1
|
Emery EC, Luiz AP, Wood JN. Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin Ther Targets 2016; 20:975-83. [PMID: 26941184 PMCID: PMC4950419 DOI: 10.1517/14728222.2016.1162295] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduction: Chronic pain is a massive clinical problem. We discuss the potential of subtype selective sodium channel blockers that may provide analgesia with limited side effects. Areas covered: Sodium channel subtypes have been linked to human pain syndromes through genetic studies. Gain of function mutations in Nav1.7, 1.8 and 1.9 can cause pain, whilst loss of function Nav1.7 mutations lead to loss of pain in otherwise normal people. Intriguingly, both human and mouse Nav1.7 null mutants have increased opioid drive, because naloxone, an opioid antagonist, can reverse the analgesia associated with the loss of Nav1.7 expression. Expert Opinion: We believe there is a great future for sodium channel antagonists, particularly Nav1.7 antagonists in treating most pain syndromes. This review deals with recent attempts to develop specific sodium channel blockers, the mechanisms that underpin the Nav1.7 null pain-free phenotype and new routes to analgesia using, for example, gene therapy or combination therapy with subtype specific sodium channel blockers and opioids. The use of selective Nav1.7 antagonists together with either enkephalinase inhibitors or low dose opioids has the potential for side effect-free analgesia, as well as an important opioid sparing function that may be clinically very significant.
Collapse
|
Review |
9 |
141 |
2
|
Xu H, Li T, Rohou A, Arthur CP, Tzakoniati F, Wong E, Estevez A, Kugel C, Franke Y, Chen J, Ciferri C, Hackos DH, Koth CM, Payandeh J. Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin. Cell 2019; 176:702-715.e14. [PMID: 30661758 DOI: 10.1016/j.cell.2018.12.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/11/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (Nav) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human Nav1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from Nav1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the Nav1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective Nav channel antagonists.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
123 |
3
|
Hameed S. Na v1.7 and Na v1.8: Role in the pathophysiology of pain. Mol Pain 2019; 15:1744806919858801. [PMID: 31172839 PMCID: PMC6589956 DOI: 10.1177/1744806919858801] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/25/2019] [Accepted: 05/30/2019] [Indexed: 01/25/2023] Open
Abstract
Chronic pain is a significant unmet medical problem. Current research regarding sodium channel function in pathological pain is advancing with the hope that it will enable the development of isoform-specific sodium channel blockers, a promising treatment for chronic pain. Before advancements in the pharmacological field, an elucidation of the roles of Nav1.7 and Nav1.8 in the pathophysiology of pain states is required. Thus, the aim of this report is to present what is currently known about the contributions of these sodium channel subtypes in the pathophysiology of neuropathic and inflammatory pain. The electrophysiological properties and localisation of sodium channel isoforms is discussed. Research concerning the genetic links of Nav1.7 and Nav1.8 in acquired neuropathic and inflammatory pain states from the scientific literature in this field is reported. The role of Nav1.7 and Nav1.8 in the generation and maintenance of abnormal neuronal electrogenesis and hyperexcitability highlights the importance of these channels in the development of pathological pain. However, further research in this area is required to fully elucidate the roles of Nav1.7 and Nav1.8 in the pathophysiology of pain for the development of subtype-specific sodium channel blockers.
Collapse
|
Review |
6 |
110 |
4
|
Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell 2017; 8:401-438. [PMID: 28150151 PMCID: PMC5445024 DOI: 10.1007/s13238-017-0372-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/09/2017] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav) channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
106 |
5
|
Theile JW, Cummins TR. Recent developments regarding voltage-gated sodium channel blockers for the treatment of inherited and acquired neuropathic pain syndromes. Front Pharmacol 2011; 2:54. [PMID: 22007172 PMCID: PMC3185237 DOI: 10.3389/fphar.2011.00054] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/12/2011] [Indexed: 12/19/2022] Open
Abstract
Chronic and neuropathic pain constitute significant health problems affecting millions of individuals each year. Pain sensations typically originate in sensory neurons of the peripheral nervous system which relay information to the central nervous system (CNS). Pathological pain sensations can arise as result of changes in excitability of these peripheral sensory neurons. Voltage-gated sodium channels are key determinants regulating action potential generation and propagation; thus, changes in sodium channel function can have profound effects on neuronal excitability and pain signaling. At present, most of the clinically available sodium channel blockers used to treat pain are non-selective across sodium channel isoforms and can contribute to cardio-toxicity, motor impairments, and CNS side effects. Numerous strides have been made over the last decade in an effort to develop more selective and efficacious sodium channel blockers to treat pain. The purpose of this review is to highlight some of the more recent developments put forth by research universities and pharmaceutical companies alike in the pursuit of developing more targeted sodium channel therapies for the treatment of a variety of neuropathic pain conditions.
Collapse
|
Journal Article |
14 |
96 |
6
|
Xia J, Huang N, Huang H, Sun L, Dong S, Su J, Zhang J, Wang L, Lin L, Shi M, Bin J, Liao Y, Li N, Liao W. Voltage-gated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1-mediated upregulation of NHE1. Int J Cancer 2016; 139:2553-69. [PMID: 27529686 DOI: 10.1002/ijc.30381] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
Voltage-gated sodium channels (VGSCs), which are aberrantly expressed in several human cancers, affect cancer cell behavior; however, their role in gastric cancer (GC) and the link between these channels and tumorigenic signaling remain unclear. The aims of this study were to determine the clinicopathological significance and role of the VGSC Nav 1.7 in GC progression and to investigate the associated mechanisms. Here, we report that the SCN9A gene encoding Nav 1.7 was the most abundantly expressed VGSC subtype in GC tissue samples and two GC cell lines (BGC-823 and MKN-28 cells). SCN9A expression levels were also frequently found to be elevated in GC samples compared to nonmalignant tissues by real-time PCR. In the 319 GC specimens evaluated by immunohistochemistry, Nav 1.7 expression was correlated with prognosis, and transporter Na(+) /H(+) exchanger-1 (NHE1) and oncoprotein metastasis-associated in colon cancer-1 (MACC1) expression. Nav 1.7 suppression resulted in reduced voltage-gated sodium currents, decreased NHE1 expression, increased extracellular pH and decreased intracellular pH, and ultimately, reduced invasion and proliferation rates of GC cells and growth of GC xenografts in nude mice. Nav 1.7 inhibition led to reduced MACC1 expression, while MACC1 inhibition resulted in reduced NHE1 expression in vitro and in vivo. Mechanistically, the suppression of Nav 1.7 decreased NF-κB p65 nuclear translocation via p38 activation, thus reducing MACC1 expression. Downregulation of MACC1 decreased c-Jun phosphorylation and subsequently reduced NHE1 expression, whereas the addition of hepatocyte growth factor (HGF), a c-Met physiological ligand, reversed the effect. These results indicate that Nav 1.7 promotes GC progression through MACC1-mediated upregulation of NHE1. Therefore, Nav 1.7 is a potential prognostic marker and/or therapeutic target for GC.
Collapse
|
Journal Article |
9 |
63 |
7
|
Insensitivity to Pain upon Adult-Onset Deletion of Nav1.7 or Its Blockade with Selective Inhibitors. J Neurosci 2018; 38:10180-10201. [PMID: 30301756 DOI: 10.1523/jneurosci.1049-18.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/13/2018] [Accepted: 09/29/2018] [Indexed: 11/21/2022] Open
Abstract
Strong human genetic evidence points to an essential contribution of the voltage-gated sodium channel Nav1.7 to pain sensation: loss of Nav1.7 function leads to congenital insensitivity to pain, whereas gain-of-function mutations in the SCN9A gene that encodes Nav1.7 cause painful neuropathies, such as inherited erythromelalgia, a syndrome characterized by episodic spontaneous pain. Selective Nav1.7 channel blockers thus hold promise as potential painkillers with improved safety and reduced unwanted side effects compared with existing therapeutics. To determine the maximum effect of a theoretically perfectly selective Nav1.7 inhibitor, we generated a tamoxifen-inducible KO mouse model enabling genetic deletion of Nav1.7 from adult mice. Electrophysiological recordings of sensory neurons from these mice following tamoxifen injection demonstrated the loss of Nav1.7 channel current and the resulting decrease in neuronal excitability of small-diameter neurons. We found that behavioral responses to most, but surprisingly not all, modalities of noxious stimulus are abolished following adult deletion of Nav1.7, pointing toward indications where Nav1.7 blockade should be efficacious. Furthermore, we demonstrate that isoform-selective acylsulfonamide Nav1.7 inhibitors show robust analgesic and antinociceptive activity acutely after a single dose in mouse pain models shown to be Nav1.7-dependent. All experiments were done with both male and female mice. Collectively, these data expand the depth of knowledge surrounding Nav1.7 biology as it relates to pain, and provide preclinical proof of efficacy that lays a clear path toward translation for the therapeutic use of Nav1.7-selective inhibitors in humans.SIGNIFICANCE STATEMENT Loss-of-function mutations in the sodium channel Nav1.7 cause congenital insensitivity to pain in humans, making Nav1.7 a top target for novel pain drugs. Targeting Nav1.7 selectively has been challenging, however, in part due to uncertainties in which rodent pain models are dependent on Nav1.7. We have developed and characterized an adult-onset Nav1.7 KO mouse model that allows us to determine the expected effects of a theoretically perfect Nav1.7 blocker. Importantly, many commonly used pain models, such as mechanical allodynia after nerve injury, appear to not be dependent on Nav1.7 in the adult. By defining which models are Nav1.7 dependent, we demonstrate that selective Nav1.7 inhibitors can approximate the effects of genetic loss of function, which previously has not been directly established.
Collapse
|
Journal Article |
7 |
50 |
8
|
Liu Z, Cai T, Zhu Q, Deng M, Li J, Zhou X, Zhang F, Li D, Li J, Liu Y, Hu W, Liang S. Structure and function of hainantoxin-III, a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels isolated from the Chinese bird spider Ornithoctonus hainana. J Biol Chem 2013; 288:20392-403. [PMID: 23703613 DOI: 10.1074/jbc.m112.426627] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we investigated the structure and function of hainantoxin-III (HNTX-III), a 33-residue polypeptide from the venom of the spider Ornithoctonus hainana. It is a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels. HNTX-III suppressed Nav1.7 current amplitude without significantly altering the activation, inactivation, and repriming kinetics. Short extreme depolarizations partially activated the toxin-bound channel, indicating voltage-dependent inhibition of HNTX-III. HNTX-III increased the deactivation of the Nav1.7 current after extreme depolarizations. The HNTX-III·Nav1.7 complex was gradually dissociated upon prolonged strong depolarizations in a voltage-dependent manner, and the unbound toxin rebound to Nav1.7 after a long repolarization. Moreover, analysis of chimeric channels showed that the DIIS3-S4 linker was critical for HNTX-III binding to Nav1.7. These data are consistent with HNTX-III interacting with Nav1.7 site 4 and trapping the domain II voltage sensor in the closed state. The solution structure of HNTX-III was determined by two-dimensional NMR and shown to possess an inhibitor cystine knot motif. Structural analysis indicated that certain basic, hydrophobic, and aromatic residues mainly localized in the C terminus may constitute an amphiphilic surface potentially involved in HNTX-III binding to Nav1.7. Taken together, our results show that HNTX-III is distinct from β-scorpion toxins and other β-spider toxins in its mechanism of action and binding specificity and affinity. The present findings contribute to our understanding of the mechanism of toxin-sodium channel interaction and provide a useful tool for the investigation of the structure and function of sodium channel isoforms and for the development of analgesics.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
46 |
9
|
Novel SCN9A mutations underlying extreme pain phenotypes: unexpected electrophysiological and clinical phenotype correlations. J Neurosci 2015; 35:7674-81. [PMID: 25995458 DOI: 10.1523/jneurosci.3935-14.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The importance of NaV1.7 (encoded by SCN9A) in the regulation of pain sensing is exemplified by the heterogeneity of clinical phenotypes associated with its mutation. Gain-of-function mutations are typically pain-causing and have been associated with inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). IEM is usually caused by enhanced NaV1.7 channel activation, whereas mutations that alter steady-state fast inactivation often lead to PEPD. In contrast, nonfunctional mutations in SCN9A are known to underlie congenital insensitivity to pain (CIP). Although well documented, the correlation between SCN9A genotypes and clinical phenotypes is still unclear. Here we report three families with novel SCN9A mutations. In a multiaffected dominant family with IEM, we found the heterozygous change L245 V. Electrophysiological characterization showed that this mutation did not affect channel activation but instead resulted in incomplete fast inactivation and a small hyperpolarizing shift in steady-state slow inactivation, characteristics more commonly associated with PEPD. In two compound heterozygous CIP patients, we found mutations that still retained functionality of the channels, with two C-terminal mutations (W1775R and L1831X) exhibiting a depolarizing shift in channel activation. Two mutations (A1236E and L1831X) resulted in a hyperpolarizing shift in steady-state fast inactivation. To our knowledge, these are the first descriptions of mutations with some retained channel function causing CIP. This study emphasizes the complex genotype-phenotype correlations that exist for SCN9A and highlights the C-terminal cytoplasmic region of NaV1.7 as a critical region for channel function, potentially facilitating analgesic drug development studies.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
41 |
10
|
Akin EJ, Alsaloum M, Higerd GP, Liu S, Zhao P, Dib-Hajj FB, Waxman SG, Dib-Hajj SD. Paclitaxel increases axonal localization and vesicular trafficking of Nav1.7. Brain 2021; 144:1727-1737. [PMID: 33734317 PMCID: PMC8320304 DOI: 10.1093/brain/awab113] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/09/2021] [Accepted: 03/04/2021] [Indexed: 01/15/2023] Open
Abstract
The microtubule-stabilizing chemotherapy drug paclitaxel (PTX) causes dose-limiting chemotherapy-induced peripheral neuropathy (CIPN), which is often accompanied by pain. Among the multifaceted effects of PTX is an increased expression of sodium channel Nav1.7 in rat and human sensory neurons, enhancing their excitability. However, the mechanisms underlying this increased Nav1.7 expression have not been explored, and the effects of PTX treatment on the dynamics of trafficking and localization of Nav1.7 channels in sensory axons have not been possible to investigate to date. In this study we used a recently developed live imaging approach that allows visualization of Nav1.7 surface channels and long-distance axonal vesicular transport in sensory neurons to fill this basic knowledge gap. We demonstrate concentration and time-dependent effects of PTX on vesicular trafficking and membrane localization of Nav1.7 in real-time in sensory axons. Low concentrations of PTX increase surface channel expression and vesicular flux (number of vesicles per axon). By contrast, treatment with a higher concentration of PTX decreases vesicular flux. Interestingly, vesicular velocity is increased for both concentrations of PTX. Treatment with PTX increased levels of endogenous Nav1.7 mRNA and current density in dorsal root ganglion neurons. However, the current produced by transfection of dorsal root ganglion neurons with Halo-tag Nav1.7 was not increased after exposure to PTX. Taken together, this suggests that the increased trafficking and surface localization of Halo-Nav1.7 that we observed by live imaging in transfected dorsal root ganglion neurons after treatment with PTX might be independent of an increased pool of Nav1.7 channels. After exposure to inflammatory mediators to mimic the inflammatory condition seen during chemotherapy, both Nav1.7 surface levels and vesicular transport are increased for both low and high concentrations of PTX. Overall, our results show that PTX treatment increases levels of functional endogenous Nav1.7 channels in dorsal root ganglion neurons and enhances trafficking and surface distribution of Nav1.7 in sensory axons, with outcomes that depend on the presence of an inflammatory milieu, providing a mechanistic explanation for increased excitability of primary afferents and pain in CIPN.
Collapse
|
Journal Article |
4 |
41 |
11
|
Shcherbatko A, Rossi A, Foletti D, Zhu G, Bogin O, Galindo Casas M, Rickert M, Hasa-Moreno A, Bartsevich V, Crameri A, Steiner AR, Henningsen R, Gill A, Pons J, Shelton DL, Rajpal A, Strop P. Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain. J Biol Chem 2016; 291:13974-13986. [PMID: 27129258 DOI: 10.1074/jbc.m116.725978] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Indexed: 12/19/2022] Open
Abstract
The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.
Collapse
|
Journal Article |
9 |
38 |
12
|
Sun W, Ma M, Yu H, Yu H. Inhibition of lncRNA X inactivate-specific transcript ameliorates inflammatory pain by suppressing satellite glial cell activation and inflammation by acting as a sponge of miR-146a to inhibit Na v 1.7. J Cell Biochem 2018; 119:9888-9898. [PMID: 30129228 DOI: 10.1002/jcb.27310] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022]
Abstract
Long noncoding RNAs (lncRNA) has been validated to participate in nociception in inflammatory pain, presenting as a potential target against anesthesia. Previous research work confirmed the correlation between lncRNA X inactivate-specific transcript (XIST) and inflammation. However, its role in inflammatory pain is undefined. In animal pain models, voltage-gated sodium channels (VGSCs) reportedly participate in neural excitation. In this study, we observed the high expression of XIST and VGSC 1.7 (Nav 1.7) in the dorsal root ganglion (DRG) of the complete Freund's adjuvant (CFA)-induced rat inflammatory pain model. Furthermore, XIST inhibition alleviated pain behavior and the activation of DRG satellite glial cells by suppressing glial fibrillary acidic protein (GFAP) expression, as well as inflammatory cytokine levels of interleukin-6 and tumor necrosis factor-α. XIST downregulation increased the mechanical pain threshold in an inflammatory pain model. Moreover, the expression of miR-146a was decreased in CFA rats. In vitro, XIST acted as a sponge of miR-146a, which targeted Nav 1.7 via bioinformatic prediction, luciferase reporter, and pull-down assay. More importantly, activation of the Nav 1.7 pathway or miR-146 depression both reversed XIST knockdown-inhibited satellite glial cell activation and inflammatory pain in CFA rats. These results suggest that cessation of XIST may ameliorate inflammatory pain by acting as a sponge of miR-146a to inhibit Nav1.7, implying a promising strategy against inflammatory pain.
Collapse
|
Journal Article |
7 |
36 |
13
|
Huang G, Liu D, Wang W, Wu Q, Chen J, Pan X, Shen H, Yan N. High-resolution structures of human Na v1.7 reveal gating modulation through α-π helical transition of S6 IV. Cell Rep 2022; 39:110735. [PMID: 35476982 DOI: 10.1016/j.celrep.2022.110735] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 04/02/2022] [Indexed: 11/26/2022] Open
Abstract
Nav1.7 represents a preeminent target for next-generation analgesics for its critical role in pain sensation. Here we report a 2.2-Å resolution cryo-EM structure of wild-type (WT) Nav1.7 complexed with the β1 and β2 subunits that reveals several previously indiscernible cytosolic segments. Reprocessing of the cryo-EM data for our reported structures of Nav1.7(E406K) bound to various toxins identifies two distinct conformations of S6IV, one composed of α helical turns only and the other containing a π helical turn in the middle. The structure of ligand-free Nav1.7(E406K), determined at 3.5-Å resolution, is identical to the WT channel, confirming that binding of Huwentoxin IV or Protoxin II to VSDII allosterically induces the α → π transition of S6IV. The local secondary structural shift leads to contraction of the intracellular gate, closure of the fenestration on the interface of repeats I and IV, and rearrangement of the binding site for the fast inactivation motif.
Collapse
|
|
3 |
35 |
14
|
Wang M, Wang Y, Kong D, Jiang H, Wang J, Cheng M. In silico exploration of aryl sulfonamide analogs as voltage-gated sodium channel 1.7 inhibitors by using 3D-QSAR, molecular docking study, and molecular dynamics simulations. Comput Biol Chem 2018; 77:214-225. [PMID: 30359866 DOI: 10.1016/j.compbiolchem.2018.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
Abstract
It has been demonstrated by human genetics that the voltage-gated sodium channel Nav1.7 is currently a promising target for the treatment of pain. In this research, we performed molecular simulation works on a series of classic aryl sulfonamide Nav1.7 inhibitors using three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for the first time to explore the correlation between their structures and activities. The results of the relevant statistical parameters of comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analyses (CoMSIA) had been verified to be reasonable, and the deep relationship between the structures and activities of these inhibitors was obtained by analyzing the contour maps. The generated 3D-QSAR model showed a good predictive ability and provided valuable clues for the rational modification of molecules. The interactions between compounds and proteins were modeled by molecular docking studies. Finally, accuracy of the docking results and stability of the complexes were verified by 100 ns MD simulations. Detailed information on the key residues at the binding site and the types of interactions they participate in involved was obtained. The van der Waals energy contributed the most in the molecular binding process according to the calculation of binding free energy. All research results provided a good basis for further research on novel and effective Nav1.7 inhibitors.
Collapse
|
Journal Article |
7 |
33 |
15
|
Kushnarev M, Pirvulescu IP, Candido KD, Knezevic NN. Neuropathic pain: preclinical and early clinical progress with voltage-gated sodium channel blockers. Expert Opin Investig Drugs 2020; 29:259-271. [PMID: 32070160 DOI: 10.1080/13543784.2020.1728254] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Neuropathic pain is a chronic condition that significantly affects the quality of life of millions of people globally. Most of the pharmacologic treatments currently in use demonstrate modest efficacy and over half of all patients do not respond to medical management. Hence, there is a need for new, efficacious drugs. Evidence points toward voltage-gated sodium channels as a key target for novel analgesics.Area covered: The role of voltage-gated sodium channels in pain pathophysiology is illuminated and the preclinical and clinical data for new sodium channel blockers and toxin-derived lead compounds are examined. The expansion of approved sodium channel blockers is discussed along with the limitations of current research, trends in drug development, and the potential of personalized medicine.Expert opinion: The transition from preclinical to clinical studies can be difficult because of the inherent inability of animal models to express the complexities of pain states. Pain pathways are notoriously intricate and may be pharmacologically modulated at a variety of targets; it is unlikely that action at a single target could completely abolish a pain response because pain is rarely unifactorial. Combination therapy may be necessary and this could further confound the discovery of novel agents.
Collapse
|
Review |
5 |
33 |
16
|
Zhang P, Bi RY, Gan YH. Glial interleukin-1β upregulates neuronal sodium channel 1.7 in trigeminal ganglion contributing to temporomandibular joint inflammatory hypernociception in rats. J Neuroinflammation 2018; 15:117. [PMID: 29678208 PMCID: PMC5910598 DOI: 10.1186/s12974-018-1154-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background The proinflammatory cytokine interleukin-1β (IL-1β) drives pain by inducing the expression of inflammatory mediators; however, its ability to regulate sodium channel 1.7 (Nav1.7), a key driver of temporomandibular joint (TMJ) hypernociception, remains unknown. IL-1β induces cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). We previously showed that PGE2 upregulated trigeminal ganglionic Nav1.7 expression. Satellite glial cells (SGCs) involve in inflammatory pain through glial cytokines. Therefore, we explored here in the trigeminal ganglion (TG) whether IL-1β upregulated Nav1.7 expression and whether the IL-1β located in the SGCs upregulated Nav1.7 expression in the neurons contributing to TMJ inflammatory hypernociception. Methods We treated rat TG explants with IL-1β with or without inhibitors, including NS398 for COX-2, PF-04418948 for EP2, and H89 and PKI-(6-22)-amide for protein kinase A (PKA), or with adenylate cyclase agonist forskolin, and used real-time PCR, Western blot, and immunohistofluorescence to determine the expressions or locations of Nav1.7, COX-2, cAMP response element-binding protein (CREB) phosphorylation, and IL-1β. We used chromatin immunoprecipitation to examine CREB binding to the Nav1.7 promoter. Finally, we microinjected IL-1β into the TGs or injected complete Freund’s adjuvant into TMJs with or without previous microinjection of fluorocitrate, an inhibitor of SGCs activation, into the TGs, and evaluated nociception and gene expressions. Differences between groups were examined by one-way analysis of variance (ANOVA) or independent samples t test. Results IL-1β upregulated Nav1.7 mRNA and protein expressions in the TG explants, whereas NS398, PF-04418948, H89, or PKI-(6-22)-amide could all block this upregulation, and forskolin could also upregulate Nav1.7 mRNA and protein expressions. IL-1β enhanced CREB binding to the Nav1.7 promoter. Microinjection of IL-1β into the TGs or TMJ inflammation both induced hypernociception of TMJ region and correspondingly upregulated COX-2, phospho-CREB, and Nav1.7 expressions in the TGs. Moreover, microinjection of fluorocitrate into the TGs completely blocked TMJ inflammation-induced activation of SGCs and the upregulation of IL-1β and COX-2 in the SGCs, and phospho-CREB and Nav1.7 in the neurons and alleviated inflammation-induced TMJ hypernociception. Conclusions Glial IL-1β upregulated neuronal Nav1.7 expression via the crosstalk between signaling pathways of the glial IL-1β/COX-2/PGE2 and the neuronal EP2/PKA/CREB/Nav1.7 in TG contributing to TMJ inflammatory hypernociception.
Collapse
|
Journal Article |
7 |
31 |
17
|
Cai T, Luo J, Meng E, Ding J, Liang S, Wang S, Liu Z. Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels. Peptides 2015; 68:148-56. [PMID: 25218973 DOI: 10.1016/j.peptides.2014.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/22/2023]
Abstract
Peptide toxins often have pharmacological applications and are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a group of potential VGSC inhibitors have been reported from tarantula venoms, little is known about the mechanism of their interaction with VGSCs. In this study, we showed that hainantoxin-IV (β-TRTX-Hn2a, HNTX-IV in brief), a 35-residue peptide from Ornithoctonus hainana venom, preferentially inhibited rNav1.2, rNav1.3 and hNav1.7 compared with rNav1.4 and hNav1.5. hNav1.7 was the most sensitive to HNTX-IV (IC50∼21nM). In contrast to many other tarantula toxins that affect VGSCs, HNTX-IV at subsaturating concentrations did not alter activation and inactivation kinetics in the physiological range of voltages, while very large depolarization above +70mV could partially activate toxin-bound hNav1.7 channel, indicating that HNTX-IV acts as a gating modifier rather than a pore blocker. Site-directed mutagenesis indicated that the toxin bound to site 4, which was located on the extracellular S3-S4 linker of hNav1.7 domain II. Mutants E753Q, D816N and E818Q of hNav1.7 decreased toxin affinity for hNav1.7 by 2.0-, 3.3- and 130-fold, respectively. In silico docking indicated that a three-toed claw substructure formed by residues with close contacts in the interface between HNTX-IV and hNav1.7 domain II stabilized the toxin-channel complex, impeding movement of the domain II voltage sensor and inhibiting hNav1.7 activation. Our data provide structural details for structure-based drug design and a useful template for the design of highly selective inhibitors of a specific subtype of VGSCs.
Collapse
|
|
10 |
30 |
18
|
Shiers SI, Sankaranarayanan I, Jeevakumar V, Cervantes A, Reese JC, Price TJ. Convergence of peptidergic and non-peptidergic protein markers in the human dorsal root ganglion and spinal dorsal horn. J Comp Neurol 2021; 529:2771-2788. [PMID: 33550628 DOI: 10.1002/cne.25122] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Peripheral sensory neurons are characterized by their size, molecular profiles, and physiological responses to specific stimuli. In mouse, the peptidergic and non-peptidergic subsets of nociceptors are distinct and innervate different lamina of the spinal dorsal horn. The unique molecular signature and neuroanatomical organization of these neurons supports a labeled line theory for certain types of nociceptive stimuli. However, long-standing evidence supports the polymodal nature of nociceptors in many species. We have recently shown that the peptidergic marker, CGRP, and the non-peptidergic marker, P2X3R, show largely overlapping expression at the mRNA level in human dorsal root ganglion (DRG). Herein, our aim was to assess the protein distribution of nociceptor markers, including their central projections, in the human DRG and spinal cord. Using DRGs obtained from organ donors, we observed that CGRP and P2X3R were co-expressed by approximately 33% of human DRG neurons and TrpV1 was expressed in ~60% of human DRG neurons. In the dorsal spinal cord, CGRP, P2X3R, TrpV1, and Nav1.7 proteins stained the entirety of lamina 1-2, with only P2XR3 showing a gradient of expression. This was confirmed by measuring the size of the substantia gelatinosa using Hematoxylin and Eosin staining of adjacent sections. Our findings are consistent with the known polymodal nature of most primate nociceptors and indicate that the central projection patterns of nociceptors are different between mice and humans. Elucidating how human nociceptors connect to subsets of dorsal horn neurons will be important for understanding the physiological consequences of these species differences.
Collapse
|
Journal Article |
4 |
27 |
19
|
Xu Y, Sun J, Li W, Zhang S, Yang L, Teng Y, Lv K, Liu Y, Su Y, Zhang J, Zhao M. Analgesic effect of the main components of Corydalis yanhusuo (yanhusuo in Chinese) is caused by inhibition of voltage gated sodium channels. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114457. [PMID: 34329712 DOI: 10.1016/j.jep.2021.114457] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/11/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Pain often causes a series of abnormal changes in physiology and psychology, which can lead to disease and even death. Drug therapy is the most basic and commonly used method for pain relief and management. Interestingly, at present, hundreds of traditional Chinese medicines have been reported to be used for pain relief, most of which are monomer preparations, which have been developed into new painkillers. Corydalis yanhusuo is a representative of one of these medicines and is available for pain relief. AIM OF THE STUDY This study aims to determine the analgesic effect and the potential targets of the monomers derived from Corydalis yanhusuo, and to explore any possible associated cardiac risk factors. MATERIALS AND METHODS In this study, four monomers derived from Corydalis yanhusuo (tetrahydropalmatine, corydaline, protopine, dehydrocorydaline) were tested in vivo, using the formalin-induced pain model to determine their analgesic properties. Their potential targets were also determined using whole cell patch clamp recordings and myocardial enzyme assays. RESULTS The results showed that all monomers showed analgesic activity and inhibited the peak currents, promoted the activation and inactivation phases of Nav1.7, which indicating that Nav1.7 might be involved in the analgesic mechanism of Corydalis yanhusuo. Protopine increased the level of creatine kinase-MB (CK-MB) and inhibited the peak currents, promoted the activation and inactivation phases of Nav1.5, indicating that Nav1.5 might be involved in the cardiac risk associated with protopine treatment. CONCLUSION These data showed that tetrahydropalmatine produced the best analgesic effect and the lowest cardiac risk. Thus, voltage gated sodium channels (VGSCs) might be the main targets associated with Corydalis yanhusuo. This study, therefore, provides valuable information for future studies and use of traditional Chines medicines for the alleviation of pain.
Collapse
|
|
4 |
25 |
20
|
González-Cano R, Tejada MÁ, Artacho-Cordón A, Nieto FR, Entrena JM, Wood JN, Cendán CM. Effects of Tetrodotoxin in Mouse Models of Visceral Pain. Mar Drugs 2017; 15:E188. [PMID: 28635651 PMCID: PMC5484138 DOI: 10.3390/md15060188] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/07/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
Visceral pain is very common and represents a major unmet clinical need for which current pharmacological treatments are often insufficient. Tetrodotoxin (TTX) is a potent neurotoxin that exerts analgesic actions in both humans and rodents under different somatic pain conditions, but its effect has been unexplored in visceral pain. Therefore, we tested the effects of systemic TTX in viscero-specific mouse models of chemical stimulation of the colon (intracolonic instillation of capsaicin and mustard oil) and intraperitoneal cyclophosphamide-induced cystitis. The subcutaneous administration of TTX dose-dependently inhibited the number of pain-related behaviors in all evaluated pain models and reversed the referred mechanical hyperalgesia (examined by stimulation of the abdomen with von Frey filaments) induced by capsaicin and cyclophosphamide, but not that induced by mustard oil. Morphine inhibited both pain responses and the referred mechanical hyperalgesia in all tests. Conditional nociceptor‑specific Nav1.7 knockout mice treated with TTX showed the same responses as littermate controls after the administration of the algogens. No motor incoordination after the administration of TTX was observed. These results suggest that blockade of TTX-sensitive sodium channels, but not Nav1.7 subtype alone, by systemic administration of TTX might be a potential therapeutic strategy for the treatment of visceral pain.
Collapse
|
research-article |
8 |
25 |
21
|
Unwinding and spiral sliding of S4 and domain rotation of VSD during the electromechanical coupling in Na v1.7. Proc Natl Acad Sci U S A 2022; 119:e2209164119. [PMID: 35878056 PMCID: PMC9388133 DOI: 10.1073/pnas.2209164119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nav1.7 has been targeted for pain management for its well-established role in pain sensation. Hundreds of mutations of Nav1.7 have been found in patients with pain disorders. Structures of Nav1.7 captured in different conformations will reveal its working mechanism and facilitate drug discovery. Here we present the rational design of a Nav1.7 variant, Nav1.7-M11, that may be trapped in the closed-state inactivation conformation at 0 mV. Cryoelectron microscopy analysis of Nav1.7-M11 reveals voltage-sensing domain in the first repeat (VSDI) in the completely down conformation, VSDII at an intermediate state, and the pore domain tightly closed. Structural comparison of Nav1.7-M11 with the WT channel provides unprecedented insight into the electromechanical coupling details and affords mechanistic interpretation for a number of pain-related mutations. Voltage-gated sodium (Nav) channel Nav1.7 has been targeted for the development of nonaddictive pain killers. Structures of Nav1.7 in distinct functional states will offer an advanced mechanistic understanding and aid drug discovery. Here we report the cryoelectron microscopy analysis of a human Nav1.7 variant that, with 11 rationally introduced point mutations, has a markedly right-shifted activation voltage curve with V1/2 reaching 69 mV. The voltage-sensing domain in the first repeat (VSDI) in a 2.7-Å resolution structure displays a completely down (deactivated) conformation. Compared to the structure of WT Nav1.7, three gating charge (GC) residues in VSDI are transferred to the cytosolic side through a combination of helix unwinding and spiral sliding of S4I and ∼20° domain rotation. A conserved WNФФD motif on the cytoplasmic end of S3I stabilizes the down conformation of VSDI. One GC residue is transferred in VSDII mainly through helix sliding. Accompanying GC transfer in VSDI and VSDII, rearrangement and contraction of the intracellular gate is achieved through concerted movements of adjacent segments, including S4-5I, S4-5II, S5II, and all S6 segments. Our studies provide important insight into the electromechanical coupling mechanism of the single-chain voltage-gated ion channels and afford molecular interpretations for a number of pain-associated mutations whose pathogenic mechanism cannot be revealed from previously reported Nav structures.
Collapse
|
|
3 |
25 |
22
|
Effraim PR, Huang J, Lampert A, Stamboulian S, Zhao P, Black JA, Dib-Hajj SD, Waxman SG. Fibroblast growth factor homologous factor 2 (FGF-13) associates with Nav1.7 in DRG neurons and alters its current properties in an isoform-dependent manner. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2019; 6:100029. [PMID: 31223136 PMCID: PMC6565799 DOI: 10.1016/j.ynpai.2019.100029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 11/29/2022]
Abstract
Fibroblast Growth Factor Homologous Factors (FHF) constitute a subfamily of FGF proteins with four prototypes (FHF1-4; also known as FGF11-14). FHF proteins have been shown to bind directly to the membrane-proximal segment of the C-terminus in voltage-gated sodium channels (Nav), and regulate current density, availability, and frequency-dependent inhibition of sodium currents. Members of the FHF2 subfamily, FHF2A and FHF2B, differ in the length and sequence of their N-termini, and, importantly, differentially regulate Nav1.6 gating properties. Using immunohistochemistry, we show that FHF2 isoforms are expressed in adult dorsal root ganglion (DRG) neurons where they co-localize with Nav1.6 and Nav1.7. FHF2A and FHF2B show differential localization in neuronal compartments in DRG neurons, and levels of expression of FHF2 factors are down-regulated following sciatic nerve axotomy. Because Nav1.7 in nociceptors plays a critical role in pain, we reasoned that its interaction with FHF2 isoforms might regulate its current properties. Using whole-cell patch clamp in heterologous expression systems, we show that the expression of FHF2A in HEK293 cell line stably expressing Nav1.7 channels causes no change in activation, whereas FHF2B depolarizes activation. Both FHF2 isoforms depolarize fast-inactivation. Additionally, FHF2A causes an accumulation of inactivated channels at all frequencies tested due to a slowing of recovery from inactivation, whereas FHF2B has little effect on these properties of Nav1.7. Measurements of the Nav1.7 current in DRG neurons in which FHF2 levels are knocked down confirmed the effects of FHF2A on repriming, and FHF2B on activation, however FHF2A and B did not have an effect on fast inactivation. Our data demonstrates that FHF2 does indeed regulate the current properties of Nav1.7 and does so in an isoform and cell-specific manner.
Collapse
|
research-article |
6 |
22 |
23
|
Lee S, Jo S, Talbot S, Zhang HXB, Kotoda M, Andrews NA, Puopolo M, Liu PW, Jacquemont T, Pascal M, Heckman LM, Jain A, Lee J, Woolf CJ, Bean BP. Novel charged sodium and calcium channel inhibitor active against neurogenic inflammation. eLife 2019; 8:48118. [PMID: 31765298 PMCID: PMC6877086 DOI: 10.7554/elife.48118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Voltage-dependent sodium and calcium channels in pain-initiating nociceptor neurons are attractive targets for new analgesics. We made a permanently charged cationic derivative of an N-type calcium channel-inhibitor. Unlike cationic derivatives of local anesthetic sodium channel blockers like QX-314, this cationic compound inhibited N-type calcium channels more effectively with extracellular than intracellular application. Surprisingly, the compound is also a highly effective sodium channel inhibitor when applied extracellularly, producing more potent inhibition than lidocaine or bupivacaine. The charged inhibitor produced potent and long-lasting analgesia in mouse models of incisional wound and inflammatory pain, inhibited release of the neuropeptide calcitonin gene-related peptide (CGRP) from dorsal root ganglion neurons, and reduced inflammation in a mouse model of allergic asthma, which has a strong neurogenic component. The results show that some cationic molecules applied extracellularly can powerfully inhibit both sodium channels and calcium channels, thereby blocking both nociceptor excitability and pro-inflammatory peptide release.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
22 |
24
|
Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels. Pflugers Arch 2020; 472:865-880. [PMID: 32601768 PMCID: PMC7351857 DOI: 10.1007/s00424-020-02419-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs.
Collapse
|
Review |
5 |
22 |
25
|
Mechanism-specific assay design facilitates the discovery of Nav1.7-selective inhibitors. Proc Natl Acad Sci U S A 2018; 115:E792-E801. [PMID: 29311306 PMCID: PMC5789920 DOI: 10.1073/pnas.1713701115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Subtype-selective modulation of ion channels is often important, but extremely difficult to achieve for drug development. Using Nav1.7 as an example, we show that this challenge could be attributed to poor design in ion channel assays, which fail to detect most potent and selective compounds and are biased toward nonselective mechanisms. By exploiting different drug binding sites and modes of channel gating, we successfully direct a membrane potential assay toward non–pore-blocking mechanisms and identify Nav1.7-selective compounds. Our mechanistic approach to assay design addresses a significant hurdle in Nav1.7 drug discovery and is applicable to many other ion channels. Many ion channels, including Nav1.7, Cav1.3, and Kv1.3, are linked to human pathologies and are important therapeutic targets. To develop efficacious and safe drugs, subtype-selective modulation is essential, but has been extremely difficult to achieve. We postulate that this challenge is caused by the poor assay design, and investigate the Nav1.7 membrane potential assay, one of the most extensively employed screening assays in modern drug discovery. The assay uses veratridine to activate channels, and compounds are identified based on the inhibition of veratridine-evoked activities. We show that this assay is biased toward nonselective pore blockers and fails to detect the most potent, selective voltage-sensing domain 4 (VSD4) blockers, including PF-05089771 (PF-771) and GX-936. By eliminating a key binding site for pore blockers and replacing veratridine with a VSD-4 binding activator, we directed the assay toward non–pore-blocking mechanisms and discovered Nav1.7-selective chemical scaffolds. Hence, we address a major hurdle in Nav1.7 drug discovery, and this mechanistic approach to assay design is applicable to Cav3.1, Kv1.3, and many other ion channels to facilitate drug discovery.
Collapse
|
Validation Study |
7 |
20 |