1
|
Ding T, Yang M, Zhang J, Yang B, Lin K, Li J, Gan J. Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. JOURNAL OF HAZARDOUS MATERIALS 2017; 330:127-134. [PMID: 28214648 DOI: 10.1016/j.jhazmat.2017.02.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/22/2017] [Accepted: 02/04/2017] [Indexed: 05/18/2023]
Abstract
Ibuprofen (IBU) is one of the most widely used and frequently detected human pharmaceuticals in aquatic environment. However, the toxicity of IBU on diatom and its fate remain still unkown. In the present study, the toxicity of IBU on the diatom was evaluated by the algal growth rate, the chlorophyll-a and carotenoids contents. The degradation of IBU including in particular the potential for the formation of incomplete degradation products was also explored. Biochemical characteristics of Navicula sp. were significantly inhibited at IBU concentrations up to 50mgL-1 after 10days of exposure. The degradation of IBU was retarded by Navicula sp. at low concentration (1mgL-1), with t1/2 being extended from 9.6±1.8 d to 12.0±1.5 d, indicating that Navicula sp. could prolong the exposure time of IBU. A total of 8 metabolites were identified by LC-MS/MS and the degradation pathway of IBU in Navicula sp. was proposed. Hydroxylation, acylation, demethylation, and glucuronidation contributed to IBU transformative reactions in diatom cells. These findings indicate that the presence of diatom Navicula sp. could hinder degradation of IBU, and IBU and/or its metabolites may pose high risks on aquatic ecosystem in natural waters.
Collapse
|
|
8 |
112 |
2
|
Reddy GKK, Nancharaiah YV, Venugopalan VP. Long alkyl-chain imidazolium ionic liquids: Antibiofilm activity against phototrophic biofilms. Colloids Surf B Biointerfaces 2017; 155:487-496. [PMID: 28475985 DOI: 10.1016/j.colsurfb.2017.04.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/03/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022]
Abstract
Biofilm formation is problematic and hence undesirable in medical and industrial settings. In addition to bacteria, phototrophic organisms are an integral component of biofilms that develop on surfaces immersed in natural waters. 1-Alkyl-3-methyl imidazolium ionic liquids (IL) with varying alkyl chain length were evaluated for their influence on the formation of monospecies (Navicula sp.) and multispecies biofilms under phototrophic conditions. An IL with a long alkyl side chain, 1-hexadecyl-3-methylimidaazolium chloride ([C16(MIM)][Cl]) retarded growth, adhesion and biofilm formation of Navicula sp. at concentrations as low as 5μM. Interestingly, [C16(MIM)][Cl] was very effective in preventing multispecies phototrophic biofilms on fibre reinforced plastic surfaces immersed in natural waters (fresh and seawater). SYTOX® Green staining and chlorophyll leakage assay confirmed that the biocidal activity of the IL was exerted through cell membrane disruption. The data show that [C16(MIM)][Cl] is a potent inhibitor of phototrophic biofilms at micromolar concentrations and a promising agent for biofilm control in re-circulating cooling water systems. This is the first report that ionic liquids inhibit biofilm formation by phototrophic organisms which are important members of biofilms in streams and cooling towers.
Collapse
|
Journal Article |
8 |
30 |
3
|
Ding T, Lin K, Yang M, Bao L, Li J, Yang B, Gan J. Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:200-209. [PMID: 29035714 DOI: 10.1016/j.jhazmat.2017.09.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS) is one of the most widely used pharmaceutically active compounds and frequently detected in treated wastewater and the impacted aquatic environment. However, the fate and toxicity of TCS in aquatic organisms is poorly known, including in particular the potential for the formation of incomplete biological transformation products. In this study, TCS posed high toxic effects (e.g., growth inhibition and damage of photosynthesis) to typical freshwater diatom Navicula sp., with the 24h and 72h EC50 values of 173.3 and 145.6μgL-1, respectively. The bioaccumulation of TCS in diatom cells increased with the increasing exposure to TCS and showed to be time-dependent. The higher intracellular TCS lead to higher toxicity on Navicula sp. The intracellular TCS concentration and the growth inhibition of TCS in Navicula sp. at pH 7.5 was obviously higher than that at pH 8.3, which was likely due to the higher abundance of unionized TCS in the culture. KMnO4 reduced both bioaccumulation and toxicity of TCS in Navicula sp., especially at pH 8.3. A total of seven products were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). These findings will provide a reference for the risk assessment of TCS in aquatic environment.
Collapse
|
|
7 |
24 |
4
|
Fimbres-Olivarría D, López-Elías JA, Carvajal-Millán E, Márquez-Escalante JA, Martínez-Córdova LR, Miranda-Baeza A, Enríquez-Ocaña F, Valdéz-Holguín JE, Brown-Bojórquez F. Navicula sp. Sulfated Polysaccharide Gels Induced by Fe(III): Rheology and Microstructure. Int J Mol Sci 2016; 17:E1238. [PMID: 27483255 PMCID: PMC5000636 DOI: 10.3390/ijms17081238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 11/22/2022] Open
Abstract
A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of irregular shapes and sharp angles. The polysaccharide at 1% (w/v) solution in water formed gels in the presence of 0.4% (w/v) FeCl₃, showing elastic and viscous moduli of 1 and 0.7 Pa, respectively. SEM analysis performed on the lyophilized gel showed a compact pore structure, with a pore size of approximately 150 nm. Very few studies on the gelation of sulfated polysaccharides using trivalent ions exist in the literature, and, to the best of our knowledge, this study is the first to describe the gelation of sulfated polysaccharides extracted from Navicula sp.
Collapse
|
research-article |
9 |
15 |
5
|
Pezzolesi L, Pichierri S, Samorì C, Totti C, Pistocchi R. PUFAs and PUAs production in three benthic diatoms from the northern Adriatic Sea. PHYTOCHEMISTRY 2017; 142:85-91. [PMID: 28697398 DOI: 10.1016/j.phytochem.2017.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
The production of polyunsaturated aldehydes (PUAs) has been reported by many planktonic diatoms, where they have been implicated in deleterious effects on copepod reproduction and growth of closeby microbes or suggested as infochemicals in shaping plankton interactions. This study investigates the production of PUAs by diatoms commonly occurring in the microphytobenthic communities in temperate regions: Tabularia affinis, Proschkinia complanatoides and Navicula sp. Results highlight the production of PUAs by the three benthic diatoms during stationary and decline phases, with intracellular concentrations from 1.8 to 154.4 fmol cell-1, which are within the range observed for planktonic species. The existence of a large family of PUAs, including some with four unsaturations, such as decatetraenal, undecatetraenal and tridecatetraenal, was observed. Since particulate and dissolved PUAs were positively correlated, together with cell lysis, equivalent concentrations may be released during late growth stages, which may affect benthic invertebrates grazing on them and other microalgae.
Collapse
|
|
8 |
13 |
6
|
Yang J, Ahmed W, Mehmood S, Ou W, Li J, Xu W, Wang L, Mahmood M, Li W. Evaluating the Combined Effects of Erythromycin and Levofloxacin on the Growth of Navicula sp. and Understanding the Underlying Mechanisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:2547. [PMID: 37447108 DOI: 10.3390/plants12132547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
Navicula sp., a type of benthic diatom, plays a crucial role in the carbon cycle as a widely distributed algae in water bodies, making it an essential primary producer in the context of global carbon neutrality. However, using erythromycin (ERY) and levofloxacin (LEV) in medicine, livestock, and aquaculture has introduced a new class of pollutants known as antibiotic pollutants, which pose potential threats to human and animal health. This study aimed to investigate the toxic effects of ERY and LEV, individually or in combination, on the growth, antioxidant system, chlorophyll synthesis, and various cell osmotic pressure indexes (such as soluble protein, proline, and betaine) of Navicula sp. The results indicated that ERY (1 mg/L), LEV (320 mg/L), and their combined effects could inhibit the growth of Navicula sp. Interestingly, the combination of these two drugs exhibited a time-dependent effect on the chlorophyll synthesis of Navicula sp., with ERY inhibiting the process while LEV promoted it. Furthermore, after 96 h of exposure to the drugs, the activities of GSH-Px, POD, CAT, and the contents of MDA, proline, and betaine increased. Conversely, the actions of GST and the contents of GSH and soluble protein decreased in the ERY group. In the LEV group, the activities of POD and CAT and the contents of GSH, MDA, proline, and betaine increased, while the contents of soluble protein decreased. Conversely, the mixed group exhibited increased POD activity and contents of GSH, MDA, proline, betaine, and soluble protein. These findings suggest that antibiotics found in pharmaceutical and personal care products (PPCPs) can harm primary marine benthic eukaryotes. The findings from the research on the possible hazards linked to antibiotic medications in aquatic ecosystems offer valuable knowledge for ensuring the safe application of these drugs in environmental contexts.
Collapse
|
|
2 |
5 |
7
|
Yatipanthalawa B, Li W, Hill DRA, Trifunovic Z, Ashokkumar M, Scales PJ, Martin GJO. Interplay between interfacial behaviour, cell structure and shear enables biphasic lipid extraction from whole diatom cells ( Navicula sp.). J Colloid Interface Sci 2021; 589:65-76. [PMID: 33450461 DOI: 10.1016/j.jcis.2020.12.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS Bacillariophyceae (i.e., diatoms) are an important class of algae with potential use in the production of proteins and lipids including long-chain ω-3 polyunsaturated fatty acids. Biphasic extraction of microalgae lipids using water-immiscible solvents such as hexane, can avoid the excessive energy required to distil solvents from water, but generally requires energy-intensive rupture of the cells. The unique cell structure and surface chemistry of diatoms compared to other microalgae species might allow biphasic lipid extraction without prior cell rupture. EXPERIMENTS The kinetics of biphasic lipid extraction from intact Navicula sp. cells was investigated during low-shear and high-shear mixing, and with prior or simultaneous application of ultrasound (20 kHz at 0.57 W/mL). Dynamic interfacial tension measurements and electron microscopic analysis were used to investigate lipid extraction in relation to interfacial behaviour and cell structure. RESULTS High yields (>80%) of intracellular lipids were extracted from intact cells over the course of hours upon low-shear contacting with hexane. The cells associated with and stabilised the hexane-water interface, allowing hexane to infiltrate pores in the frustule component of the cell walls and access the intracellular lipids. It was shown that mucilaginous extracellular polymeric substances (EPS) bound to the cell walls acted as a barrier to solvent penetration into the cells. This EPS could be removed by prior ultrasonication. Biphasic extraction was greatly accelerated by shear applied by rotor-stator mixing or ultrasound. High-shear could remove mucilaginous EPS from the cell surfaces to facilitate direct contact of the cell surface with hexane and produced smaller emulsion droplets with increased surface area. The combination of high-shear in the presence of hexane resulted in the in-situ rupture of the cells, which greatly accelerated lipid extraction and allowed high yields of neutral lipid (>95%) to be recovered from freshly harvested cells within less than 5 min. The study demonstrated the ability of shear to enable simultaneous cell rupture and lipid extraction from a diatom alga based on its cell structure and interfacial behaviour.
Collapse
|
|
4 |
4 |
8
|
Venkatnarayanan S, Sriyutha Murthy P, Nancharaiah YV, Kirubagaran R, Venugopalan VP. Chlorination induced damage and recovery in marine diatoms: Assay by SYTOX® Green staining. MARINE POLLUTION BULLETIN 2017; 124:819-826. [PMID: 28117130 DOI: 10.1016/j.marpolbul.2016.12.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Phytoplankton entrained into cooling water systems of coastal power stations are subjected to acute chemical stress due to biocides (chlorine) used for biofouling control. They are subsequently released into the environment, where they may survive/recover or succumb. Experiments were conducted to evaluate the susceptibility of a centric (Chaetoceros lorenzianus) and pennate (Navicula sp.) diatom to in-plant administered concentrations of chlorine (0.2-0.5mg/L, TRO). Viability of cells exposed to chlorine was assessed by SYTOX® Green fluorimetry and was compared with other conventional end points like total cell counts, chlorophyll a content and cellular autofluorescence. Results showed a concentration-dependant reduction in viability, chlorophyll a and autofluorescence. C. lorenzianus cells were more susceptible to chlorine compared to Navicula sp. SYTOX® Green staining appears to be a sensitive method to assess chlorine-induced damages. The data show that in-use levels of chlorination can potentially impact entrained organisms; however, they can recover when returned to coastal waters.
Collapse
|
|
8 |
3 |
9
|
Lei HJ, Wei XR, Li LX, Sun WJ, Chen HX, Li D, Xie L. Evaluation of the toxicity of clozapine on the freshwater diatom Navicula sp. using the FTIR spectroscopy. CHEMOSPHERE 2023; 337:139301. [PMID: 37379982 DOI: 10.1016/j.chemosphere.2023.139301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Clozapine is an often prescribed neuroactive pharmaceutical and frequently detected in the aquatic environments. However, its toxicity on low trophic level species (i.e., diatoms) and associated mechanisms are seldom reported. In this study, the toxicity of clozapine on a widely distributed freshwater diatom Navicula sp. was evaluated using the FTIR spectroscopy along with biochemical analyses. The diatoms were exposed to various concentrations of clozapine (0, 0.01, 0.05, 0.10, 0.50, 1.00, 2.00, 5.00 mg/L) for 96 h. The results revealed that clozapine reached up to 392.8 μg/g in the cell wall and 550.4 μg/g within the cells at 5.00 mg/L, suggesting that clozapine could be adsorbed extracellularly and accumulated intracellularly in diatoms. In addition, hormetic effects were displayed on the growth and photosynthetic pigments (chlorophyll a and carotenoid) of Navicula sp., with a promotive effect at concentrations less than 1.00 mg/L while an inhibited effect at concentrations over 2 mg/L. Clozapine induced oxidative stress in Navicula sp., accompanied by decreased levels of total antioxidant capacity (T-AOC) (>0.05 mg/L), in which, the activity of superoxide dismutase (SOD) (at 5.00 mg/L) was increased whereas the activity of catalase (CAT) (>0.05 mg/L) was decreased. Furthermore, FTIR spectroscopic analysis showed that exposure to clozapine resulted in accumulation of lipid peroxidation products, increased sparse β-sheet structures, and altered DNA structures in Navicula sp. This study can facilitate the ecological risk assessment of clozapine in the aquatic ecosystems.
Collapse
|
|
2 |
2 |
10
|
Li X, Wang Z, Chen Y, Li Q. Polystyrene Microplastics Induce Photosynthetic Impairment in Navicula sp. at Physiological and Transcriptomic Levels. Int J Mol Sci 2024; 26:148. [PMID: 39796010 PMCID: PMC11720487 DOI: 10.3390/ijms26010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The rising concentration of microplastics (MPs) in aquatic environments poses increasing ecological risks, yet their impacts on biological communities remain largely unrevealed. This study investigated how aminopolystyrene microplastics (PS-NH2) affect physiology and gene expression using the freshwater alga Navicula sp. as the test species. After exposing Navicula sp. to high PS-NH2 concentrations for 24 h, growth was inhibited, with the most significant effect seen after 48 h. Increasing PS-NH2 concentrations reduced chlorophyll content, maximum photochemical quantum yield (Fv/Fm), and the photochemical quenching coefficient (Qp), while the non-photochemical quenching coefficient (NPQ) increased, indicating a substantial impact on photosynthesis. PS-NH2 exposure, damaged cell membrane microstructures, activated antioxidant enzymes, and significantly increased malondialdehyde (MDA), glutathione peroxidase (GPX), and superoxide dismutase (SOD) activities. Transcriptomic analysis revealed that PS-NH2 also affected the gene expression of Navicula sp. The differentially expressed genes (DEGs) are mainly related to porphyrin and chlorophyll metabolism, carbon fixation in photosynthesis, endocytosis, and glycolysis/gluconeogenesis. Protein-protein interaction (PPI) analysis revealed significant interactions among DEGs, particularly within photosystem II. These findings shed insights into the toxic mechanisms and environmental implications of microplastic interactions with phytoplankton, deepening our understanding of the potential adverse effects of microplastics in aquatic ecosystems.
Collapse
|
research-article |
1 |
|
11
|
Zheng C, Yang J, Wang Y, Ahmed W, Khan A, Li J, Weng J, Mehmood S, Li W. Comprehensive Assessment of Herbicide Toxicity on Navicula sp. Algae: Effects on Growth, Chlorophyll Content, Antioxidant System, and Lipid Metabolism. Mar Drugs 2024; 22:387. [PMID: 39330268 PMCID: PMC11433268 DOI: 10.3390/md22090387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
This study investigated the effects of herbicide exposure on Navicula sp. (MASCC-0035) algae, focusing on growth density, chlorophyll content, antioxidant system, and lipid metabolism. Navicula cultures were exposed to different concentrations of atrazine (ATZ), glyphosate (Gly), and acetochlor (ACT) for 96 h. Results showed a significant decrease in cell numbers, with higher herbicide concentrations having the most noticeable impacts. For instance, Gly-G2 had reduced cell populations by 21.00% at 96 h. Chlorophyll content varied, with Gly having a greater impact on chlorophyll a compared to ATZ and ACT. Herbicide exposure also affected the antioxidant system, altering levels of soluble sugar, soluble protein, and reactive oxygen species (ROS). Higher herbicide rates increased soluble sugar content (e.g., ATZ, Gly, and ACT-G2 had increased by 14.03%, 19.88%, and 19.83%, respectively, at 72 h) but decreased soluble protein content, notably in Gly-G2 by 11.40%, indicating cellular stress. Lipid metabolism analysis revealed complex responses, with changes in free proline, fatty acids, and lipase content, each herbicide exerting distinct effects. These findings highlight the multifaceted impacts of herbicide exposure on Navicula algae, emphasizing the need for further research to understand ecological implications and develop mitigation strategies for aquatic ecosystems.
Collapse
|
|
1 |
|
12
|
Gong S, Pan P, Meng X, Zhang Y, Xu H, Hu H, Cheng X, Yan Q. Integrated Physiologic and Proteomic Analyses Reveal the Molecular Mechanism of Navicula sp. in Response to Ultraviolet Irradiation Stress. Int J Mol Sci 2024; 25:2747. [PMID: 38473996 DOI: 10.3390/ijms25052747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
With the continuous development of space station construction, space ecosystem research has attracted increasing attention. However, the complicated responses of different candidate plants and algae to radiation stress remain unclear. The present study, using integrated physiologic and proteomic analyses, was carried out to reveal the molecular mechanism of Navicula sp. in response to ultraviolet (UV) irradiation stress. Under 12~24 h of high-dose UV irradiation conditions, the contents of chlorophyll and soluble proteins in Navicula sp. cells were significantly higher than those in the control and 4~8 h of low-dose UV irradiation groups. The activity of catalase (CAT) increased with the extension of irradiation time, and the activity of superoxide dismutase (SOD) decreased first and then increased. Furthermore, differential volcano plot analysis of the proteomic data of Navicula sp. samples found only one protein with a significant difference. Differential protein GO analysis unveiled that UV irradiation can activate the antioxidant system of Navicula sp. and further impact photosynthesis by affecting the photoreaction and chlorophyll synthesis of Navicula sp. The most significant differences in KEGG pathway analysis were also associated with photosynthesis. The above results indicate that Navicula sp. has good UV radiation resistance ability by regulating its photosynthetic pigment content, photosynthetic activity, and antioxidant system, making it a potential candidate for the future development of space ecosystems.
Collapse
|
|
1 |
|