no signs of periodontal disease and 40 patients with CPD and MS. Oral and intestinal microbial consortia compositions were revealed using deep sequencing libraries of 16S rDNA. The study showed than the qualitative composition of the intestinal microbiome in patients with CPD differ significantly from the microbiome of controls. Real-time PCR of subgingival microflora in CPD patients revealed high content of P. gingivalis, T. forsythia and T. denticola, while in intestinal microbiome dominated representatives of Enterobacteriaceae and Eubacteriaceae families with signs of intestinal dysbiosis mostly associated with the decrease of protective species.
Collapse
|
Journal Article |
7 |
3 |
22
|
Cavaillé M, Crampon D, Achim V, Bubien V, Uhrhammer N, Privat M, Ponelle-Chachuat F, Gay-Bellile M, Lepage M, Ouedraogo ZG, Jones N, Bidet Y, Sevenet N, Bignon YJ. Diagnosis of PTEN mosaicism: the relevance of additional tumor DNA sequencing. A case report and review of the literature. BMC Med Genomics 2023; 16:166. [PMID: 37442961 PMCID: PMC10339495 DOI: 10.1186/s12920-023-01600-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND PTEN hamartoma syndrome (PHTS) is an autosomal dominant disorder characterized by pathogenic variants in the tumor suppressor gene phosphatase and tensin homolog (PTEN). It is associated with an increased risk of muco-cutaneous features, hamartomatous tumors, and cancers. Mosaicism has been found in a few cases of patients with de novo PHTS, identified from blood samples. We report a PHTS patient with no variant identified from blood sample. Constitutional PTEN mosaicism was detected through sequencing of DNA from different tumoral and non-tumoral samples. CASE PRESENTATION Our patient presented clinical Cowden syndrome at 56 years of age, with three major criteria (macrocephaly, Lhermitte Duclos disease, oral papillomatosis), and two minor criteria (structural thyroid lesions, esophageal glycogenic acanthosis). Deep sequencing of PTEN of blood leukocytes did not reveal any pathogenic variants. Exploration of tumoral (colonic ganglioneuroma, esophageal papilloma, diapneusia fibroids) and non-tumoral stomach tissues found the same PTEN pathogenic variant (NM_000314.4 c.389G > A; p.(Arg130Gln)), with an allelic frequency of 12 to 59%, confirming genomic mosaicism for Cowden syndrome. CONCLUSIONS This case report, and review of the literature, suggests that systematic tumor analysis is essential for patients presenting PTEN hamartoma syndrome in the absence of any causal variant identified in blood leukocytes, despite deep sequencing. In 65 to 70% of cases of clinical Cowden syndrome, no pathogenic variant in the PTEN is observed in blood samples: mosaicism may explain a significant number of these patients. Tumor analysis would improve our knowledge of the frequency of de novo variations in this syndrome. Finally, patients with mosaicism for PTEN may not have a mild phenotype; medical care identical to that of heterozygous carriers should be offered.
Collapse
|
Review |
2 |
3 |
23
|
De Jonghe K, Haegeman A, Foucart Y, Maes M. The Use of High-Throughput Sequencing for the Study and Diagnosis of Plant Viruses and Viroids in Pollen. Methods Mol Biol 2018; 1746:131-149. [PMID: 29492891 DOI: 10.1007/978-1-4939-7683-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This protocol details the wet lab preparation, extraction of fruit pollen samples, and analysis of the sequencing data following Illumina NextSeq small and total RNA sequencing. The protocol was developed for virus and viroid detection using NGS sequencing and was based on the results of a comparison between different extraction methods followed by yield, RNA purity, and integrity assessment. Moreover, the advantage of an additional ribosomal (r)RNA depletion step to the total RNA extraction protocol was evaluated. The smallRNA procedure is the preferred method of choice. If the total RNA protocol is chosen, the use of the mirVana kit followed by an rRNA depletion step is the best option. The library preparation and sequencing steps were outsourced. As a final step in the data analysis, the VirusDetect software was used to detect the viruses and viroids in the pollen samples.
Collapse
|
|
7 |
3 |
24
|
Elli EM, Mauri M, D'Aliberti D, Crespiatico I, Fontana D, Redaelli S, Pelucchi S, Spinelli S, Manghisi B, Cavalca F, Aroldi A, Ripamonti A, Ferrari S, Palamini S, Mottadelli F, Massimino L, Ramazzotti D, Cazzaniga G, Piperno A, Gambacorti-Passerini C, Piazza R. Idiopathic erythrocytosis: a germline disease? Clin Exp Med 2024; 24:11. [PMID: 38244120 PMCID: PMC10799805 DOI: 10.1007/s10238-023-01283-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 01/22/2024]
Abstract
Polycythemia Vera (PV) is typically caused by V617F or exon 12 JAK2 mutations. Little is known about Polycythemia cases where no JAK2 variants can be detected, and no other causes identified. This condition is defined as idiopathic erythrocytosis (IE). We evaluated clinical-laboratory parameters of a cohort of 56 IE patients and we determined their molecular profile at diagnosis with paired blood/buccal-DNA exome-sequencing coupled with a high-depth targeted OncoPanel to identify a possible underling germline or somatic cause. We demonstrated that most of our cohort (40/56: 71.4%) showed no evidence of clonal hematopoiesis, suggesting that IE is, in large part, a germline disorder. We identified 20 low mutation burden somatic variants (Variant allelic fraction, VAF, < 10%) in only 14 (25%) patients, principally involving DNMT3A and TET2. Only 2 patients presented high mutation burden somatic variants, involving DNMT3A, TET2, ASXL1 and WT1. We identified recurrent germline variants in 42 (75%) patients occurring mainly in JAK/STAT, Hypoxia and Iron metabolism pathways, among them: JAK3-V722I and HIF1A-P582S; a high fraction of patients (48.2%) resulted also mutated in homeostatic iron regulatory gene HFE-H63D or C282Y. By generating cellular models, we showed that JAK3-V722I causes activation of the JAK-STAT5 axis and upregulation of EPAS1/HIF2A, while HIF1A-P582S causes suppression of hepcidin mRNA synthesis, suggesting a major role for these variants in the onset of IE.
Collapse
|
research-article |
1 |
3 |
25
|
Sim WC, Lee CY, Richards R, Bettens K, Mottier V, Goh LL. Validation of a next generation sequencing assay for BRCA1, BRCA2, CHEK2 and PALB2 genetic testing. Exp Mol Pathol 2020; 116:104483. [PMID: 32531196 DOI: 10.1016/j.yexmp.2020.104483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
Abstract
BRCA1, BRCA2, CHEK2 and PALB2 genes are associated with hereditary breast and ovarian cancer syndrome. Genetic testing of these genes is of increasing importance to guide therapeutic and management decisions. In this study, we evaluated the performance of a next generation sequencing (NGS) assay for the complete analysis of BRCA1, BRCA2, CHEK2 and PALB2 genes using Agilent's SureMASTR BRCA Screen that enabled the detection of single nucleotide variants (SNVs), small insertions/deletions (indels) and copy number variations (CNVs) in a single-tube PCR based library preparation. The results showed 100% sensitivity and specificity on a set of 52 known samples from de-identified patients and external quality assessment program. A concordance rate of 87.5% was achieved in the comparison of variant classification with the external laboratories. The high accuracy of the assay supports the use of SureMASTR BRCA Screen in clinical diagnostic laboratories (SureMASTR BRCA Screen is for research use only, not for use in diagnostic procedures).
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
2 |