1
|
Zhang K, Zheng H, Liang S, Gao C. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 2016; 37:131-42. [PMID: 27063493 DOI: 10.1016/j.actbio.2016.04.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED The graphene oxide (GO) has attracted tremendous attention in biomedical fields. In order to combine the unique physicochemical properties of GO nanosheets with topological structure of aligned nanofibrous scaffolds for nerve regeneration, the GO nanosheets were coated onto aligned and aminolyzed poly-l-lactide (PLLA) nanofibrous scaffolds. Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) revealed that the surface of aligned PLLA nanofibers after being coated with GO became rougher than those of the aligned PLLA and aminolyzed PLLA nanofibrous scaffolds. The GO nanosheets did not destroy the alignment of nanofibers. The characterizations of X-ray photoelectron spectroscopy (XPS) and water contact angle displayed that the aligned PLLA nanofibrous scaffolds were introduced with hydrophilic groups such as NH2, COOH, and OH after aminolysis and GO nanosheets coating, showing better hydrophilicity. The GO-coated and aligned PLLA nanofibrous scaffolds significantly promoted Schwann cells (SCs) proliferation with directed cytoskeleton along the nanofibers compared with the aligned PLLA and aminolyzed PLLA nanofibrous scaffolds. These scaffolds also greatly improved the proliferation of rat pheochromocytoma 12 (PC12) cells, and significantly promoted their differentiation and neurite growth along the nanofibrous alignment in the presence of nerve growth factor (NGF). This type of scaffolds with nanofibrous surface topography and GO nanosheets is expected to show better performance in nerve regeneration. STATEMENT OF SIGNIFICANCE Recovery of damaged nerve functions remains a principal clinical challenge in spite of surgical intervention and entubulation. The use of aligned fibrous scaffolds provides suitable microenvironment for nerve cell attachment, proliferation and migration, enhancing the regeneration outcome of nerve tissue. Surface modification is generally required for the synthetic polymeric fibers by laminin, fibronectin and YIGSR peptides to stimulate specific cell functions and neurite outgrowth. Yet these proteins or peptides present the poor processibility, limited availability, and high cost, influencing their application in clinic. In this work, we combined GO nanosheets and topological structure of aligned nanofibrous scaffolds to direct cell migration, proliferation, and differentiation, and to induce neurite outgrowth for nerve regeneration. The GO coating improved several biomedical properties of the aligned PLLA nanofibrous scaffolds including surface roughness, hydrophilicity and promotion of cells/material interactions, which significantly promoted SCs growth and regulated cell orientation, and induced PC12 cells differentiation and neurite growth. The design of this type of structure is of both scientific and technical importance, and possesses broad interest in the fields of biomaterials, tissue engineering and regenerative medicine.
Collapse
|
|
9 |
166 |
2
|
Georgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials 2014; 37:242-51. [PMID: 25453954 DOI: 10.1016/j.biomaterials.2014.10.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/02/2014] [Indexed: 01/12/2023]
Abstract
Adipose-derived stem cells were isolated from rats and differentiated to a Schwann cell-like phenotype in vitro. The differentiated cells (dADSCs) underwent self-alignment in a tethered type-1 collagen gel, followed by stabilisation to generate engineered neural tissue (EngNT-dADSC). The pro-regenerative phenotype of dADSCs was enhanced by this process, and the columns of aligned dADSCs in the aligned collagen matrix supported and guided neurite extension in vitro. EngNT-dADSC sheets were rolled to form peripheral nerve repair constructs that were implanted within NeuraWrap conduits to bridge a 15 mm gap in rat sciatic nerve. After 8 weeks regeneration was assessed using immunofluorescence imaging and transmission electron microscopy and compared to empty conduit and nerve graft controls. The proportion of axons detected in the distal stump was 3.5 fold greater in constructs containing EngNT-dADSC than empty tube controls. Our novel combination of technologies that can organise autologous therapeutic cells within an artificial tissue construct provides a promising new cellular biomaterial for peripheral nerve repair.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
143 |
3
|
Morimoto Y, Kato-Negishi M, Onoe H, Takeuchi S. Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials 2013; 34:9413-9. [PMID: 24041425 DOI: 10.1016/j.biomaterials.2013.08.062] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
This paper describes a fabrication method of muscle tissue constructs driven by neurotransmitters released from activated motor neurons. The constructs consist of three-dimensional (3D) free-standing skeletal muscle fibers co-cultured with motor neurons. We differentiated mouse neural stem cells (mNSCs) cultured on the skeletal muscle fibers into neurons that extend their processes into the muscle fibers. We found that acetylcholine receptors (AChRs) were formed at the connection between the muscle fibers and the neurons. The neuron-muscle constructs consist of highly aligned, long and matured muscle fibers that facilitate wide contractions of muscle fibers in a single direction. The contractions of the neuron-muscle construct were observed after glutamic acid activation of the neurons. The contraction was stopped by treatment with curare, an neuromuscular junction (NMJ) antagonist. These results indicate that our method succeeded in the formation of NMJs in the neuron-muscle constructs. The neuron-muscle construct system can potentially be used in pharmacokinetic assays related to NMJ disease therapies and in soft-robotic actuators.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
124 |
4
|
Sensharma P, Madhumathi G, Jayant RD, Jaiswal AK. Biomaterials and cells for neural tissue engineering: Current choices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1302-1315. [PMID: 28532008 DOI: 10.1016/j.msec.2017.03.264] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/28/2017] [Indexed: 02/06/2023]
Abstract
The treatment of nerve injuries has taken a new dimension with the development of tissue engineering techniques. Prior to tissue engineering, suturing and surgery were the only options for effective treatment. With the advent of tissue engineering, it is now possible to design a scaffold that matches the exact biological and mechanical properties of the tissue. This has led to substantial reduction in the complications posed by surgeries and suturing to the patients. New synthetic and natural polymers are being applied to test their efficiency in generating an ideal scaffold. Along with these, cells and growth factors are also being incorporated to increase the efficiency of a scaffold. Efforts are being made to devise a scaffold that is biodegradable, biocompatible, conducting and immunologically inert. The ultimate goal is to exactly mimic the extracellular matrix in our body, and to elicit a combination of biochemical, topographical and electrical cues via various polymers, cells and growth factors, using which nerve regeneration can efficiently occur.
Collapse
|
Review |
8 |
119 |
5
|
Koppes A, Keating K, McGregor A, Koppes R, Kearns K, Ziemba A, McKay C, Zuidema J, Rivet C, Gilbert R, Thompson D. Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels. Acta Biomater 2016; 39:34-43. [PMID: 27167609 DOI: 10.1016/j.actbio.2016.05.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED The use of exogenous electrical stimulation to promote nerve regeneration has achieved only limited success. Conditions impeding optimized outgrowth may arise from inadequate stimulus presentation due to differences in injury geometry or signal attenuation. Implantation of an electrically-conductive biomaterial may mitigate this attenuation and provide a more reproducible signal. In this study, a conductive nanofiller (single-walled carbon nanotubes [SWCNT]) was selected as one possible material to manipulate the bulk electrical properties of a collagen type I-10% Matrigel™ composite hydrogel. Neurite outgrowth within hydrogels (SWCNT or nanofiller-free controls) was characterized to determine if: (1) nanofillers influence neurite extension and (2) electrical stimulation of the nanofiller composite hydrogel enhances neurite outgrowth. Increased SWCNT loading (10-100-μg/mL) resulted in greater bulk conductivity (up to 1.7-fold) with no significant changes to elastic modulus. Neurite outgrowth increased 3.3-fold in 20-μg/mL SWCNT loaded biomaterials relative to the nanofiller-free control. Electrical stimulation promoted greater outgrowth (2.9-fold) within SWCNT-free control. The concurrent presentation of electrical stimulation and SWCNT-loaded biomaterials resulted in a 7.0-fold increase in outgrowth relative to the unstimulated, nanofiller-free controls. Local glia residing within the DRG likely contribute, in part, to the observed increases in outgrowth; but it is unknown which specific nanofiller properties influence neurite extension. Characterization of neuronal behavior in model systems, such as those described here, will aid the rational development of biomaterials as well as the appropriate delivery of electrical stimuli to support nerve repair. STATEMENT OF SIGNIFICANCE Novel biomedical devices delivering electrical stimulation are being developed to mitigate symptoms of Parkinson's, treat drug-resistant depression, control movement or enhance verve regeneration. Carbon nanotubes and other novel materials are being explored for novel nano-neuro devices based on their unique properties. Neuronal growth on carbon nanotubes has been studied in 2D since the early 2000s demonstrating increased outgrowth, synapse formation and network activity. In this work, single-walled carbon nanotubes were selected as one possible electrically-conductive material, dispersed within a 3D hydrogel containing primary neurons; extending previous 2D work to 3D to evaluate outgrowth within nanomaterial composites with electrical stimulation. This is the first study to our knowledge that stimulates neurons in 3D composite nanomaterial-laden hydrogels. Examination of electrically conductive biomaterials may serve to promote regrowth following injury or in long term stimulation.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
87 |
6
|
Saudi A, Amini S, Amirpour N, Kazemi M, Zargar Kharazi A, Salehi H, Rafienia M. Promoting neural cell proliferation and differentiation by incorporating lignin into electrospun poly(vinyl alcohol) and poly(glycerol sebacate) fibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:110005. [PMID: 31499996 DOI: 10.1016/j.msec.2019.110005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/27/2022]
Abstract
Electrospinning of natural and synthetic polymers open a new practical approach to tissue engineering by producing fibers. In this study, aligned electrospun poly(vinyl alcohol) (PVA)-poly(glycerol sebacate) (PGS) fibers with various percentages of lignin (0, 1, 3, and 5%wt) fabricated for nerve tissue engineering. The effect of the different amount of lignin on the morphology and diameter of the fibers was investigated by scanning electron microscopy (SEM). The physicochemical properties of fibers were studied using FTIR, tensile strain, contact angle, water uptake, and degradation test. MTT assay and SEM were employed to evaluate PC12 cell proliferation and adhesion, respectively. Immunocytochemistry and gene expression were utilized to study how the lignin affected on cell differentiation. The results revealed the smooth with a uniform diameter of the fabricated fibers, and the increased amount of lignin reduced the fiber diameter from 530 to 370 nm. The modulus of elasticity increased from 0.1 to 0.4 MPa by increasing the lignin percentage. The PC12 cell culture indicated that the lignin enhanced cell proliferation. The mRNA expression level for Gfap, β-Tub III, and Map2 and immunocytochemistry (Map2) revealed the positive effect of lignin on neural cell differentiation. Finally, the results suggest PVA-PGS/5% lignin as a promising material for nerve tissue engineering.
Collapse
|
Journal Article |
6 |
36 |
7
|
Xiang W, Cao H, Tao H, Jin L, Luo Y, Tao F, Jiang T. Applications of chitosan-based biomaterials: From preparation to spinal cord injury neuroprosthetic treatment. Int J Biol Macromol 2023; 230:123447. [PMID: 36708903 DOI: 10.1016/j.ijbiomac.2023.123447] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Spinal cord injury (SCI)-related disabilities are a serious problem in the modern society. Further, the treatment of SCI is highly challenging and is urgently required in clinical practice. Research on nerve tissue engineering is an emerging approach for improving the treatment outcomes of SCI. Chitosan (CS) is a cationic polysaccharide derived from natural biomaterials. Chitosan has been found to exhibit excellent biological properties, such as nontoxicity, biocompatibility, biodegradation, and antibacterial activity. Recently, chitosan-based biomaterials have attracted significant attention for SCI repair in nerve tissue engineering applications. These studies revealed that chitosan-based biomaterials have various functions and mechanisms to promote SCI repair, such as promoting neural cell growth, guiding nerve tissue regeneration, delivering nerve growth factors, and as a vector for gene therapy. Chitosan-based biomaterials have proven to have excellent potential for the treatment of SCI. This review aims to introduce the recent advances in chitosan-based biomaterials for SCI treatment and to highlight the prospects for further application.
Collapse
|
Review |
2 |
23 |
8
|
Jabbari F, Babaeipour V, Bakhtiari S. Bacterial cellulose-based composites for nerve tissue engineering. Int J Biol Macromol 2022; 217:120-130. [PMID: 35820488 DOI: 10.1016/j.ijbiomac.2022.07.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Nerve injuries and neurodegenerative disorders are very serious and costly medical challenges. Damaged nerve tissue may not be able to heal and regain its function, and scar tissue may restrict nerve cell regeneration. In recent years, new electroactive biomaterials have attracted widespread attention in the neural tissue engineering field. Bacterial cellulose (BC) due to its unique properties such as good mechanical properties, high water retention, biocompatibility, high crystallinity, large surface area, high purity, very fine network, and inability to absorb in the human body due to cellulase deficiency, can be considered a promising treatment for neurological injuries and disorders that require long-term support. However, BC lacks electrical activity, but can significantly improve the nerve regeneration rate by combining with conductive structures. Electrical stimulation has been shown to be an effective means of increasing the rate and accuracy of nerve regeneration. Many factors, such as the intensity and pattern of electrical current, have positive effects on cellular activity, including cell adhesion, proliferation, migration and differentiation, and cell-cell/tissue/molecule/drug interaction. This study discusses the importance and essential role of BC-based biomaterials in neural tissue regeneration and the effects of electrical stimulation on cellular behaviors.
Collapse
|
Review |
3 |
18 |
9
|
Chitosan/graphene and poly(D, L-lactic-co-glycolic acid)/graphene nano-composites for nerve tissue engineering. Tissue Eng Regen Med 2016; 13:684-690. [PMID: 30603449 DOI: 10.1007/s13770-016-9130-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 10/20/2022] Open
Abstract
This study aimed at examining and comparing the fabrication process, electrical conductivity, and biological properties of Chitosan/Graphene membranes and poly(D, L-lactic-co-glycolic acid) (PLGA)/Graphene membranes. Nano-composite membranes were made using chitosan or PLGA matrix, and 0.5-1.5 wt.% graphene nano-sheets as the reinforcement material; all the membranes were fabricated through solution casting method. Fourier transform infrared spectroscopy and X-ray diffraction results indicated that the graphene had been uniformly dispersed in polymeric matrix. The membranes with 1.5 wt.% graphene appeared to have the highest value of electrical conductivity among all the examined the membranes and this growth was about 106 in comparison with neat polymers. Since the Chitosan 1.5% graphene membrane was found to have the highest proliferation after 72 hours by MTT [3-(4, 5-di-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay of PC12 cell line (p<0.05), it is promising to consider nano-composite membrane for nerve tissue engineering applications.
Collapse
|
Journal Article |
9 |
18 |
10
|
Junka R, Yu X. Novel Acellular Scaffold Made from Decellularized Schwann Cell Sheets for Peripheral Nerve Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2015; 1:22-31. [PMID: 26848489 DOI: 10.1007/s40883-015-0003-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Extracellular matrix surrounding Schwann cells and neurons provides critical determinants of cellular phenotype during development as well as essential cues in stimulating and guiding regrowth. Using cell sheet technology, we developed a novel scaffold enriched with native extracellular matrix from Schwann cells. Schwann cells were grown into sheets and layered onto polycaprolactone fibers for support. Upon decellularization of these constructs, extracellular matrix remained with few traces of nucleic acids. This method of deposition of extracellular matrix provided more protein than traditional seeding method after decellularization. Additionally, the isolated matrix supported proliferation of Schwann cells better than covalently bound laminin. The proliferation and differentiation of Schwann cells grown on decellularized sheets were complemented by upregulation of Erbb2 and myelin protein zero. Laminin expression of β1 and γ1 chains was also elevated. PC12 cells grown on decellularized sheets produced longer neurite extensions than aligned polycaprolactone fibers alone, proving potential of these scaffolds to be used in future peripheral nerve regenerative studies. LAY SUMMARY Peripheral nerve injuries present a serious clinical need with approximately 50 % of surgical cases achieving only some restoration of function. In order to better guide regenerating nerves, supporting cells of the nerve tissue were grown into sheets and subsequently decellularized, leaving a myriad of surrounding protein as a scaffold. Constructs have been shown to support cell growth and neurite extension in vitro. Future projects will combine various cell types present in the nerve tissue as well as stem cells to fully support and reconstruct architecture of the peripheral nerves.
Collapse
|
Journal Article |
10 |
17 |
11
|
Human three-dimensional engineered neural tissue reveals cellular and molecular events following cytomegalovirus infection. Biomaterials 2015; 53:296-308. [PMID: 25890728 DOI: 10.1016/j.biomaterials.2015.02.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/19/2015] [Accepted: 02/21/2015] [Indexed: 01/13/2023]
Abstract
Human cytomegalovirus (HCMV) is the most common cause of congenital infection of the central nervous system (CNS). To overcome the limited access to human neural tissue and stringent species specificity of HCMV, we used engineered neural tissues to: (i) provide a technical advance to mimick features of HCMV infection in a human neural fetal tissue in vitro and (ii) characterize the molecular and cellular phenomenon following HCMV infection in this tissue. Herein, we infected hESC-derived engineered neural tissues (ENTs) whose organization resembles fetal brain. Transcriptome analysis of ENTs demonstrated that HCMV infection displayed features of the infection with the expression of genes involved in lipid metabolism, growth and development, as well as stress and host-response in a time-dependent manner. Immunohistochemical analysis demonstrated that HCMV did not firstly infect neural tubes (i.e. radially organized, proliferating stem cell niches), but rather an adjacent side population of post-mitotic cells expressing nestin, doublecortin, Sox1, musashi and vimentin markers. Importantly, we observe the same tropism in naturally HCMV-infected fetal brain specimens. To the best of our knowledge this system represents the first human brain-like tissue able to provide a more physiologically model for studying HCMV infection.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
15 |
12
|
Nayernia Z, Turchi L, Cosset E, Peterson H, Dutoit V, Dietrich PY, Tirefort D, Chneiweiss H, Lobrinus JA, Krause KH, Virolle T, Preynat-Seauve O. The relationship between brain tumor cell invasion of engineered neural tissues and in vivo features of glioblastoma. Biomaterials 2013; 34:8279-90. [PMID: 23899445 DOI: 10.1016/j.biomaterials.2013.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/01/2013] [Indexed: 12/15/2022]
Abstract
Glioblastoma is an aggressive brain tumor characterized by its high propensity for local invasion, formation of secondary foci within the brain, as well as areas of necrosis. This study aims to (i) provide a technical approach to reproduce features of the disease in vitro and (ii) characterize the tumor/host brain tissue interaction at the molecular level. Human engineered neural tissue (ENT) obtained from pluripotent stem cells was generated and co-cultured with human glioblastoma-initiating cells. Within two weeks, glioblastoma cells invaded the nervous tissue. This invasion displayed features of the disease in vivo: a primary tumor mass, diffuse migration of invading single cells into the nervous tissue, secondary foci, as well as peritumoral cell death. Through comparative molecular analyses, this model allowed the identification of more than 100 genes that are specifically induced and up-regulated by the nervous tissue/tumor interaction. Notably the type I interferon response, extracellular matrix-related genes were most highly represented and showed a significant correlation with patient survival. In conclusion, glioblastoma development within a nervous tissue can be engineered in vitro, providing a relevant model to study the disease and allows the identification of clinically-relevant genes induced by the tumor/host tissue interaction.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
15 |
13
|
Cosset E, Petty T, Dutoit V, Tirefort D, Otten-Hernandez P, Farinelli L, Dietrich PY, Preynat-Seauve O. Human tissue engineering allows the identification of active miRNA regulators of glioblastoma aggressiveness. Biomaterials 2016; 107:74-87. [PMID: 27614160 DOI: 10.1016/j.biomaterials.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/30/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
Glioblastoma multiforme (GBM) is among the most aggressive cancers associated with massive infiltration of peritumoral parenchyma by migrating tumor cells. The infiltrative nature of GBM cells, the intratumoral heterogeneity concomitant with redundant signaling pathways likely underlie the inability of conventional and targeted therapies to achieve long-term remissions. In this respect, microRNAs (miRNAs), which are endogenous small non-coding RNAs that play a role in cancer aggressiveness, emerge as possible relevant prognostic biomarkers or therapeutic targets for treatment of malignant gliomas. We previously described a tissue model of GBM developing into a stem cell-derived human Engineered Neural Tissue (ENT) that allows the study of tumor/host tissue interaction. Combined with high throughput sequencing analysis, we took advantage of this human and integrated tissue model to understand miRNAs regulation. Three miRNAs (miR-340, -494 and -1293) active on cell proliferation, adhesion to extracellular matrix and tumor cell invasion were identified in GBM cells developing within ENT, and also confirmed in GBM biopsies. The components of miRNAs regulatory network at the transcriptional and the protein level have been also revealed by whole transcriptome analysis and Tandem Mass Tag in transfected GBM cells. Notably, miR-340 has a clinical relevance and modulates the expression of miR-494 and -1293, emphasizing its biological significance. Altogether, these findings demonstrate that human tissue engineering modeling GBM development in neural host tissue is a suitable tool to identify active miRNAs. Collectively, our study identified miR-340 as a strong modulator of GBM aggressiveness which may constitute a therapeutic target for treatment of malignant gliomas.
Collapse
|
Journal Article |
9 |
13 |
14
|
Pillai MM, Kumar GS, Houshyar S, Padhye R, Bhattacharyya A. Effect of nanocomposite coating and biomolecule functionalization on silk fibroin based conducting 3D braided scaffolds for peripheral nerve tissue engineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102131. [PMID: 31778808 DOI: 10.1016/j.nano.2019.102131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/29/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
In this work, the effects of carbon nanofiber (CNF) dispersed poly-ε-caprolactone (PCL) nanocomposite coatings and biomolecules functionalization on silk fibroin based conducting braided nerve conduits were studied for enhancing Neuro 2a cellular activities. A unique combination of biomolecules (UCM) and varying concentrations of CNF (5, 7.5, 10% w/w) were dispersed in 10% (w/v) PCL solution for coating on degummed silk threads. The coated silk threads were braided to develop the scaffold structure. As the concentration of CNF increased in the coating, the electrical impedance decreased up to 400 Ω indicating better conductivity. The tensile and dynamic mechanical property analysis showed better mechanical properties in CNF coated samples. In vitro cytocompatibility analysis proved the non-toxicity of the developed braided conduits. Cell attachment, growth and proliferation were significantly enhanced on the biomolecule functionalized nanocomposite coated silk braided structure, exhibiting their potential for peripheral nerve regeneration and recovery.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
13 |
15
|
Kabiri M, Oraee-Yazdani S, Dodel M, Hanaee-Ahvaz H, Soudi S, Seyedjafari E, Salehi M, Soleimani M. Cytocompatibility of a conductive nanofibrous carbon nanotube/poly (L-Lactic acid) composite scaffold intended for nerve tissue engineering. EXCLI JOURNAL 2015; 14:851-60. [PMID: 26600751 PMCID: PMC4650950 DOI: 10.17179/excli2015-282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 05/28/2015] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to fabricate a conductive aligned nanofibrous substrate and evaluate its suitability and cytocompatibility with neural cells for nerve tissue engineering purposes. In order to reach these goals, we first used electrospinning to fabricate single-walled carbon-nanotube (SWCNT) incorporated poly(L-lactic acid) (PLLA) nanofibrous scaffolds and then assessed its cytocompatibility with olfactory ensheathing glial cells (OEC). The plasma treated scaffolds were characterized using scanning electron microscopy and water contact angle. OECs were isolated from olfactory bulb of GFP Sprague-Dawley rats and characterized using OEC specific markers via immunocytochemistry and flow cytometery. The cytocompatibility of the conductive aligned nano-featured scaffold was assessed using microscopy and MTT assay. We indicate that doping of PLLA polymer with SWCNT can augment the aligned nanosized substrate with conductivity, making it favorable for nerve tissue engineering. Our results demonstrated that SWCNT/PLLA composite scaffold promote the adhesion, growth, survival and proliferation of OEC. Regarding the ideal physical, topographical and electrical properties of the scaffold and the neurotrophic and migratory features of the OECs, we suggest this scaffold and the cell/scaffold construct as a promising platform for cell delivery to neural defects in nerve tissue engineering approaches.
Collapse
|
Journal Article |
10 |
11 |
16
|
Mozhdehbakhsh Mofrad Y, Shamloo A. The effect of conductive aligned fibers in an injectable hydrogel on nerve tissue regeneration. Int J Pharm 2023; 645:123419. [PMID: 37717716 DOI: 10.1016/j.ijpharm.2023.123419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Injectable hydrogels are a promising treatment option for nervous system injuries due to the difficulty to replace lost cells and nervous factors but research on injectable conductive hydrogels is limited and these scaffolds have poor electromechanical properties. This study developed a chitosan/beta-glycerophosphate/salt hydrogel and added conductive aligned nanofibers (polycaprolactone/gelatin/single-wall carbon nanotube (SWCNT)) for the first time and inspired by natural nerve tissue to improve their biochemical and biophysical properties. The results showed that the degradation rate of hydrogels is proportional to the regrowth of axons and these hydrogels' mechanical (hydrogels without nanofibers or SWCNTs and hydrogels containing these additions have the same Young's modulus as the brain and spinal cord or peripheral nerves, respectively) and electrical properties, and the interconnective structure of the scaffolds have the ability to support cells.
Collapse
|
|
2 |
8 |
17
|
Optimizing the electrical conductivity of polyacrylonitrile/polyaniline with nickel nanoparticles for the enhanced electrostimulation of Schwann cells proliferation. Bioelectrochemistry 2021; 140:107750. [PMID: 33578301 DOI: 10.1016/j.bioelechem.2021.107750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/09/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022]
Abstract
Tissue engineering scaffolds made of biocompatible polymers are promising alternatives for nerve reparation. For this application, cell proliferation will be speeded up by electrostimulation, which required electrically-conductive materials. Here, a biomimicking scaffold with optimized conductivity was developed from electrospun polyacrylonitrile/electrically-conductive polyaniline (PAN/PANI) nanofibers doped with Ni nanoparticles. PAN/PANI/Ni was biocompatible for Schwann cells and exhibited a suitable tensile strength and wettability for cell proliferation. When compared with unmodified PAN/PANI, the electrical conductivity of PAN/PANI/Ni was 6.4 fold higher. Without electrostimulation, PAN/PANI and PAN/PANI/Ni exhibited similar Schwann cells' proliferation rates. Upon electrostimulation at 100 mV cm-1 for one hour per day over five days, PAN/PANI/Ni accelerated Schwann cells' proliferation 2.1 times compared to PAN/PANI. These results demonstrate the importance of expanding the electrical conductivity of the tissue engineering scaffold to ensure optimal electrostimulation of nerve cell growth. Additionally, this study describes a straightforward approach to modulate the electrical conductivity of polymeric materials via the addition of Ni nanoparticles that can be applied to different biomimicking scaffolds for nerve healing.
Collapse
|
Journal Article |
4 |
8 |
18
|
Anderson WA, Willenberg AR, Bosak AJ, Willenberg BJ, Lambert S. Use of a capillary alginate gel (Capgel™) to study the three-dimensional development of sensory nerves reveals the formation of a rudimentary perineurium. J Neurosci Methods 2018; 305:46-53. [PMID: 29746890 DOI: 10.1016/j.jneumeth.2018.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Peripheral neuropathies affect approximately 20 million people in the United States and often stem from other chronic conditions, such as diabetes. In vitro methodologies to facilitate the understanding and treatment of these disorders often lack the cellular and functional complexity required to accurately model peripheral neuropathies. In particular, they are often 2D and fail to faithfully reproduce the 3D in vivo microenvironment. NEW METHOD Embryonic dorsal root ganglion (DRG) explants were inserted into laminin derivatized capillary alginate gel (Capgel™), a bioabsorbable, self-assembling biomaterial, possessing parallel microchannel architecture, and cultured to mimic normal nerve development, including Schwann cell myelination. RESULTS Laminin derivatization of the microchannels improved nerve growth through the gel. Axon bundles containing myelinating Schwann cells migrated through the gel and were ensheathed by rudimentary perineurium up to 1 mm from the DRG explant site. COMPARISON WITH EXISTING METHODS Other nerve models are two-dimensional in nature and/or fail to conserve the complicated architecture and cellular milieu observed in vivo. Our nerve model shows the simple culture technique of cells grown in 3D, which allows for a more advanced structural organization that more accurately mimics the in vivo nerve fascicle. CONCLUSIONS When embryonic DRG explants are cultured in this system, they show a striking resemblance to in vivo peripheral nerve fascicles, including myelinated axons and the formation of a rudimentary perineurium, suggesting that both neuronal and non-neuronal cells within the DRG explant are capable of recreating the 3D structure of a developing sensory fascicle within the microchannel architecture.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
7 |
19
|
Sun W, Taylor CS, Zhang Y, Gregory DA, Tomeh MA, Haycock JW, Smith PJ, Wang F, Xia Q, Zhao X. Cell guidance on peptide micropatterned silk fibroin scaffolds. J Colloid Interface Sci 2021; 603:380-390. [PMID: 34186409 DOI: 10.1016/j.jcis.2021.06.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
Guiding neuronal cell growth is desirable for neural tissue engineering but is very challenging. In this work, a self-assembling ultra-short surfactant-like peptide I3K which possesses positively charged lysine head groups, and hydrophobic isoleucine tails, was chosen to investigate its potential for guiding neuronal cell growth. The peptides were able to self-assemble into nanofibrous structures and interact strongly with silk fibroin (SF) scaffolds, providing a niche for neural cell attachment and proliferation. SF is an excellent biomaterial for tissue engineering. However neuronal cells, such as rat PC12 cells, showed poor attachment on pure regenerated SF (RSF) scaffold surfaces. Patterning of I3K peptide nanofibers on RSF surfaces significantly improved cellular attachment, cellular density, as well as morphology of PC12 cells. The live / dead assay confirmed that RSF and I3K have negligible cytotoxicity against PC12 cells. Atomic force microscopy (AFM) was used to image the topography and neurite formation of PC12 cells, where results revealed that self-assembled I3K nanofibers can support the formation of PC12 cell neurites. Immunolabelling also demonstrated that coating of I3K nanofibers onto the RSF surfaces not only increased the percentage of cells bearing neurites but also increased the average maximum neurite length. Therefore, the peptide I3K could be used as an alternative to poly-l-lysine for cell culture and tissue engineering applications. As micro-patterning of neural cells to guide neurite growth is important for developing nerve tissue engineering scaffolds, inkjet printing was used to pattern self-assembled I3K peptide nanofibers on RSF surfaces for directional control of PC12 cell growth. The results demonstrated that inkjet-printed peptide micro-patterns can effectively guide the cell alignment and organization on RSF scaffold surfaces, providing great potential for nerve regeneration applications.
Collapse
|
Journal Article |
4 |
6 |
20
|
Zamanifard M, Khorasani MT, Daliri M, Parvazinia M. Preparation and modeling of electrospun polyhydroxybutyrate/polyaniline composite scaffold modified by plasma and printed by an inkjet method and its cellular study. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1515-1537. [PMID: 32403986 DOI: 10.1080/09205063.2020.1764162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reconstruction of the nerve tissue engineering scaffold is always of particular interest due to the inability to recover and repair neural tissues after being damaged by diseases or physical injuries. The primary purpose of this study was obtaining a model used to predict the diameter of the fibers of electrospun polyhydroxybutyrate (PHB) scaffolds. Accordingly, the range of operating parameters, namely the applied voltage, the distance between the nozzle to the collector, and solution concentration, was designed for the electrospinning process at three different levels, giving seventeen experiments. These data were modeled utilizing response surface methodology and artificial neural network method using Design Expert and Matlab software.The effect of process parameters on the diameter, as well as their interactions were investigated in detail, and the corresponding models were suggested. Both the RSM and ANN models showed an excellent agreement between the experimental and predicted response values. In the second phase of the study, PHB natural polymer was electrospun into scaffolds with high biocompatibility, resulting in a 224-360 nm diameter range .To further modify the scaffold in order to improve the compatibility of PHB, the fibrous surface of scaffolds was exposed to oxygenated plasma gas radiation under controlled conditions. Next, polyaniline (PANI) nanoparticles were then synthesized and printed on the surface of scaffolds as parallel lines. Then samples were exposed to the electric field. Fourier-transform infrared spectroscopy, water contact angle, optical and electron microscopy, tensile test, and cell viability analysis were performed to study properties of resulting scaffolds. The results indicated the fact that modification of the scaffolds by oxygen plasma and printing PANI nanoparticles in particular patterns had a favorable impact on cell adhesion and direction of cell growth, showing the potential of resulting scaffolds for nerve tissue engineering applications.
Collapse
|
Journal Article |
5 |
5 |
21
|
Zha F, Chen W, Lv G, Wu C, Hao L, Meng L, Zhang L, Yu D. Effects of surface condition of conductive electrospun nanofiber mats on cell behavior for nerve tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111795. [PMID: 33545918 DOI: 10.1016/j.msec.2020.111795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
Electrospun nanofibrous scaffold is a promising implant for peripheral nerve regeneration. Herein, to investigate the effect of surface morphological features and electrical properties of scaffolds on nerve cell behavior, we modified electrospun cellulose (EC) fibrous mats with four kind of soluble conductive polymers derivates (poly (N-(methacryl ethyl) pyrrole) (PMAEPy), poly (N-(2-hydroxyethyl) pyrrole) (PHEPy), poly (3-(Ethoxycarbonyl) thiophene) (P3ECT) and poly (3-thiophenethanol) (P3TE)) by an in-situ polymerization method. The morphological characterization showed that conductive polymers formed aggregated nanoparticles and coatings on the EC nanofibers with the increased fiber diameter further affected the surface properties. Compared with pure EC scaffold, more PC12 cells were adhered and grown on modified mats, with more integral and clearer cell morphology. The results of protein adsorption study indicated that modified EC mats could provide more protein adsorption site due to their characteristic surface morphology, which is beneficial to cell adhesion and growth. The results in this study suggested that these conductive polymers modified scaffolds with special surface morphology have potential applications in neural tissue engineering.
Collapse
|
|
4 |
3 |
22
|
Chen T, Jiang H, Li X, Zhang D, Zhu Y, Chen X, Yang H, Shen F, Xia H, Zheng J, Xie K. Proliferation and differentiation study of melatonin functionalized polycaprolactone/gelatin electrospun fibrous scaffolds for nerve tissue engineering. Int J Biol Macromol 2022; 197:103-110. [PMID: 34968534 DOI: 10.1016/j.ijbiomac.2021.12.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 12/30/2022]
Abstract
Melatonin (MLT), a pineal neurohormone with multiple neuroprotective, is often used for peripheral nerve recovery and regenerated nerve proliferation. In this study, Polycaprolactone/Gelatin (PG) fibrous electrospun scaffolds with various percentages of MLT (0, 1, 2, and 4%wt) were fabricated for nerve cell growth, the effects of different concentrations of MLT within PG fibers (PG, PGMLT1, PGMLT2, and PGMLT4) on the proliferation and differentiation for PC12 cells were quantitatively evaluated. The microstructures and morphologies of these scaffolds were analyzed by FE-SEM and digital camera. Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), and Water Contact Angle (WCA) were used to study the composition, ratio and properties of MLT functionalized PG scaffolds. MTT and CLSM analysis showed that appropriate amount of MLT was beneficial to the proliferation of PC12 cell. MLT can also promote cell differentiation, neurite germination, the expression levels of MAP2 mRNA and protein were dramatically increased on the composite scaffolds with the increase of MLT content, moderate addition of MLT (PGMLT2, 2%) had a prominent enhancement for neurite length. This work would provide a more comprehensive reference for further researches on MLT functionalized composite scaffolds and suggest that high-performance PGMLT fibrous scaffolds could be a promising alternative for nerve repair.
Collapse
|
|
3 |
3 |
23
|
Ehterami A, Masoomikarimi M, Bastami F, Jafarisani M, Alizadeh M, Mehrabi M, Salehi M. Fabrication and Characterization of Nanofibrous Poly (L-Lactic Acid)/Chitosan-Based Scaffold by Liquid-Liquid Phase Separation Technique for Nerve Tissue Engineering. Mol Biotechnol 2021; 63:818-827. [PMID: 34076821 DOI: 10.1007/s12033-021-00346-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Fabrication method is one of the essential factors which directly affect on the properties of scaffold. Several techniques have been well established to fabricate nanofibrous scaffolds such as electrospinning. However, preparing a three-dimensional (3-D) interconnected macro-pore scaffold essential for transporting the cell metabolites and nutrients is difficult using the electrospinning method. The main aim of this study was developing a highly porous scaffold by poly (L-lactic acid) (PLLA)/chitosan blend using liquid-liquid phase separation (LLPS) technique, a fast and cost-benefit method, in order to use in nerve tissue engineering. In addition, the effect of different polymeric concentrations on morphology, mechanical properties, hydrophilicity, in vitro degradation rate and pH alteration of the scaffolds were evaluated. Moreover, cell attachment, cell viability and cell proliferation of scaffolds as candidates for nerve tissue engineering was investigated. PLLA/chitosan blend not only had desirable structural properties, porosity, hydrophilicity, mechanical properties, degradation rate and pH alteration but also provided a favorable environment for attachment, viability, and proliferation of human neuroblastoma cells, exhibiting significant potential for nerve tissue engineering applications. However, the polymeric concentration in blend fabrication had influence on both characteristics and cell responses. It concluded that PLLA/chitosan nanofibrous 3-D scaffold fabricated by LLPS method as a suitable candidate for nerve tissue engineering.
Collapse
|
Journal Article |
4 |
2 |
24
|
Cheng R, Liu Z, Li M, Shen Z, Wang X, Zhang J, Sang S. Peripheral nerve regeneration with 3D printed bionic double-network conductive scaffold based on GelMA/chitosan/polypyrrole. Int J Biol Macromol 2025; 304:140746. [PMID: 39929463 DOI: 10.1016/j.ijbiomac.2025.140746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 12/05/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Peripheral nerve injury (PNI) is a serious condition with limited surgical treatment options available. Conductive hydrogels have emerged as a promising alternative due to their ability to facilitate electrical signal exchange between cells and replicate the physiological microenvironment of electroactive tissues. Three-dimensional (3D) printing offers an innovative approach for fabricating neural scaffolds with precise structures and complex spatial architectures. In this study, we introduce a novel dual-bioink 3D printing strategy that integrates synthetic and natural materials to construct stable biomimetic neural tissue structures. The base bioink, comprising gelatin methacrylate (GelMA), chitosan (CS), and the conductive polymer polypyrrole (PPy), serves as a physical support network. It offers conductive pathways, promote cell growth, and ensures long-term structural integrity. The secondary bioink is a cell-loaded biodegradable gel-gelatin, which enables for precise cell deposition within the base network through a hybrid printing technique. The composite scaffold was evaluated for its mechanical properties, cytotoxicity, and ability to support neural differentiation. The results demonstrated that the 3D-printed neural network scaffold effectively promoted the neural differentiation and axon regeneration of PC-12 cells and HT-22 cells. These findings highlight its strong potential for facilitating neural functional recovery, positioning it as a promising candidate material for the treatment of PNI patients.
Collapse
|
|
1 |
|
25
|
Yao R, Wang B, Wang G. [Research progress of graphene and its derivatives in repair of peripheral nerve defect]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1483-1487. [PMID: 30417629 DOI: 10.7507/1002-1892.201804096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress of graphene and its derivatives in repair of peripheral nerve defect. Methods The related literature of graphene and its derivatives in repair of peripheral nerve defect in recent years was extensively reviewed. Results It is confirmed by in vitro and in vivo experiments that graphene and its derivatives can promote cell adhesion, proliferation, differentiation and neurite growth effectively. They have good electrical conductivity, excellent mechanical properties, larger specific surface area, and other advantages when compared with traditional materials. The three-dimensional scaffold can improve the effect of nerve repair. Conclusion The metabolic pathways and long-term reaction of graphene and its derivatives in the body are unclear. How to regulate their biodegradation and explain the electric coupling reaction mechanism between cells and materials also need to be further explored.
Collapse
|
Review |
7 |
|