Khormali M, Farahpour MR. The navel nanoethosomal formulation of gamma-oryzanol attenuates testicular ischemia/reperfusion damages.
Heliyon 2024;
10:e28687. [PMID:
38633627 PMCID:
PMC11021891 DOI:
10.1016/j.heliyon.2024.e28687]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Testicular torsion reduces blood flow to testes and induces tissue ischemia. Antioxidant can have pivotal roles in alleviation of the effects of torsion/reperfusion. Gamma-oryzanol (γ-Oryzanol) has several pharmacological properties such as antioxidant and anti-apoptosis that can be used in this way. This study was conducted to evaluate the effects of nanoethosomal formulation of gamma-oryzanol (γ-Oryzanol-NEs) on testicular damages in a mouse model of ischemia/reperfusion damage. Following induction of ischemia/reperfusion, the mice were treated with γ-Oryzanol and γ-Oryzanol-NEs (6 mg/kg) in times of 3 h and 6 h. The expression of positive cells of TUNEL, superoxide dismutase (SOD), glutathione peroxidase (GPx), heat shock protein-70 (HSP70) and caspase 3 and histopathological parameters were assessed. The results showed higher expression of positive cells of TUNEL, HSP70 and caspase 3 and lower expressions of SOD and GPx in control mice compared with those treated with γ-Oryzanol-NEs (P = 0.001). The treatment with γ-Oryzanol-NEs could decrease pathological damages and the expression of positive cells of TUNEL, HSP70 and caspase 3 and increase the expressions of SOD and GPx. In conclusion, γ-Oryzanol-NEs could have the protective effects on torsion/reperfusion by decreasing apoptosis and increasing antioxidant status in a mouse model.
Collapse