1
|
Bölte S, Girdler S, Marschik PB. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci 2019; 76:1275-1297. [PMID: 30570672 PMCID: PMC6420889 DOI: 10.1007/s00018-018-2988-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/14/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition of heterogeneous etiology. While it is widely recognized that genetic and environmental factors and their interactions contribute to autism phenotypes, their precise causal mechanisms remain poorly understood. This article reviews our current understanding of environmental risk factors of ASD and their presumed adverse physiological mechanisms. It comprehensively maps the significance of parental age, teratogenic compounds, perinatal risks, medication, smoking and alcohol use, nutrition, vaccination, toxic exposures, as well as the role of extreme psychosocial factors. Further, we consider the role of potential protective factors such as folate and fatty acid intake. Evidence indicates an increased offspring vulnerability to ASD through advanced maternal and paternal age, valproate intake, toxic chemical exposure, maternal diabetes, enhanced steroidogenic activity, immune activation, and possibly altered zinc-copper cycles and treatment with selective serotonin reuptake inhibitors. Epidemiological studies demonstrate no evidence for vaccination posing an autism risk. It is concluded that future research needs to consider categorical autism, broader autism phenotypes, as well as autistic traits, and examine more homogenous autism variants by subgroup stratification. Our understanding of autism etiology could be advanced by research aimed at disentangling the causal and non-causal environmental effects, both founding and moderating, and gene-environment interplay using twin studies, longitudinal and experimental designs. The specificity of many environmental risks for ASD remains unknown and control of multiple confounders has been limited. Further understanding of the critical windows of neurodevelopmental vulnerability and investigating the fit of multiple hit and cumulative risk models are likely promising approaches in enhancing the understanding of role of environmental factors in the etiology of ASD.
Collapse
|
Review |
6 |
282 |
2
|
Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roqué PJ. Neurotoxicity of traffic-related air pollution. Neurotoxicology 2017; 59:133-139. [PMID: 26610921 PMCID: PMC4875879 DOI: 10.1016/j.neuro.2015.11.008] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 12/31/2022]
Abstract
The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2.
Collapse
|
Review |
8 |
258 |
3
|
Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 2020; 210:107523. [PMID: 32165138 PMCID: PMC7245732 DOI: 10.1016/j.pharmthera.2020.107523] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Recent extensive evidence indicates that air pollution, in addition to causing respiratory and cardiovascular diseases, may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is comprised of ambient particulate matter (PM) of different sizes, gases, organic compounds, and metals. An important contributor to PM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Epidemiological and animal studies have shown that exposure to air pollution may be associated with multiple adverse effects on the central nervous system. In addition to a variety of behavioral abnormalities, the most prominent effects caused by air pollution are oxidative stress and neuro-inflammation, which are seen in both humans and animals, and are supported by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered most relevant. Human and animal studies suggest that air pollution may cause developmental neurotoxicity, and may contribute to the etiology of neurodevelopmental disorders, including autism spectrum disorder. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies, such as alpha-synuclein or beta-amyloid, and may thus contribute to the etiopathogenesis of neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
233 |
4
|
Cost KT, Crosbie J, Anagnostou E, Birken CS, Charach A, Monga S, Kelley E, Nicolson R, Maguire JL, Burton CL, Schachar RJ, Arnold PD, Korczak DJ. Mostly worse, occasionally better: impact of COVID-19 pandemic on the mental health of Canadian children and adolescents. Eur Child Adolesc Psychiatry 2022; 31:671-684. [PMID: 33638005 PMCID: PMC7909377 DOI: 10.1007/s00787-021-01744-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
This large cross-sectional study examined the impact of COVID-19 emergency measures on child/adolescent mental health for children/adolescents with and without pre-existing psychiatric diagnoses. Using adapted measures from the CRISIS questionnaire, parents of children aged 6-18 (N = 1013; 56% male; 62% pre-existing psychiatric diagnosis) and self-reporting children/adolescents aged 10-18 (N = 385) indicated changes in mental health across six domains: depression, anxiety, irritability, attention, hyperactivity, and obsessions/compulsions. Changes in anxiety, irritability, and hyperactivity were calculated for children aged 2-5 years using the Strengths and Difficulties Questionnaire. COVID-19 exposure, compliance with emergency measures, COVID-19 economic concerns, and stress from social isolation were measured with the CRISIS questionnaire. Prevalence of change in mental health status was estimated for each domain; multinomial logistic regression was used to determine variables associated with mental health status change in each domain. Depending on the age group, 67-70% of children/adolescents experienced deterioration in at least one mental health domain; however, 19-31% of children/adolescents experienced improvement in at least one domain. Children/adolescents without and with psychiatric diagnoses tended to experience deterioration during the first wave of COVID-19. Rates of deterioration were higher in those with a pre-exiting diagnosis. The rate of deterioration was variable across different age groups and pre-existing psychiatric diagnostic groups: depression 37-56%, anxiety 31-50%, irritability 40-66%, attention 40-56%, hyperactivity 23-56%, obsessions/compulsions 13-30%. Greater stress from social isolation was associated with deterioration in all mental health domains (all ORs 11.12-55.24). The impact of pre-existing psychiatric diagnosis was heterogenous, associated with deterioration in depression, irritability, hyperactivity, obsession/compulsions for some children (ORs 1.96-2.23) but also with improvement in depression, anxiety, and irritability for other children (ORs 2.13-3.12). Economic concerns were associated with improvement in anxiety, attention, and obsessions/compulsions (ORs 3.97-5.57). Children/adolescents with and without pre-existing psychiatric diagnoses reported deterioration. Deterioration was associated with increased stress from social isolation. Enhancing social interactions for children/adolescents will be an important mitigation strategy for current and future COVID-19 waves.
Collapse
|
research-article |
3 |
227 |
5
|
Abstract
PURPOSE OF REVIEW Neurodevelopmental disorders disproportionately affect males. The mechanisms underlying male vulnerability or female protection are not known and remain understudied. Determining the processes involved is crucial to understanding the etiology and advancing treatment of neurodevelopmental disorders. Here, we review current findings and theories that contribute to male preponderance of neurodevelopmental disorders, with a focus on autism. RECENT FINDINGS Recent work on the biological basis of the male preponderance of autism and other neurodevelopmental disorders includes discussion of a higher genetic burden in females and sex-specific gene mutations or epigenetic changes that differentially confer risk to males or protection to females. Other mechanisms discussed are sex chromosome and sex hormone involvement. Specifically, fetal testosterone is involved in many aspects of development and may interact with neurotransmitter, neuropeptide, or immune pathways to contribute to male vulnerability. Finally, the possibilities of female underdiagnosis and a multi-hit hypothesis are discussed. This review highlights current theories of male bias in developmental disorders. Topics include environmental, genetic, and epigenetic mechanisms; theories of sex chromosomes, hormones, neuroendocrine, and immune function; underdiagnosis of females; and a multi-hit hypothesis.
Collapse
|
research-article |
7 |
224 |
6
|
Livingston LA, Happé F. Conceptualising compensation in neurodevelopmental disorders: Reflections from autism spectrum disorder. Neurosci Biobehav Rev 2017; 80:729-742. [PMID: 28642070 PMCID: PMC7374933 DOI: 10.1016/j.neubiorev.2017.06.005] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/25/2017] [Accepted: 06/13/2017] [Indexed: 11/24/2022]
Abstract
Within research into neurodevelopmental disorders, little is known about the mechanisms underpinning changes in symptom severity across development. When the behavioural presentation of a condition improves/symptoms lessen, this may be because core underlying atypicalities in cognition/neural function have ameliorated. An alternative possibility is 'compensation'; that the behavioural presentation appears improved, despite persisting deficits at cognitive and/or neurobiological levels. There is, however, currently no agreed technical definition of compensation or its behavioural, cognitive and neural characteristics. Furthermore, its workings in neurodevelopmental disorders have not been studied directly. Here, we review current evidence for compensation in neurodevelopmental disorders, using Autism Spectrum Disorder as an example, in order to move towards a better conceptualisation of the construct. We propose a transdiagnostic framework, where compensation represents the processes responsible for an observed mismatch between behaviour and underlying cognition in a neurodevelopmental disorder, at any point in development. Further, we explore potential cognitive and neural mechanisms driving compensation and discuss the broader relevance of the concept within research and clinical settings.
Collapse
|
Review |
8 |
216 |
7
|
Hossain MM, Khan N, Sultana A, Ma P, McKyer ELJ, Ahmed HU, Purohit N. Prevalence of comorbid psychiatric disorders among people with autism spectrum disorder: An umbrella review of systematic reviews and meta-analyses. Psychiatry Res 2020; 287:112922. [PMID: 32203749 DOI: 10.1016/j.psychres.2020.112922] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/15/2020] [Indexed: 12/25/2022]
Abstract
With ever-increasing prevalence of various mental disorders worldwide, a comprehensive evaluation of the prevalence of co-occurring psychiatric disorders among individuals with autism spectrum disorder (ASD) is needed to strengthen the knowledge base. This umbrella review aims to summarize the current evidence on the prevalence of comorbid psychiatric disorders among people with ASD. A systematic search of 12 major databases and additional sources was conducted. Any systematically conducted narrative, qualitative, or meta-analytic review reporting the prevalence of psychiatric disorders among people with ASD with no age or geographical restriction were included. From a total of 2755 records, 26 articles representing 14 systematic reviews and 12 meta-analyses met the criteria of this review. The synthesized findings reveal a high burden of comorbid psychiatric disorders among people with ASD, including anxiety disorders, depressive disorders, bipolar and mood disorders, schizophrenia spectrum, suicidal behavior disorders, attention-deficit/hyperactivity disorder, disruptive, impulse-control and conduct disorders amongst diverse age groups, with a majority in younger participants. Most studies were conducted in developed nations, with limited evidence from low and middle-income countries. These synthesized findings provide high-quality evidence for clinical and policy-level decision-making from a global overview of the status of comorbid psychiatric disorders among people with ASD.
Collapse
|
Systematic Review |
5 |
213 |
8
|
Bilbo SD, Block CL, Bolton JL, Hanamsagar R, Tran PK. Beyond infection - Maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp Neurol 2017; 299:241-251. [PMID: 28698032 DOI: 10.1016/j.expneurol.2017.07.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
Immune molecules such as cytokines and chemokines and the cells that produce them within the brain, notably microglia, are critical for normal brain development. This recognition has in recent years led to the working hypothesis that inflammatory events during pregnancy, e.g. in response to infection, may disrupt the normal expression of immune molecules during critical stages of neural development and thereby contribute to the risk for neurodevelopmental disorders such as autism spectrum disorder (ASD). This hypothesis has in large part been shepherded by the work of Dr. Paul Patterson and colleagues, which has elegantly demonstrated that a single viral infection or injection of a viral mimetic to pregnant mice significantly and persistently impacts offspring immune and nervous system function, changes that underlie ASD-like behavioral dysfunction including social and communication deficits. Subsequent studies by many labs - in humans and in non-human animal models - have supported the hypothesis that ongoing disrupted immune molecule expression and/or neuroinflammation contributes to at least a significant subset of ASD. The heterogeneous clinical and biological phenotypes observed in ASD strongly suggest that in genetically susceptible individuals, environmental risk factors combine or synergize to create a tipping or threshold point for dysfunction. Importantly, animal studies showing a link between maternal immune activation (MIA) and ASD-like outcomes in offspring involve different species and diverse environmental factors associated with ASD in humans, beyond infection, including toxin exposures, maternal stress, and maternal obesity, all of which impact inflammatory or immune pathways. The goal of this review is to highlight the broader implications of Dr. Patterson's work for the field of autism, with a focus on the impact that MIA by diverse environmental factors has on fetal brain development, immune system development, and the pathophysiology of ASD.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
207 |
9
|
Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 2013; 37:8-29. [PMID: 23717153 PMCID: PMC3659622 DOI: 10.5142/jgr.2013.37.8] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 12/14/2022] Open
Abstract
Ginseng is one of the most widely used herbal medicines in human. Central nervous system (CNS) diseases are most widely investigated diseases among all others in respect to the ginseng’s therapeutic effects. These include Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, depression, and many other neurological disorders including neurodevelopmental disorders. Not only the various types of diseases but also the diverse array of target pathways or molecules ginseng exerts its effect on. These range, for example, from neuroprotection to the regulation of synaptic plasticity and from regulation of neuroinflammatory processes to the regulation of neurotransmitter release, too many to mention. In general, ginseng and even a single compound of ginsenoside produce its effects on multiple sites of action, which make it an ideal candidate to develop multi-target drugs. This is most important in CNS diseases where multiple of etiological and pathological targets working together to regulate the final pathophysiology of diseases. In this review, we tried to provide comprehensive information on the pharmacological and therapeutic effects of ginseng and ginsenosides on neurodegenerative and other neurological diseases. Side by side comparison of the therapeutic effects in various neurological disorders may widen our understanding of the therapeutic potential of ginseng in CNS diseases and the possibility to develop not only symptomatic drugs but also disease modifying reagents based on ginseng.
Collapse
|
Journal Article |
12 |
174 |
10
|
Bilimoria PM, Stevens B. Microglia function during brain development: New insights from animal models. Brain Res 2014; 1617:7-17. [PMID: 25463024 DOI: 10.1016/j.brainres.2014.11.032] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 12/15/2022]
Abstract
The role of microglia in healthy brains is just beginning to receive notice. Recent studies have revealed that these phagocytic cells control the patterning and wiring of the developing central nervous system (CNS) by regulating, amongst many other processes, programmed cell death, activity-dependent synaptic pruning and synapse maturation. Microglia also play important roles in the mature brain and have demonstrated effects on behavior. Converging evidence from human and mouse studies together raise questions as to the role of microglia in disorders of brain development such as autism and, schizophrenia. In this review, we summarize a number of major findings regarding the role of microglia in brain development and highlight some key questions and avenues for future study. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
|
Review |
11 |
167 |
11
|
Alfert A, Moreno N, Kerl K. The BAF complex in development and disease. Epigenetics Chromatin 2019; 12:19. [PMID: 30898143 PMCID: PMC6427853 DOI: 10.1186/s13072-019-0264-y] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/13/2019] [Indexed: 01/16/2023] Open
Abstract
The ATP-dependent chromatin remodelling complex BAF (= mammalian SWI/SNF complex) is crucial for the regulation of gene expression and differentiation. In the course of evolution from yeast to mammals, the BAF complex evolved an immense complexity with a high number of subunits encoded by gene families. In this way, tissue-specific BAF function and regulation of development begin with the combinatorial assembly of distinct BAF complexes such as esBAF, npBAF and nBAF. Furthermore, whole-genome sequencing reveals the tremendous role BAF complex mutations have in both neurodevelopmental disorders and human malignancies. Therefore, gaining a more elaborate insight into how BAF complex assembly influences its function and which role distinct subunits play, will hopefully give rise to a better understanding of disease pathogenesis and ultimately to new treatments for many human diseases.
Collapse
|
Review |
6 |
164 |
12
|
Kim YS, Leventhal BL. Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders. Biol Psychiatry 2015; 77:66-74. [PMID: 25483344 PMCID: PMC4260177 DOI: 10.1016/j.biopsych.2014.11.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 12/27/2022]
Abstract
Understanding the pathogenesis of neurodevelopmental disorders has proven to be challenging. Using autism spectrum disorder (ASD) as a paradigmatic neurodevelopmental disorder, this article reviews the existing literature on the etiological substrates of ASD and explores how genetic epidemiology approaches including gene-environment interactions (G×E) can play a role in identifying factors associated with ASD etiology. New genetic and bioinformatics strategies have yielded important clues to ASD genetic substrates. The next steps for understanding ASD pathogenesis require significant effort to focus on how genes and environment interact with one another in typical development and its perturbations. Along with larger sample sizes, future study designs should include sample ascertainment that is epidemiologic and population-based to capture the entire ASD spectrum with both categorical and dimensional phenotypic characterization; environmental measurements with accuracy, validity, and biomarkers; statistical methods to address population stratification, multiple comparisons, and G×E of rare variants; animal models to test hypotheses; and new methods to broaden the capacity to search for G×E, including genome-wide and environment-wide association studies, precise estimation of heritability using dense genetic markers, and consideration of G×E both as the disease cause and a disease course modifier. Although examination of G×E appears to be a daunting task, tremendous recent progress in gene discovery has opened new horizons for advancing our understanding of the role of G×E in the pathogenesis of ASD and ultimately identifying the causes, treatments, and even preventive measures for ASD and other neurodevelopmental disorders.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
149 |
13
|
Battaglia A, Doccini V, Bernardini L, Novelli A, Loddo S, Capalbo A, Filippi T, Carey JC. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol 2013; 17:589-99. [PMID: 23711909 DOI: 10.1016/j.ejpn.2013.04.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/28/2013] [Accepted: 04/28/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Submicroscopic chromosomal rearrangements are the most common identifiable causes of intellectual disability and autism spectrum disorders associated with dysmorphic features. Chromosomal microarray (CMA) can detect copy number variants <1 Mb and identifies size and presence of known genes. The aim of this study was to demonstrate the usefulness of CMA, as a first-tier tool in detecting the etiology of unexplained intellectual disability/autism spectrum disorders (ID/ASDs) associated with dysmorphic features in a large cohort of pediatric patients. PATIENTS AND METHODS We studied 349 individuals; 223 males, 126 females, aged 5 months-19 years. Blood samples were analyzed with CMA at a resolution ranging from 1 Mb to 40 Kb. The imbalance was confirmed by FISH or qPCR. We considered copy number variants (CNVs) causative if the variant was responsible for a known syndrome, encompassed gene/s of known function, occurred de novo or, if inherited, the parent was variably affected, and/or the involved gene/s had been reported in association with ID/ASDs in dedicated databases. RESULTS 91 CNVs were detected in 77 (22.06%) patients: 5 (6.49%) of those presenting with borderline cognitive impairment, 54 (70.13%) with a variable degree of DD/ID, and 18/77 (23.38%) with ID of variable degree and ASDs. 16/77 (20.8%) patients had two different rearrangements. Deletions exceeded duplications (58 versus 33); 45.05% (41/91) of the detected CNVs were de novo, 45.05% (41/91) inherited, and 9.9% (9/91) unknown. The CNVs caused the phenotype in 57/77 (74%) patients; 12/57 (21.05%) had ASDs/ID, and 45/57 (78.95%) had DD/ID. CONCLUSIONS Our study provides further evidence of the high diagnostic yield of CMA for genetic testing in children with unexplained ID/ASDs who had dysmorphic features. We confirm the value of CMA as the first-tier tool in the assessment of those conditions in the pediatric setting.
Collapse
|
|
12 |
148 |
14
|
Ullman MT, Pullman MY. A compensatory role for declarative memory in neurodevelopmental disorders. Neurosci Biobehav Rev 2015; 51:205-22. [PMID: 25597655 PMCID: PMC4359651 DOI: 10.1016/j.neubiorev.2015.01.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 11/20/2022]
Abstract
Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional in these disorders, and because it can learn and retain numerous types of information, functions, and tasks, this system should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
142 |
15
|
Shah R, Harding J, Brown J, McKinlay C. Neonatal Glycaemia and Neurodevelopmental Outcomes: A Systematic Review and Meta-Analysis. Neonatology 2019; 115:116-126. [PMID: 30408811 DOI: 10.1159/000492859] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/12/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypoglycaemia is the most common metabolic problem in neonates but there is no universally accepted threshold for safe blood glucose concentrations due to uncertainty regarding effects on neurodevelopment. OBJECTIVE To systematically assess the association between neonatal hypoglycaemia on neurodevelopment outcomes in childhood and adolescence. METHODS We searched MEDLINE, EMBASE, CINAHL, and PsycINFO from inception until February 2018. We included studies that reported one or more prespecified outcomes and compared children exposed to neonatal hypoglycaemia with children not exposed. Studies of neonates with congenital malformations, inherited metabolic disorders and congenital hyperinsulinism were excluded. Two authors independently extracted data using a customized form. We used ROBINS-I to assess risk of bias, GRADE for quality of evidence, and REVMAN for meta-analysis (inverse variance, fixed effects). RESULTS 1,665 studies were screened, 61 reviewed in full, and 11 included (12 publications). In early childhood, exposure to neonatal hypoglycaemia was not associated with neurodevelopmental impairment (n = 1,657 infants; OR = 1.16, 95% CI = 0.86-1.57) but was associated with visual-motor impairment (n = 508; OR = 3.46, 95% CI = 1.13-10.57) and executive dysfunction (n = 463; OR = 2.50, 95% CI = 1.20-5.22). In mid-childhood, neonatal hypoglycaemia was associated with neurodevelopmental impairment (n = 54; OR = 3.62, 95% CI = 1.05-12.42) and low literacy (n = 1,395; OR = 2.04, 95% CI = 1.20-3.47) and numeracy (n = 1,395; OR = 2.04, 95% CI = 1.21-3.44). No data were available for adolescents. CONCLUSIONS Neonatal hypoglycaemia may have important long-lasting adverse effects on neurodevelopment that may become apparent at later ages. Carefully designed randomized trials are required to determine the optimal management of neonates at risk of hypoglycaemia with long-term follow-up at least to school age.
Collapse
|
Meta-Analysis |
6 |
137 |
16
|
Wakschlag LS, Perlman SB, Blair RJ, Leibenluft E, Briggs-Gowan MJ, Pine DS. The Neurodevelopmental Basis of Early Childhood Disruptive Behavior: Irritable and Callous Phenotypes as Exemplars. Am J Psychiatry 2018; 175:114-130. [PMID: 29145753 PMCID: PMC6075952 DOI: 10.1176/appi.ajp.2017.17010045] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The arrival of the Journal's 175th anniversary occurs at a time of recent advances in research, providing an ideal opportunity to present a neurodevelopmental roadmap for understanding, preventing, and treating psychiatric disorders. Such a roadmap is particularly relevant for early-childhood-onset neurodevelopmental conditions, which emerge when experience-dependent neuroplasticity is at its peak. Employing a novel developmental specification approach, this review places recent neurodevelopmental research on early childhood disruptive behavior within the historical context of the Journal. The authors highlight irritability and callous behavior as two core exemplars of early disruptive behavior. Both phenotypes can be reliably differentiated from normative variation as early as the first years of life. Both link to discrete pathophysiology: irritability with disruptions in prefrontal regulation of emotion, and callous behavior with abnormal fear processing. Each phenotype also possesses clinical and predictive utility. Based on a nomologic net of evidence, the authors conclude that early disruptive behavior is neurodevelopmental in nature and should be reclassified as an early-childhood-onset neurodevelopmental condition in DSM-5. Rapid translation from neurodevelopmental discovery to clinical application has transformative potential for psychiatric approaches of the millennium. [AJP at 175: Remembering Our Past As We Envision Our Future November 1938: Electroencephalographic Analyses of Behavior Problem Children Herbert Jasper and colleagues found that brain abnormalities revealed by EEG are a potential causal factor in childhood behavioral disorders. (Am J Psychiatry 1938; 95:641-658 )].
Collapse
|
Research Support, N.I.H., Extramural |
7 |
129 |
17
|
Cheroni C, Caporale N, Testa G. Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Mol Autism 2020; 11:69. [PMID: 32912338 PMCID: PMC7488083 DOI: 10.1186/s13229-020-00370-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The complex pathophysiology of autism spectrum disorder encompasses interactions between genetic and environmental factors. On the one hand, hundreds of genes, converging at the functional level on selective biological domains such as epigenetic regulation and synaptic function, have been identified to be either causative or risk factors of autism. On the other hand, exposure to chemicals that are widespread in the environment, such as endocrine disruptors, has been associated with adverse effects on human health, including neurodevelopmental disorders. Interestingly, experimental results suggest an overlap in the regulatory pathways perturbed by genetic mutations and environmental factors, depicting convergences and complex interplays between genetic susceptibility and toxic insults. The pervasive nature of chemical exposure poses pivotal challenges for neurotoxicological studies, regulatory agencies, and policy makers. This highlights an emerging need of developing new integrative models, including biomonitoring, epidemiology, experimental, and computational tools, able to capture real-life scenarios encompassing the interaction between chronic exposure to mixture of substances and individuals' genetic backgrounds. In this review, we address the intertwined roles of genetic lesions and environmental insults. Specifically, we outline the transformative potential of stem cell models, coupled with omics analytical approaches at increasingly single cell resolution, as converging tools to experimentally dissect the pathogenic mechanisms underlying neurodevelopmental disorders, as well as to improve developmental neurotoxicology risk assessment.
Collapse
|
Review |
5 |
129 |
18
|
Martin J, Walters RK, Demontis D, Mattheisen M, Lee SH, Robinson E, Brikell I, Ghirardi L, Larsson H, Lichtenstein P, Eriksson N, Werge T, Mortensen PB, Pedersen MG, Mors O, Nordentoft M, Hougaard DM, Bybjerg-Grauholm J, Wray NR, Franke B, Faraone SV, O’Donovan MC, Thapar A, Børglum AD, Neale BM. A Genetic Investigation of Sex Bias in the Prevalence of Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry 2018; 83:1044-1053. [PMID: 29325848 PMCID: PMC5992329 DOI: 10.1016/j.biopsych.2017.11.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) shows substantial heritability and is two to seven times more common in male individuals than in female individuals. We examined two putative genetic mechanisms underlying this sex bias: sex-specific heterogeneity and higher burden of risk in female cases. METHODS We analyzed genome-wide autosomal common variants from the Psychiatric Genomics Consortium and iPSYCH Project (n = 20,183 cases, n = 35,191 controls) and Swedish population register data (n = 77,905 cases, n = 1,874,637 population controls). RESULTS Genetic correlation analyses using two methods suggested near complete sharing of common variant effects across sexes, with rg estimates close to 1. Analyses of population data, however, indicated that female individuals with ADHD may be at especially high risk for certain comorbid developmental conditions (i.e., autism spectrum disorder and congenital malformations), potentially indicating some clinical and etiological heterogeneity. Polygenic risk score analysis did not support a higher burden of ADHD common risk variants in female cases (odds ratio [confidence interval] = 1.02 [0.98-1.06], p = .28). In contrast, epidemiological sibling analyses revealed that the siblings of female individuals with ADHD are at higher familial risk for ADHD than the siblings of affected male individuals (odds ratio [confidence interval] = 1.14 [1.11-1.18], p = 1.5E-15). CONCLUSIONS Overall, this study supports a greater familial burden of risk in female individuals with ADHD and some clinical and etiological heterogeneity, based on epidemiological analyses. However, molecular genetic analyses suggest that autosomal common variants largely do not explain the sex bias in ADHD prevalence.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
120 |
19
|
Collins RL, Brand H, Redin CE, Hanscom C, Antolik C, Stone MR, Glessner JT, Mason T, Pregno G, Dorrani N, Mandrile G, Giachino D, Perrin D, Walsh C, Cipicchio M, Costello M, Stortchevoi A, An JY, Currall BB, Seabra CM, Ragavendran A, Margolin L, Martinez-Agosto JA, Lucente D, Levy B, Sanders SJ, Wapner RJ, Quintero-Rivera F, Kloosterman W, Talkowski ME. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome Biol 2017; 18:36. [PMID: 28260531 PMCID: PMC5338099 DOI: 10.1186/s13059-017-1158-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022] Open
Abstract
Background Structural variation (SV) influences genome organization and contributes to human disease. However, the complete mutational spectrum of SV has not been routinely captured in disease association studies. Results We sequenced 689 participants with autism spectrum disorder (ASD) and other developmental abnormalities to construct a genome-wide map of large SV. Using long-insert jumping libraries at 105X mean physical coverage and linked-read whole-genome sequencing from 10X Genomics, we document seven major SV classes at ~5 kb SV resolution. Our results encompass 11,735 distinct large SV sites, 38.1% of which are novel and 16.8% of which are balanced or complex. We characterize 16 recurrent subclasses of complex SV (cxSV), revealing that: (1) cxSV are larger and rarer than canonical SV; (2) each genome harbors 14 large cxSV on average; (3) 84.4% of large cxSVs involve inversion; and (4) most large cxSV (93.8%) have not been delineated in previous studies. Rare SVs are more likely to disrupt coding and regulatory non-coding loci, particularly when truncating constrained and disease-associated genes. We also identify multiple cases of catastrophic chromosomal rearrangements known as chromoanagenesis, including somatic chromoanasynthesis, and extreme balanced germline chromothripsis events involving up to 65 breakpoints and 60.6 Mb across four chromosomes, further defining rare categories of extreme cxSV. Conclusions These data provide a foundational map of large SV in the morbid human genome and demonstrate a previously underappreciated abundance and diversity of cxSV that should be considered in genomic studies of human disease. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1158-6) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
119 |
20
|
Astle DE, Holmes J, Kievit R, Gathercole SE. Annual Research Review: The transdiagnostic revolution in neurodevelopmental disorders. J Child Psychol Psychiatry 2022; 63:397-417. [PMID: 34296774 DOI: 10.1111/jcpp.13481] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Practitioners frequently use diagnostic criteria to identify children with neurodevelopmental disorders and to guide intervention decisions. These criteria also provide the organising framework for much of the research focussing on these disorders. Study design, recruitment, analysis and theory are largely built on the assumption that diagnostic criteria reflect an underlying reality. However, there is growing concern that this assumption may not be a valid and that an alternative transdiagnostic approach may better serve our understanding of this large heterogeneous population of young people. This review draws on important developments over the past decade that have set the stage for much-needed breakthroughs in understanding neurodevelopmental disorders. We evaluate contemporary approaches to study design and recruitment, review the use of data-driven methods to characterise cognition, behaviour and neurobiology, and consider what alternative transdiagnostic models could mean for children and families. This review concludes that an overreliance on ill-fitting diagnostic criteria is impeding progress towards identifying the barriers that children encounter, understanding underpinning mechanisms and finding the best route to supporting them.
Collapse
|
Review |
3 |
118 |
21
|
Jiang X, Nardelli J. Cellular and molecular introduction to brain development. Neurobiol Dis 2016; 92:3-17. [PMID: 26184894 PMCID: PMC4720585 DOI: 10.1016/j.nbd.2015.07.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022] Open
Abstract
Advances in the study of brain development over the last decades, especially recent findings regarding the evolutionary expansion of the human neocortex, and large-scale analyses of the proteome/transcriptome in the human brain, have offered novel insights into the molecular mechanisms guiding neural maturation, and the pathophysiology of multiple forms of neurological disorders. As a preamble to reviews of this issue, we provide an overview of the cellular, molecular and genetic bases of brain development with an emphasis on the major mechanisms associated with landmarks of normal neural development in the embryonic stage and early postnatal life, including neural stem/progenitor cell proliferation, cortical neuronal migration, evolution and folding of the cerebral cortex, synaptogenesis and neural circuit development, gliogenesis and myelination. We will only briefly depict developmental disorders that result from perturbations of these cellular or molecular mechanisms, and the most common perinatal brain injuries that could disturb normal brain development.
Collapse
|
Review |
9 |
116 |
22
|
Zarrei M, Burton CL, Engchuan W, Young EJ, Higginbotham EJ, MacDonald JR, Trost B, Chan AJS, Walker S, Lamoureux S, Heung T, Mojarad BA, Kellam B, Paton T, Faheem M, Miron K, Lu C, Wang T, Samler K, Wang X, Costain G, Hoang N, Pellecchia G, Wei J, Patel RV, Thiruvahindrapuram B, Roifman M, Merico D, Goodale T, Drmic I, Speevak M, Howe JL, Yuen RKC, Buchanan JA, Vorstman JAS, Marshall CR, Wintle RF, Rosenberg DR, Hanna GL, Woodbury-Smith M, Cytrynbaum C, Zwaigenbaum L, Elsabbagh M, Flanagan J, Fernandez BA, Carter MT, Szatmari P, Roberts W, Lerch J, Liu X, Nicolson R, Georgiades S, Weksberg R, Arnold PD, Bassett AS, Crosbie J, Schachar R, Stavropoulos DJ, Anagnostou E, Scherer SW. A large data resource of genomic copy number variation across neurodevelopmental disorders. NPJ Genom Med 2019; 4:26. [PMID: 31602316 PMCID: PMC6779875 DOI: 10.1038/s41525-019-0098-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
Copy number variations (CNVs) are implicated across many neurodevelopmental disorders (NDDs) and contribute to their shared genetic etiology. Multiple studies have attempted to identify shared etiology among NDDs, but this is the first genome-wide CNV analysis across autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia (SCZ), and obsessive-compulsive disorder (OCD) at once. Using microarray (Affymetrix CytoScan HD), we genotyped 2,691 subjects diagnosed with an NDD (204 SCZ, 1,838 ASD, 427 ADHD and 222 OCD) and 1,769 family members, mainly parents. We identified rare CNVs, defined as those found in <0.1% of 10,851 population control samples. We found clinically relevant CNVs (broadly defined) in 284 (10.5%) of total subjects, including 22 (10.8%) among subjects with SCZ, 209 (11.4%) with ASD, 40 (9.4%) with ADHD, and 13 (5.6%) with OCD. Among all NDD subjects, we identified 17 (0.63%) with aneuploidies and 115 (4.3%) with known genomic disorder variants. We searched further for genes impacted by different CNVs in multiple disorders. Examples of NDD-associated genes linked across more than one disorder (listed in order of occurrence frequency) are NRXN1, SEH1L, LDLRAD4, GNAL, GNG13, MKRN1, DCTN2, KNDC1, PCMTD2, KIF5A, SYNM, and long non-coding RNAs: AK127244 and PTCHD1-AS. We demonstrated that CNVs impacting the same genes could potentially contribute to the etiology of multiple NDDs. The CNVs identified will serve as a useful resource for both research and diagnostic laboratories for prioritization of variants.
Collapse
|
research-article |
6 |
111 |
23
|
Kolevzon A, Angarita B, Bush L, Wang AT, Frank Y, Yang A, Rapaport R, Saland J, Srivastava S, Farrell C, Edelmann LJ, Buxbaum JD. Phelan-McDermid syndrome: a review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord 2014; 6:39. [PMID: 25784960 PMCID: PMC4362650 DOI: 10.1186/1866-1955-6-39] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/13/2014] [Indexed: 01/25/2023] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) can be caused by mutations in a large number of genes. One example is SHANK3 on the terminal end of chromosome 22q. Loss of one functional copy of SHANK3 results in 22q13 deletion syndrome or Phelan-McDermid syndrome (PMS) and causes a monogenic form of ASD and/or ID with a frequency of 0.5% to 2% of cases. SHANK3 is the critical gene in this syndrome, and its loss results in disruption of synaptic function. With chromosomal microarray analyses now a standard of care in the assessment of ASD and developmental delay, and with the emergence of whole exome and whole genome sequencing in this context, identification of PMS in routine clinical settings will increase significantly. However, PMS remains a rare disorder, and the majority of physicians have never seen a case. While there is agreement about core deficits of PMS, there have been no established parameters to guide evaluation and medical monitoring of the syndrome. Evaluations must include a thorough history and physical and dysmorphology examination. Neurological deficits, including the presence of seizures and structural brain abnormalities should be assessed as well as motor deficits. Endocrine, renal, cardiac, and gastrointestinal problems all require assessment and monitoring in addition to the risk of recurring infections, dental and vision problems, and lymphedema. Finally, all patients should have cognitive, behavioral, and ASD evaluations. The objective of this paper is to address this gap in the literature and establish recommendations to assess the medical, genetic, and neurological features of PMS.
Collapse
|
Review |
11 |
107 |
24
|
Vereenooghe L, Langdon PE. Psychological therapies for people with intellectual disabilities: a systematic review and meta-analysis. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:4085-4102. [PMID: 24051363 DOI: 10.1016/j.ridd.2013.08.030] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/16/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to evaluate the efficacy of psychological therapies for people with intellectual disabilities (IDs) through a systematic review and meta-analysis of the current literature. A comprehensive literature search identified 143 intervention studies. Twenty-two trials were eligible for review, and 14 of these were subsequently included in the meta-analysis. Many studies did not include adequate information about their participants, especially the nature of their IDs; information about masked assessment, and therapy fidelity was also lacking. The meta-analysis yielded an overall moderate between-group effect size, g=.682, while group-based interventions had a moderate but smaller treatment effect than individual-based interventions. Cognitive-behaviour therapy (CBT) was efficacious for both anger and depression, while interventions aimed at improving interpersonal functioning were not effectual. When CBT was excluded, there was insufficient evidence regarding the efficacy of other psychological therapies, or psychological therapies intended to treat mental health problems in children and young people with IDs. Adults with IDs and concurrent mental health problems appear to benefit from psychological therapies. However, clinical trials need to make use of improved reporting standards and larger samples.
Collapse
|
Meta-Analysis |
12 |
102 |
25
|
Abstract
Sleep disturbances are extremely prevalent in children with neurodevelopmental disorders compared to typically developing children. The diagnostic criteria for many neurodevelopmental disorders include sleep disturbances. Sleep disturbance in this population is often multifactorial and caused by the interplay of genetic, neurobiological and environmental overlap. These disturbances often present either as insomnia or hypersomnia. Different sleep disorders present with these complaints and based on the clinical history and findings from diagnostic tests, an appropriate diagnosis can be made. This review aims to provide an overview of causes, diagnosis, and treatment of sleep disturbances in neurodevelopmental disorders that present primarily with symptoms of hypersomnia and/or insomnia.
Collapse
|
Review |
9 |
95 |