1
|
Hardy T, Lee M, Hames RS, Prosser SL, Cheary DM, Samant MD, Schultz F, Baxter JE, Rhee K, Fry AM. Multisite phosphorylation of C-Nap1 releases it from Cep135 to trigger centrosome disjunction. J Cell Sci 2014; 127:2493-506. [PMID: 24695856 PMCID: PMC4038944 DOI: 10.1242/jcs.142331] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 03/12/2014] [Indexed: 01/17/2023] Open
Abstract
During mitotic entry, centrosomes separate to establish the bipolar spindle. Delays in centrosome separation can perturb chromosome segregation and promote genetic instability. However, interphase centrosomes are physically tethered by a proteinaceous linker composed of C-Nap1 (also known as CEP250) and the filamentous protein rootletin. Linker disassembly occurs at the onset of mitosis in a process known as centrosome disjunction and is triggered by the Nek2-dependent phosphorylation of C-Nap1. However, the mechanistic consequences of C-Nap1 phosphorylation are unknown. Here, we demonstrate that Nek2 phosphorylates multiple residues within the C-terminal domain of C-Nap1 and, collectively, these phosphorylation events lead to loss of oligomerization and centrosome association. Mutations in non-phosphorylatable residues that make the domain more acidic are sufficient to release C-Nap1 from the centrosome, suggesting that it is an increase in overall negative charge that is required for this process. Importantly, phosphorylation of C-Nap1 also perturbs interaction with the core centriolar protein, Cep135, and interaction of endogenous C-Nap1 and Cep135 proteins is specifically lost in mitosis. We therefore propose that multisite phosphorylation of C-Nap1 by Nek2 perturbs both oligomerization and Cep135 interaction, and this precipitates centrosome disjunction at the onset of mitosis.
Collapse
|
research-article |
11 |
45 |
2
|
Deng L, Sun J, Chen X, Liu L, Wu D. Nek2 augments sorafenib resistance by regulating the ubiquitination and localization of β-catenin in hepatocellular carcinoma. J Exp Clin Cancer Res 2019; 38:316. [PMID: 31319849 PMCID: PMC6639974 DOI: 10.1186/s13046-019-1311-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sorafenib is the first-line treatment for advanced-stage hepatocellular carcinoma (HCC). Several studies have shown that the up-regulation of β-catenin plays a role in sorafenib resistance in HCC; however, the mechanism associated with this phenomenon remains elusive. METHODS Western blotting, flow cytometry, and an evaluation of IC50 values were used to confirm the role of β-catenin in HCC sorafenib resistance. Immunoprecipitation and western blotting were then performed to identify regulatory interactions between β-catenin and Nek2. Further, western blotting, flow cytometry, and an in vivo xenograft model were used to evaluate the function of Nek2 in HCC sorafenib resistance, whereas rescue experiments were performed to confirm that Nek2 induces sorafenib resistance via β-catenin. Finally, western blotting and immunohistochemistry were used to evaluate the expression level of Nek2 in paired HCC and non-tumor tissues. RESULTS We showed that β-catenin could suppress sorafenib-induced apoptosis and cell growth inhibition in HCC cell lines. By screening β-catenin-interacting proteins, we found that Nek2 could bind β-catenin in sorafenib-treated HCC cell lines. Our results also showed that Nek2 stabilizes β-catenin and promotes its translocation to the nucleus, consequently activating the transcription of downstream target genes. We further confirmed that Nek2 could induce sorafenib resistance in HCC cell lines, and that β-catenin was the key element involved in this process. Further, a xenograft tumor model showed that Nek2 knockdown could improve the anti-tumor effect of sorafenib, whereas an analysis of tumor proteins showed that Nek2 regulates β-catenin protein levels and its nuclear translocation in vivo. In addition, Nek2 was found to be up-regulated in HCC tissue, and especially in advanced-stage disease. CONCLUSIONS Our study proves that Nek2 induces HCC sorafenib resistance via β-catenin and suggests a novel therapeutic strategy to improve the anti-tumor effects of sorafenib in HCC.
Collapse
|
research-article |
6 |
39 |
3
|
Lee J, Gollahon L. Mitotic perturbations induced by Nek2 overexpression require interaction with TRF1 in breast cancer cells. Cell Cycle 2013; 12:3599-614. [PMID: 24091727 PMCID: PMC3903712 DOI: 10.4161/cc.26589] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
NIMA-related kinase 2 (Nek2), a serine-threonine protein kinase, plays a major role in mitotic progression, including timing of mitotic entry, chromatin condensation, spindle organization, and cytokinesis. Nek2 overexpression results in premature centrosome separation, while kinase death Nek2 mutant expression or Nek2-depleted cells lead to centrosome separation failure. In addition, it has been revealed that telomeric repeat binding factor 1 (TRF1) interacts directly with Nek2. TRF1 not only regulates telomere length, but is also associated with cell cycle regulation. However, the interactions and correlations between Nek2 and TRF1 are far from clear. Here, we show that mitotic aberrations through Nek2 overexpression are likely to require TRF1. Our results demonstrate that Nek2 directly binds and phosphorylates TRF1 through multiple sites on TRF1. Nek2 overexpression in breast cancer cells, MDA-MB-231 and MCF7, results in increased numbers of centrosomes and multinucleated cells, which leads to cytokinetic failure and aneuploidization. Additionally, TRF1 depletion by siRNA prevents the phenomenon of unaligned chromosomes by Nek2 overexpression during metaphase. Concurrent Nek2 overexpression and TRF1-depleted cells demonstrated ≤ 2 centrosomes per cell, similar to mock plasmid and negative control siRNA-transfected cells. Interestingly, when exogenous TRF1 was added back in Nek2-overexpressed cells with endogenous TRF1 depletion, cells had re-induced cytokinetic failure. Therefore, we propose that TRF1 is required for overexpressed Nek2 to trigger abnormal mitosis and chromosomal instability.
Collapse
|
Journal Article |
12 |
32 |
4
|
Liu Q, Hirohashi Y, Du X, Greene MI, Wang Q. Nek2 targets the mitotic checkpoint proteins Mad2 and Cdc20: a mechanism for aneuploidy in cancer. Exp Mol Pathol 2009; 88:225-33. [PMID: 20034488 DOI: 10.1016/j.yexmp.2009.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 12/10/2009] [Indexed: 11/19/2022]
Abstract
In mitosis, the duplicated chromosomes are separated and equally distributed to progeny cells under the guidance of the spindle, a dynamic microtubule network. Previous studies revealed a mitotic checkpoint that prevents segregation of the chromosomes until all of the chromosomes are properly attached to microtubules through the kinetochores. A variety of kinetochore-localized proteins, including Mad2 and Cdc20, have been implicated in controlling the mitotic checkpoint. Here we report that both Mad2 and Cdc20 can physically associate with Nek2, a serine/threonine kinase implicated in centrosome functions. We show that, similar to Nek2, the endogenous Cdc20 protein can be detected in the centrosome and the spindle poles. Both Cdc20 and Mad2 can be phosphorylated by Nek2. Moreover, our studies demonstrate that overexpression of Nek2 enhances the ability of Mad2 to induce a delay in mitosis. These observations indicate that Nek2 may act upon the Mad2-Cdc20 protein complex and play a critical role in regulating the mitotic checkpoint protein complex. We propose that overexpression of Nek2 may promote aneuploidy by disrupting the control of the mitotic checkpoint.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
31 |
5
|
Endicott SJ, Basu B, Khokha M, Brueckner M. The NIMA-like kinase Nek2 is a key switch balancing cilia biogenesis and resorption in the development of left-right asymmetry. Development 2015; 142:4068-79. [PMID: 26493400 PMCID: PMC4712839 DOI: 10.1242/dev.126953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/11/2015] [Indexed: 01/06/2023]
Abstract
Vertebrate left-right (LR) asymmetry originates at a transient left-right organizer (LRO), a ciliated structure where cilia play a crucial role in breaking symmetry. However, much remains unknown about the choreography of cilia biogenesis and resorption at this organ. We recently identified a mutation affecting NEK2, a member of the NIMA-like serine-threonine kinase family, in a patient with congenital heart disease associated with abnormal LR development. Here, we report how Nek2 acts through cilia to influence LR patterning. Both overexpression and knockdown of nek2 in Xenopus result in abnormal LR development and reduction of LRO cilia count and motility, phenotypes that are modified by interaction with the Hippo signaling pathway. nek2 knockdown leads to a centriole defect at the LRO, consistent with the known role of Nek2 in centriole separation. Nek2 overexpression results in premature ciliary resorption in cultured cells dependent on function of the tubulin deacetylase Hdac6. Finally, we provide evidence that the known interaction between Nek2 and Nup98, a nucleoporin that localizes to the ciliary base, is important for regulating cilium resorption. Together, these data show that Nek2 is a switch balancing ciliogenesis and resorption in the development of LR asymmetry.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
25 |
6
|
Kokuryo T, Hibino S, Suzuki K, Watanabe K, Yokoyama Y, Nagino M, Senga T, Hamaguchi M. Nek2 siRNA therapy using a portal venous port-catheter system for liver metastasis in pancreatic cancer. Cancer Sci 2016; 107:1315-20. [PMID: 27316377 PMCID: PMC5021025 DOI: 10.1111/cas.12993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 01/16/2023] Open
Abstract
Nek2 (NIMA-related kinase 2) is a serine-threonine kinase and human homolog of the mitotic regulator NIMA of Aspergillus nidulan. We reported the efficiency of Nek2 siRNA in several cancer xenograft models using cholangiocarcinoma, breast cancer and colorectal cancer. Pancreatic cancer is difficult to treat due to its rapid progression and resistance to chemotherapy. Novel treatments are urgently required to improve survival in pancreatic cancer, and siRNA are a promising therapeutic option. However, finding an in vivo drug delivery system of siRNA remains a major problem for clinical application. In this study, the overexpression of Nek2 was identified in pancreatic cancer cell lines. Nek2 siRNA inhibited tumor growth in a subcutaneous xenograft mouse model of pancreatic cancer, prolonged the survival time in an intraperitoneal xenograft mouse model and efficiently prevented the progression of liver metastasis using a portal venous port-catheter system. Taken together, Nek2 is an effective therapeutic target in pancreatic cancer. An adequate delivery system is considered important in treating advanced pancreatic cancer, such as peritoneal dissemination and liver metastasis. Further investigations are required on the safety and side effects of the portal venous port-catheter system. We hope that Nek2 siRNA will be a novel therapeutic strategy for pancreatic cancer with liver metastasis and peritoneal dissemination.
Collapse
|
Journal Article |
9 |
18 |
7
|
Cep68 can be regulated by Nek2 and SCF complex. Eur J Cell Biol 2015; 94:162-72. [PMID: 25704143 DOI: 10.1016/j.ejcb.2015.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 01/01/2023] Open
Abstract
Centrosome cohesion maintains centrosomes in close proximity until mitosis, when cell cycle-dependent regulatory signaling events dissolve cohesion and promote centrosome separation in preparation for bipolar spindle assembly at mitosis. Cohesion is regulated by the antagonistic activities of the mitotic NIMA-related kinase 2 (Nek2), protein phosphatase 1, the cohesion fiber components rootletin, centrosomal Nek2-associated protein 1 (C-Nap1) and Cep68. The centrosomal protein Cep68 is essential for centrosome cohesion and dissociates from centrosomes at the onset of mitosis. Here, our cell line studies show the C-terminal 300-400 amino acids of Cep68 are necessary to localize Cep68 to interphase centrosomes while C-terminal 400-500 amino acids might regulate Cep68 dissociation from centrosomes at mitotic onset. In addition, Nek2 was demonstrated to phosphorylate Cep68 in vivo and this phosphorylation appears to promote Cep68 degradation in mitosis. We further show that the SCF complex destroys Cep68 at mitosis through recognition by the beta-Trcp F box component of SCF. Together, the findings provide a new insight into the control of centrosome separation by Cep68 during mitosis.
Collapse
|
Journal Article |
10 |
17 |
8
|
Lai XB, Nie YQ, Huang HL, Li YF, Cao CY, Yang H, Shen B, Feng ZQ. NIMA-related kinase 2 regulates hepatocellular carcinoma cell growth and proliferation. Oncol Lett 2017; 13:1587-1594. [PMID: 28454295 PMCID: PMC5403431 DOI: 10.3892/ol.2017.5618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/27/2016] [Indexed: 12/29/2022] Open
Abstract
NIMA-related kinase 2 (Nek2) is often upregulated in human cancer and is important in regulating the cell cycle and gene expression, and maintaining centrosomal structure and function. The present study aimed to investigate the expression pattern, clinical significance, and biological function of Nek2 in hepatocellular carcinoma (HCC). mRNA and protein levels of Nek2 were examined in HCC and corresponding normal liver tissues. The MTT and soft agar colony formation assays, and flow cytometry were employed to assess the roles of Nek2 in cell proliferation and growth. In addition, western blot analysis was performed to assess the expression of cell cycle- and proliferation-related proteins. The results revealed that Nek2 was upregulated in HCC tissues and cell lines. The clinical significance of Nek2 expression was also analyzed. Inhibiting Nek2 expression by siRNA suppressed cell proliferation, growth, and colony formation in hepatocellular carcinoma cell line HepG2 cells, induced cell cycle arrest in the G2/M phase by retarding the S-phase, and promoted apoptosis. Furthermore, Nek2 depletion downregulated β-catenin expression in HepG2 cells and diminished expression of Myc proto-oncogene protein (c-Myc), cyclins D1, B1, and E and cyclin-dependent kinase 1, whilst increasing protein levels of p27. This demonstrates that overexpression of Nek2 is associated with the malignant evolution of HCC. Targeting Nek2 may inhibit HCC cell growth and proliferation through the regulation of β-catenin by the Wnt/β-catenin pathway and therefore may be developed as a novel therapeutic strategy to treat HCC.
Collapse
|
Journal Article |
8 |
16 |
9
|
Martins T, Meghini F, Florio F, Kimata Y. The APC/C Coordinates Retinal Differentiation with G1 Arrest through the Nek2-Dependent Modulation of Wingless Signaling. Dev Cell 2016; 40:67-80. [PMID: 28041905 PMCID: PMC5225405 DOI: 10.1016/j.devcel.2016.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/20/2016] [Accepted: 12/02/2016] [Indexed: 12/19/2022]
Abstract
The cell cycle is coordinated with differentiation during animal development. Here we report a cell-cycle-independent developmental role for a master cell-cycle regulator, the anaphase-promoting complex or cyclosome (APC/C), in the regulation of cell fate through modulation of Wingless (Wg) signaling. The APC/C controls both cell-cycle progression and postmitotic processes through ubiquitin-dependent proteolysis. Through an RNAi screen in the developing Drosophila eye, we found that partial APC/C inactivation severely inhibits retinal differentiation independently of cell-cycle defects. The differentiation inhibition coincides with hyperactivation of Wg signaling caused by the accumulation of a Wg modulator, Drosophila Nek2 (dNek2). The APC/C degrades dNek2 upon synchronous G1 arrest prior to differentiation, which allows retinal differentiation through local suppression of Wg signaling. We also provide evidence that decapentaplegic signaling may posttranslationally regulate this APC/C function. Thus, the APC/C coordinates cell-fate determination with the cell cycle through the modulation of developmental signaling pathways.
APC/C inactivation disrupts retinal differentiation in the Drosophila eye APC/C inactivation causes the ectopic activation of Wg signaling APC/CFzr downregulates a Wg modulator, dNek2, by proteolysis upon G1 arrest Local dNek2 degradation ensures the coordination of retinal differentiation
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
15 |
10
|
Kim S, Hwang SK, Lee M, Kwak H, Son K, Yang J, Kim SH, Lee CH. Fanconi anemia complementation group A (FANCA) localizes to centrosomes and functions in the maintenance of centrosome integrity. Int J Biochem Cell Biol 2013; 45:1953-61. [PMID: 23806870 DOI: 10.1016/j.biocel.2013.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/07/2013] [Accepted: 06/16/2013] [Indexed: 02/07/2023]
Abstract
Fanconi anemia (FA) proteins are known to play roles in the cellular response to DNA interstrand cross-linking lesions; however, several reports have suggested that FA proteins play additional roles. To elucidate novel functions of FA proteins, we used yeast two-hybrid screening to identify binding partners of the Fanconi anemia complementation group A (FANCA) protein. The candidate proteins included never-in-mitosis-gene A (NIMA)-related kinase 2 (Nek2), which functions in the maintenance of centrosome integrity. The interaction of FANCA and Nek2 was confirmed in human embryonic kidney (HEK) 293T cells. Furthermore, FANCA interacted with γ-tubulin and localized to centrosomes, most notably during the mitotic phase, confirming that FANCA is a centrosomal protein. Knockdown of FANCA increased the frequency of centrosomal abnormalities and enhanced the sensitivity of U2OS osteosarcoma cells to nocodazole, a microtubule-interfering agent. In vitro kinase assays indicated that Nek2 can phosphorylate FANCA at threonine-351 (T351), and analysis with a phospho-specific antibody confirmed that this phosphorylation occurred in response to nocodazole treatment. Furthermore, U2OS cells overexpressing the phosphorylation-defective T351A FANCA mutant showed numerical centrosomal abnormalities, aberrant mitotic arrest, and enhanced nocodazole sensitivity, implying that the Nek2-mediated T351 phosphorylation of FANCA is important for the maintenance of centrosomal integrity. Taken together, this study revealed that FANCA localizes to centrosomes and is required for the maintenance of centrosome integrity, possibly through its phosphorylation at T351 by Nek2.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
13 |
11
|
Coxon CR, Wong C, Bayliss R, Boxall K, Carr KH, Fry AM, Hardcastle IR, Matheson CJ, Newell DR, Sivaprakasam M, Thomas H, Turner D, Yeoh S, Wang LZ, Griffin RJ, Golding BT, Cano C. Structure-guided design of purine-based probes for selective Nek2 inhibition. Oncotarget 2017; 8:19089-19124. [PMID: 27833088 PMCID: PMC5386672 DOI: 10.18632/oncotarget.13249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/17/2016] [Indexed: 01/23/2023] Open
Abstract
Nek2 (NIMA-related kinase 2) is a cell cycle-dependent serine/threonine protein kinase that regulates centrosome separation at the onset of mitosis. Overexpression of Nek2 is common in human cancers and suppression can restrict tumor cell growth and promote apoptosis. Nek2 inhibition with small molecules, therefore, offers the prospect of a new therapy for cancer. To achieve this goal, a better understanding of the requirements for selective-inhibition of Nek2 is required. 6-Alkoxypurines were identified as ATP-competitive inhibitors of Nek2 and CDK2. Comparison with CDK2-inhibitor structures indicated that judicious modification of the 6-alkoxy and 2-arylamino substituents could achieve discrimination between Nek2 and CDK2. In this study, a library of 6-cyclohexylmethoxy-2-arylaminopurines bearing carboxamide, sulfonamide and urea substituents on the 2-arylamino ring was synthesized. Few of these compounds were selective for Nek2 over CDK2, with the best result being obtained for 3-((6-(cyclohexylmethoxy)-9H-purin-2-yl)amino)-N,N-dimethylbenzamide (CDK2 IC50 = 7.0 μM; Nek2 IC50 = 0.62 μM) with >10-fold selectivity. Deletion of the 6-substituent abrogated activity against both Nek2 and CDK2. Nine compounds containing an (E)-dialkylaminovinyl substituent at C-6, all showed selectivity for Nek2, e.g. (E)-6-(2-(azepan-1-yl)vinyl)-N-phenyl-9H-purin-2-amine (CDK2 IC50 = 2.70 μM; Nek2 IC50 = 0.27 μM). Structural biology of selected compounds enabled a partial rationalization of the observed structure activity relationships and mechanism of Nek2 activation. This showed that carboxamide 11 is the first reported inhibitor of Nek2 in the DFG-in conformation.
Collapse
|
research-article |
8 |
10 |
12
|
DeVaul N, Koloustroubis K, Wang R, Sperry AO. A novel interaction between kinase activities in regulation of cilia formation. BMC Cell Biol 2017; 18:33. [PMID: 29141582 PMCID: PMC5688660 DOI: 10.1186/s12860-017-0149-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023] Open
Abstract
Background The primary cilium is an extension of the cell membrane that encloses a microtubule-based axoneme. Primary cilia are essential for transmission of environmental cues that determine cell fate. Disruption of primary cilia function is the molecular basis of numerous developmental disorders. Despite their biological importance, the mechanisms governing their assembly and disassembly are just beginning to be understood. Cilia growth and disassembly are essential events when cells exit and reenter into the cell cycle. The kinases never in mitosis-kinase 2 (Nek2) and Aurora A (AurA) act to depolymerize cilia when cells reenter the cell cycle from G0. Results Coexpression of either kinase with its kinase dead companion [AurA with kinase dead Nek2 (Nek2 KD) or Nek2 with kinase dead AurA (AurA KD)] had different effects on cilia depending on whether cilia are growing or shortening. AurA and Nek2 are individually able to shorten cilia when cilia are growing but both are required when cilia are being absorbed. The depolymerizing activity of each kinase is increased when coexpressed with the kinase dead version of the other kinase but only when cilia are assembling. Additionally, the two kinases act additively when cilia are assembling but not disassembling. Inhibition of AurA increases cilia number while inhibition of Nek2 significantly stimulates cilia length. The complex functional relationship between the two kinases reflects their physical interaction. Further, we identify a role for a PP1 binding protein, PPP1R42, in inhibiting Nek2 and increasing ciliation of ARPE-19 cells. Conclusion We have uncovered a novel functional interaction between Nek2 and AurA that is dependent on the growth state of cilia. This differential interdependence reflects opposing regulation when cilia are growing or shortening. In addition to interaction between the kinases to regulate ciliation, the PP1 binding protein PPP1R42 directly inhibits Nek2 independent of PP1 indicating another level of regulation of this kinase. In summary, we demonstrate a complex interplay between Nek2 and AurA kinases in regulation of ciliation in ARPE-19 cells. Electronic supplementary material The online version of this article (10.1186/s12860-017-0149-5) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
8 |
7 |
13
|
Chuang SH, Lee YSE, Huang LYL, Chen CK, Lai CL, Lin YH, Yang JY, Yang SC, Chang LH, Chen CH, Liu CW, Lin HS, Lee YR, Huang KP, Fu KC, Jen HM, Lai JY, Jian PS, Wang YC, Hsueh WY, Tsai PY, Hong WH, Chang CC, Wu DZ, Wu J, Chen MH, Yu KM, Chern CY, Chang JM, Lau JYN, Huang JJ. Discovery of T-1101 tosylate as a first-in-class clinical candidate for Hec1/ Nek2 inhibition in cancer therapy. Eur J Med Chem 2020; 191:112118. [PMID: 32113126 DOI: 10.1016/j.ejmech.2020.112118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Highly expressed in cancer 1 (Hec1) plays an essential role in mitosis and is correlated with cancer formation, progression, and survival. Phosphorylation of Hec1 by Nek2 kinase is essential for its mitotic function, thus any disruption of Hec1/Nek2 protein-protein interaction has potential for cancer therapy. We have developed T-1101 tosylate (9j tosylate, 9j formerly known as TAI-95), optimized from 4-aryl-N-pyridinylcarbonyl-2-aminothiazole of scaffold 9 by introducing various C-4' substituents to enhance potency and water solubility, as a first-in-class oral clinical candidate for Hec1 inhibition with potential for cancer therapy. T-1101 has good oral absorption, along with potent in vitro antiproliferative activity (IC50: 14.8-21.5 nM). It can achieve high concentrations in Huh-7 and MDA-MB-231 tumor tissues, and showed promise in antitumor activity in mice bearing human tumor xenografts of liver cancer (Huh-7), as well as of breast cancer (BT474, MDA-MB-231, and MCF7) with oral administration. Oral co-administration of T-1101 halved the dose of sorafenib (25 mg/kg to 12.5 mg/kg) required to exhibit comparable in vivo activity towards Huh-7 xenografts. Cellular events resulting from Hec1/Nek2 inhibition with T-1101 treatment include Nek2 degradation, chromosomal misalignment, and apoptotic cell death. A combination of T-1101 with either of doxorubicin, paclitaxel, and topotecan in select cancer cells also resulted in synergistic effects. Inactivity of T-1101 on non-cancerous cells, a panel of kinases, and hERG demonstrates cancer specificity, target specificity, and cardiac safety, respectively. Subsequent salt screening showed that T-1101 tosylate has good oral AUC (62.5 μM·h), bioavailability (F = 77.4%), and thermal stability. T-1101 tosylate is currently in phase I clinical trials as an orally administered drug for cancer therapy.
Collapse
|
Journal Article |
5 |
5 |
14
|
Wang H, Chen Y, Gu X, Xi J, Ren Z, Wang S, Duan Y, Li H, Zhu T, Du Y, Zhang X, Ma M. Design, synthesis, and structure activity relationship (SAR) studies of novel imidazo[1,2-a] pyridine derivatives as Nek2 inhibitors. Bioorg Med Chem 2020; 28:115775. [PMID: 32992252 DOI: 10.1016/j.bmc.2020.115775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/26/2022]
Abstract
Never in mitosis (NIMA) related kinase 2 (Nek2) is involved in multiple cellular processes such as cell cycle checkpoint regulation, cell division, DNA damage response and cell apoptosis. Nek2 has been reported to be overexpressed in various tumors and correlated with poor prognosis. Herein, a series of imidazo[1,2-a] pyridines Nek2 inhibitors were designed, synthesized, and their biological activities were investigated. Besides, structure activity relationship analysis of these compounds were performed in the MGC-803 cell. The screening results are promising, and compound 28e shows good proliferation inhibitory activity with an IC50 of 38 nM. The results would be helpful to design and develop more effective Nek2 inhibitors for the treatment of gastric cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
2 |
15
|
Gorry R, Brennan K, Lavin PTM, Sheridan R, Mc Gee MM. Phosphorylation of the prolyl isomerase Cyclophilin A regulates its localisation and release from the centrosome during mitosis. Cell Cycle 2023; 22:951-966. [PMID: 36691345 PMCID: PMC10054169 DOI: 10.1080/15384101.2023.2167430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/30/2022] [Indexed: 01/25/2023] Open
Abstract
The centrosome acts as a protein platform from which proteins are deployed to function throughout the cell cycle. Previously, we have shown that the prolyl isomerase Cyclophilin A (CypA) localizes to the centrosome in interphase and re-localizes to the midbody during mitosis where it functions in cytokinesis. In this study, investigation of CypA by SDS-PAGE during the cell cycle reveals that it undergoes a mobility shift during mitosis, indicative of a post-translational modification, which may correlate with its subcellular re-localization. Due to the lack of a phospho-specific antibody, we used site-directed mutagenesis to demonstrate that the previously identified serine 77 phosphorylation site within CypA is important for control of CypA centrosome localization. Furthermore, CypA is shown to interact with the mitotic NIMA-related kinase 2 (Nek2) during interphase and mitosis, while also interacting with the Nek2-antagonist PP1 during interphase but not during mitosis, suggesting a potential role for the Nek2-PP1 complex in CypA phospho-regulation. In support of this, Nek2 is capable of phosphorylating CypA in vitro. Overall, this work reveals that phosphorylation of CypA at serine 77 is important for its release from the centrosome during mitosis and may be regulated by the activity of Nek2 and PP1 during the cell cycle.
Collapse
|
research-article |
2 |
2 |
16
|
Silencing of Nek2 suppresses the proliferation, migration and invasion and induces apoptosis of breast cancer cells by regulating ERK/MAPK signaling. J Mol Histol 2021; 52:809-821. [PMID: 34009515 DOI: 10.1007/s10735-021-09979-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is a frequent cancer among women. The current study investigated the biological functions of Nek2 in breast cancer and its possible mechanism. The mRNA expression of Nek2 in breast epithelial cells and eight breast cancer cell lines was detected by qRT-PCR. Silencing Nek2 was transfected into MDA-MB-231 and MCF7 cells to examine its roles in the viability, migration, invasion, cell colony, apoptosis and cell cycle of the breast cancer cells by performing CCK-8, wound scratch, Transwell, clone formation and flow cytometry assays, respectively. The expressions of related genes were detected using qRT-PCR and Western blot. MAPK pathway agonist IGF (insulin-like growth factor-1) was added into MDA-MB-231 and MCF7 cells and then cell viability was examined. Nek2 expression was frequently up-regulated in breast cancer cell lines, and silencing Nek2 significantly inhibited the viability, cell migration, invasion and clone formation, promoted cell apoptosis of MDA-MB-231 and MCF7 cells, and arrested cell cycle in G0/G1 phase. Furthermore, knocking down Nek2 decreased the mRNA and protein expressions of Bcl-2, CyclinB1 and CyclinD1, and increased Bax and p27 expressions. Moreover, knocking down Nek2 inhibited the phosphorylation of ERK and p38, and almost completely reversed the expression of p-ERK increased by IGF, but Nek2 knockdown had no obvious effect on p-p38. The inhibitory effect of Nek2 silencing on the cell viability was mainly realized by the inhibition of ERK/MAPK signaling. Nek2 plays an important role in the regulation of the progression of breast cancer in vitro probably through regulating the ERK/MAPK signaling.
Collapse
|
Journal Article |
4 |
1 |
17
|
Ning Z, Wang A, Liang J, Liu J, Zhou T, Yan Q, Wang Z. Abnormal expression of Nek2 in pancreatic ductal adenocarcinoma: a novel marker for prognosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2462-2469. [PMID: 24966957 PMCID: PMC4069945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Nek2 is a serine/threonine kinase that has a critical role in mitosis during the cell division process. Despite its importance in centrosome regulation and spindle formation, no direct binders are reported between human pancreatic cancer and Nek2 protein. Our aim in studying Nek2 expression and survival in PDA patients is to determine whether Nek2 is a valuable prognostic factor in PDA tumorigenesis. We found that Nek2 mRNA was elevated in PDA tissues. A high level of expression of Nek2 was significantly correlated with histological differentiation (P=0.042), lymph node metastasis (P=0.003) and tumor stage (P=0.001). Patients with a high Nek2 expression had a significantly worse overall survival (OS) than those patients with low Nek2 expression (P=0.002). Univariate and multivariate analysis revealed that high expression of Nek2 could serve as an independent predictor of poor prognosis. These results indicate that Nek2 could be a promising prognostic molecular marker and an attractive therapeutic target for PDA.
Collapse
|
research-article |
11 |
|
18
|
Krüger S, Pfaff N, Gräf R, Meyer I. Dynamic Mitotic Localization of the Centrosomal Kinases CDK1, Plk, AurK, and Nek2 in Dictyostelium amoebae. Cells 2024; 13:1513. [PMID: 39329697 PMCID: PMC11430746 DOI: 10.3390/cells13181513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
The centrosome of the amoebozoan model Dictyostelium discoideum provides the best-established model for an acentriolar centrosome outside the Opisthokonta. Dictyostelium exhibits an unusual centrosome cycle, in which duplication is initiated only at the G2/M transition and occurs entirely during the M phase. Little is known about the role of conserved centrosomal kinases in this process. Therefore, we have generated knock-in strains for Aurora (AurK), CDK1, cyclin B, Nek2, and Plk, replacing the endogenous genes with constructs expressing the respective green fluorescent Neon fusion proteins, driven by the endogenous promoters, and studied their behavior in living cells. Our results show that CDK1 and cyclin B arrive at the centrosome first, already during G2, followed by Plk, Nek2, and AurK. Furthermore, CDK1/cyclin B and AurK were dynamically localized at kinetochores, and AurK in addition at nucleoli. The putative roles of all four kinases in centrosome duplication, mitosis, cytokinesis, and nucleolar dynamics are discussed.
Collapse
|
research-article |
1 |
|
19
|
Rivera-Rivera Y, Vargas G, Jaiswal N, Núñez-Marrero A, Li J, Chen DT, Eschrich S, Rosa M, Johnson JO, Dutil J, Chellappan SP, Saavedra HI. Ethnic and racial-specific differences in levels of centrosome-associated mitotic kinases, proliferative and epithelial-to-mesenchymal markers in breast cancers. Cell Div 2022; 17:6. [PMID: 36494865 PMCID: PMC9733043 DOI: 10.1186/s13008-022-00082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Molecular epidemiology evidence indicates racial and ethnic differences in the aggressiveness and survival of breast cancer. Hispanics/Latinas (H/Ls) and non-Hispanic Black women (NHB) are at higher risk of breast cancer (BC)-related death relative to non-Hispanic white (NHW) women in part because they are diagnosed with hormone receptor-negative (HR) subtype and at higher stages. Since the cell cycle is one of the most commonly deregulated cellular processes in cancer, we propose that the mitotic kinases TTK (or Mps1), TBK1, and Nek2 could be novel targets to prevent breast cancer progression among NHBs and H/Ls. In this study, we calculated levels of TTK, p-TBK1, epithelial (E-cadherin), mesenchymal (Vimentin), and proliferation (Ki67) markers through immunohistochemical (IHC) staining of breast cancer tissue microarrays (TMAs) that includes samples from 6 regions in the Southeast of the United States and Puerto Rico -regions enriched with NHB and H/L breast cancer patients. IHC analysis showed that TTK, Ki67, and Vimentin were significantly expressed in triple-negative (TNBC) tumors relative to other subtypes, while E-cadherin showed decreased expression. TTK correlated with all of the clinical variables but p-TBK1 did not correlate with any of them. TCGA analysis revealed that the mRNA levels of multiple mitotic kinases, including TTK, Nek2, Plk1, Bub1, and Aurora kinases A and B, and transcription factors that are known to control the expression of these kinases (e.g. FoxM1 and E2F1-3) were upregulated in NHBs versus NHWs and correlated with higher aneuploidy indexes in NHB, suggesting that these mitotic kinases may be future novel targets for breast cancer treatment in NHB women.
Collapse
|
research-article |
3 |
|
20
|
Lu L, Zhai X, Yuan R. Clinical significance and prognostic value of Nek2 protein expression in colon cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15467-15473. [PMID: 26823916 PMCID: PMC4713702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To determine the expression of NIMA-related kinase NEK2 and evaluate its clinical value in colon cancer. METHOD Sixty specimens of colon cancer, 30 specimens of paracancerous colon tissues and 10 specimens of normal colon tissues conventionally resected in surgery at the Second Affiliated Hospital of Nantong University from February 2006 to February 2014 were collected. These tissues were detected for the expression of Nek2 using Western Blot and immunohistochemical staining. The relationship between Nek2 protein expression and the clinicopathology and prognosis of colon tissues was discussed. RESULTS The expression level and positive expression rate of Nek2 protein in the colon cancer were obviously higher than that in the paracancerous tissues and normal colon tissues. They were also significantly higher in the paracancerous tissues than in the normal tissues (P<0.05). Statistical analysis revealed that Nek2 protein expression was not obviously correlated with gender, age and tumor size, but obviously correlated with degree of differentiation (P=0.008), TNM staging (P=0.000), lymph node metastasis (P=0.022) and tumor invasion (P=0.011). With the plotting of Kaplan-Meier survival curve, it could be seen that Nek2 protein expression was not significantly correlated with survival (P=0.0048). High Nek2 protein expression may be an independent risk factor for colon cancer (HR=0.227, 95% CI 0.101-0.510). CONCLUSION High Nek2 protein expression reflects the malignant behavior of colon cancer. Playing important roles in the occurrence of colon cancer, Nek2 protein expression has diagnostic and prognostic value in colon cancer.
Collapse
|
research-article |
10 |
|