1
|
Emerging dangers: deadly effects of an emergent parasite in a new pollinator host. J Invertebr Pathol 2013; 114:114-9. [PMID: 23816821 DOI: 10.1016/j.jip.2013.06.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/17/2022]
Abstract
There is growing concern about the threats facing many pollinator populations. Emergent diseases are one of the major threats to biodiversity and a microsporidian parasite, Nosema ceranae, has recently jumped host from the Asian to the Western honeybee, spreading rapidly worldwide, and contributing to dramatic colony losses. Bumblebees are ecologically and economically important pollinators of conservation concern, which are likely exposed to N. ceranae by sharing flowers with honeybees. Whilst a further intergeneric jump by N. ceranae to infect bumblebees would be potentially serious, its capacity to do this is unknown. Here we investigate the prevalence of N. ceranae in wild bumblebees in the UK and determine the infectivity of the parasite under controlled conditions. We found N. ceranae in all seven wild bumblebee species sampled, and at multiple sites, with many of the bees having spores from this parasite in their guts. When we fed N. ceranae spores to bumblebees under controlled conditions, we confirmed that the parasite can infect bumblebees. Infections spread from the midgut to other tissues, reduced bumblebee survival by 48% and had sub-lethal effects on behaviour. Although spore production appeared lower in bumblebees than in honeybees, virulence was greater. The parasite N. ceranae therefore represents a real and emerging threat to bumblebees, with the potential to have devastating consequences for their already vulnerable populations.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
96 |
2
|
Jack CJ, Uppala SS, Lucas HM, Sagili RR. Effects of pollen dilution on infection of Nosema ceranae in honey bees. JOURNAL OF INSECT PHYSIOLOGY 2016; 87:12-19. [PMID: 26802559 DOI: 10.1016/j.jinsphys.2016.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 05/25/2023]
Abstract
Multiple stressors are currently threatening honey bee health, including pests and pathogens. Among honey bee pathogens, Nosema ceranae is a microsporidian found parasitizing the western honey bee (Apis mellifera) relatively recently. Honey bee colonies are fed pollen or protein substitute during pollen dearth to boost colony growth and immunity against pests and pathogens. Here we hypothesize that N. ceranae intensity and prevalence will be low in bees receiving high pollen diets, and that honey bees on high pollen diets will have higher survival and/or increased longevity. To test this hypothesis we examined the effects of different quantities of pollen on (a) the intensity and prevalence of N. ceranae and (b) longevity and nutritional physiology of bees inoculated with N. ceranae. Significantly higher spore intensities were observed in treatments that received higher pollen quantities (1:0 and 1:1 pollen:cellulose) when compared to treatments that received relatively lower pollen quantities. There were no significant differences in N. ceranae prevalence among different pollen diet treatments. Interestingly, the bees in higher pollen quantity treatments also had significantly higher survival despite higher intensities of N. ceranae. Significantly higher hypopharyngeal gland protein was observed in the control (no Nosema infection, and receiving a diet of 1:0 pollen:cellulose), followed by 1:0 pollen:cellulose treatment that was inoculated with N. ceranae. Here we demonstrate that diet with higher pollen quantity increases N. ceranae intensity, but also enhances the survival or longevity of honey bees. The information from this study could potentially help beekeepers formulate appropriate protein feeding regimens for their colonies to mitigate N. ceranae problems.
Collapse
|
|
9 |
66 |
3
|
Ptaszyńska AA, Borsuk G, Zdybicka-Barabas A, Cytryńska M, Małek W. Are commercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C? Parasitol Res 2015; 115:397-406. [PMID: 26437644 PMCID: PMC4700093 DOI: 10.1007/s00436-015-4761-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022]
Abstract
The study was conducted to investigate the effect of Lactobacillus rhamnosus (a commercial probiotic) and inulin (a prebiotic) on the survival rates of honeybees infected and uninfected with Nosema ceranae, the level of phenoloxidase (PO) activity, the course of nosemosis, and the effect on the prevention of nosemosis development in bees. The cells of L. rhamnosus exhibited a high rate of survival in 56.56 % sugar syrup, which was used to feed the honeybees. Surprisingly, honeybees fed with sugar syrup supplemented with a commercial probiotic and a probiotic + prebiotic were more susceptible to N. ceranae infection, and their lifespan was much shorter. The number of microsporidian spores in the honeybees fed for 9 days prior to N. ceranae infection with a sugar syrup supplemented with a commercial probiotic was 25 times higher (970 million spores per one honeybee) than in a control group fed with pure sucrose syrup (38 million spores per one honeybee). PO activity reached its highest level in the hemolymph of this honeybee control group uninfected with N. ceranae. The addition of probiotics or both probiotics and prebiotics to the food of uninfected bees led to the ~2-fold decrease in the PO activity. The infection of honeybees with N. ceranae accompanied an almost 20-fold decrease in the PO level. The inulin supplemented solely at a concentration of 2 μg/mL was the only administrated factor which did not significantly affect honeybees’ survival, the PO activity, or the nosemosis infection level. In conclusion, the supplementation of honeybees’ diet with improperly selected probiotics or both probiotics and prebiotics does not prevent nosemosis development, can de-regulate insect immune systems, and may significantly increase bee mortality.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
65 |
4
|
Bernklau E, Bjostad L, Hogeboom A, Carlisle A, H S A. Dietary Phytochemicals, Honey Bee Longevity and Pathogen Tolerance. INSECTS 2019; 10:E14. [PMID: 30626025 PMCID: PMC6359238 DOI: 10.3390/insects10010014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 01/25/2023]
Abstract
Continued loss of natural habitats with native prairies and wildflower patches is eliminating diverse sources of pollen, nectar and phytochemicals therein for foraging bees. The longstanding plant-pollinator mutualism reiterates the role of phytochemicals in sustaining plant-pollinator relationship and promoting honey bee health. We studied the effects of four phytochemicals-caffeine, gallic acid, kaempferol and p-coumaric acid, on survival and pathogen tolerance in the European honey bee, Apis mellifera (L.). We recorded longevity of worker bees that were provided ad libitum access to sugar solution supplemented with different concentrations of phytochemicals. We artificially infected worker bees with the protozoan parasite, Nosema ceranae. Infected bees were provided access to the same concentrations of the phytochemicals in the sugar solution, and their longevity and spore load at mortality were determined. Bees supplemented with dietary phytochemicals survived longer and lower concentrations were generally more beneficial. Dietary phytochemicals enabled bees to combat infection as seen by reduced spore-load at mortality. Many of the phytochemicals are plant defense compounds that pollinators have evolved to tolerate and derive benefits from. Our findings support the chemical bases of co-evolutionary interactions and reiterate the importance of diversity in floral nutrition sources to sustain healthy honey bee populations by strengthening the natural mutualistic relationships.
Collapse
|
research-article |
6 |
52 |
5
|
Tesovnik T, Zorc M, Ristanić M, Glavinić U, Stevanović J, Narat M, Stanimirović Z. Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113443. [PMID: 31733951 DOI: 10.1016/j.envpol.2019.113443] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
During their lifetime honey bees (Apis mellifera) rarely experience optimal conditions. Sometimes, a simultaneous action of multiple stressors, natural and chemical, results in even greater effect than of any stressor alone. Therefore, integrative investigations of different factors affecting honey bees have to be carried out. In this study, adult honey bees exposed to thiamethoxam in larval and/or adult stage and infected with Nosema ceranae were examined. Newly emerged bees from colonies, non-treated or treated with thiamethoxam, were organized in six groups and kept in cages. Thiamethoxam treated bees were further exposed to either thiamethoxam or Nosema (groups TT and TN), or simultaneously to both (group TTN). Newly emerged bees from non-treated colonies were exposed to Nosema (group CN). From both, treated and non-treated colonies two groups were organized and further fed only with sugar solution (groups C and TC). Here, we present the expression profile of 19 genes in adult worker honey bees comprising those involved in immune, detoxification, development and apoptosis response. Results showed that gene expression patterns changed with time and depended on the treatment. In group TC at the time of emergence the majority of tested genes were downregulated, among which nine were significantly altered. The same gene pattern was observed on day six, where the only significantly upregulated gene was defensin-1. On day nine most of analyzed genes in all experimental groups showed upregulation compared to control group, where upregulation of antimicrobial peptide genes abaecin, defensin-1 and defensin-2 was significant in groups TT and TTN. On day 15 we observed a similar pattern of expression in groups TC and TT exposed to thiamethoxam only, where most of the detoxification genes were downregulated. Additionally RNA loads of Nosema and honey bee viruses were recorded. We detected a synergistic interaction of thiamethoxam and Nosema, reflected in lowest honey bee survival.
Collapse
|
|
5 |
52 |
6
|
Hubert J, Bicianova M, Ledvinka O, Kamler M, Lester PJ, Nesvorna M, Kopecky J, Erban T. Changes in the Bacteriome of Honey Bees Associated with the Parasite Varroa destructor, and Pathogens Nosema and Lotmaria passim. MICROBIAL ECOLOGY 2017; 73:685-698. [PMID: 27730366 DOI: 10.1007/s00248-016-0869-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/23/2016] [Indexed: 05/11/2023]
Abstract
The honey bee, Apis mellifera, is a globally important species that suffers from a variety of pathogens and parasites. These parasites and pathogens may have sublethal effects on their bee hosts via an array of mechanisms, including through a change in symbiotic bacterial taxa. Our aim was to assess the influence of four globally widespread parasites and pathogens on the honey bee bacteriome. We examined the effects of the ectoparasitic mite Varroa destructor, the fungal pathogens Nosema apis and Nosema ceranae, and the trypanosome Lotmaria passim. Varroa was detected by acaricidal treatment, Nosema and L. passim by PCR, and the bacteriome using MiSeq 16S rRNA gene sequencing. Overall, the 1,858,850 obtained sequences formed 86 operational taxonomic units (OTUs) at 3 % dissimilarity. Location, time of year, and degree of infestation by Varroa had significant effects on the composition of the bacteriome of honey bee workers. Based on statistical correlations, we found varroosis more important factor than N. ceranae, N. apis, and L. passim infestation influencing the honey bee bacteriome and contributing to the changes in the composition of the bacterial community in adult bees. At the population level, Varroa appeared to modify 20 OTUs. In the colonies with high Varroa infestation levels (varroosis), the relative abundance of the bacteria Bartonella apis and Lactobacillus apis decreased. In contrast, an increase in relative abundance was observed for several taxa including Lactobacillus helsingborgensis, Lactobacillus mellis, Commensalibacter intestini, and Snodgrassella alvi. The results showed that the "normal" bacterial community is altered by eukaryotic parasites as well as displaying temporal changes and changes associated with the geographical origin of the beehive.
Collapse
|
|
8 |
49 |
7
|
Piiroinen S, Goulson D. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proc Biol Sci 2016; 283:rspb.2016.0246. [PMID: 27053744 DOI: 10.1098/rspb.2016.0246] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
49 |
8
|
Burnham AJ. Scientific Advances in Controlling Nosema ceranae ( Microsporidia) Infections in Honey Bees ( Apis mellifera). Front Vet Sci 2019; 6:79. [PMID: 30931319 PMCID: PMC6428737 DOI: 10.3389/fvets.2019.00079] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
Honey bees (Apis mellifera) are agriculturally important pollinators that have been recently at risk to severe colony losses. A variety of parasites and pathogens have been linked to colony decline, including the microsporidian parasite Nosema ceranae. While fumagillin has been used to control nosemosis in managed honey bee colonies for decades, research shows that this antibiotic poses a toxic threat and that its efficacy against N. ceranae is uncertain. There is certainly a demand for a new veterinary medication to treat honey bee colonies infected with N. ceranae. In this review, recent scientific advances in controlling N. ceranae infections in honey bees are summarized.
Collapse
|
Review |
6 |
48 |
9
|
Natsopoulou ME, McMahon DP, Paxton RJ. Parasites modulate within-colony activity and accelerate the temporal polyethism schedule of a social insect, the honey bee. Behav Ecol Sociobiol 2015; 70:1019-1031. [PMID: 27397965 PMCID: PMC4917585 DOI: 10.1007/s00265-015-2019-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022]
Abstract
Task allocation in social insect colonies is generally organised into an age-related division of labour, termed the temporal polyethism schedule, which may in part have evolved to reduce infection of the colony's brood by pests and pathogens. The temporal polyethism schedule is sensitive to colony perturbations that may lead to adaptive changes in task allocation, maintaining colony homeostasis. Though social insects can be infected by a range of parasites, little is known of how these parasites impact within-colony behaviour and the temporal polyethism schedule. We use honey bees (Apis mellifera) experimentally infected by two of their emerging pathogens, Deformed wing virus (DWV), which is relatively understudied concerning its behavioural impact on its host, and the exotic microsporidian Nosema ceranae. We examined parasite effects on host temporal polyethism and patterns of activity within the colony. We found that pathogens accelerated the temporal polyethism schedule, but without reducing host behavioural repertoire. Infected hosts exhibited increased hyperactivity, allocating more time to self-grooming and foraging-related tasks. The strength of behavioural alterations we observed was found to be pathogen specific; behavioural modifications were more pronounced in virus-treated hosts versus N. ceranae-treated hosts, with potential benefits for the colony in terms of reducing within-colony transmission. Investigating the effects of multiple pathogens on behavioural patterns of social insects could play a crucial role in understanding pathogen spread within a colony and their effects on colony social organisation.
Collapse
|
|
10 |
46 |
10
|
D'Alvise P, Seeburger V, Gihring K, Kieboom M, Hasselmann M. Seasonal dynamics and co-occurrence patterns of honey bee pathogens revealed by high-throughput RT-qPCR analysis. Ecol Evol 2019; 9:10241-10252. [PMID: 31624548 PMCID: PMC6787843 DOI: 10.1002/ece3.5544] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022] Open
Abstract
The health of the honey bee Apis mellifera is challenged by introduced parasites that interact with its inherent pathogens and cause elevated rates of colony losses. To elucidate co-occurrence, population dynamics, and synergistic interactions of honey bee pathogens, we established an array of diagnostic assays for a high-throughput qPCR platform. Assuming that interaction of pathogens requires co-occurrence within the same individual, single worker bees were analyzed instead of collective samples. Eleven viruses, four parasites, and three pathogenic bacteria were quantified in more than one thousand single bees sampled from sixteen disease-free apiaries in Southwest Germany. The most abundant viruses were black queen cell virus (84%), Lake Sinai virus 1 (42%), and deformed wing virus B (35%). Forager bees from asymptomatic colonies were infected with two different viruses in average, and simultaneous infection with four to six viruses was common (14%). Also, the intestinal parasites Nosema ceranae (96%) and Crithidia mellificae/Lotmaria passim (52%) occurred very frequently. These results indicate that low-level infections in honey bees are more common than previously assumed. All viruses showed seasonal variation, while N. ceranae did not. The foulbrood bacteria Paenibacillus larvae and Melissococcus plutonius were regionally distributed. Spearman's correlations and multiple regression analysis indicated possible synergistic interactions between the common pathogens, particularly for black queen cell virus. Beyond its suitability for further studies on honeybees, this targeted approach may be, due to its precision, capacity, and flexibility, a viable alternative to more expensive, sequencing-based approaches in nonmodel systems.
Collapse
|
research-article |
6 |
42 |
11
|
Effects of Prebiotics and Probiotics on Honey Bees ( Apis mellifera) Infected with the Microsporidian Parasite Nosema ceranae. Microorganisms 2021; 9:microorganisms9030481. [PMID: 33668904 PMCID: PMC7996622 DOI: 10.3390/microorganisms9030481] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Nosema ceranae is a microsporidian fungus that parasitizes the midgut epithelial cells of honey bees, Apis mellifera. Due to the role that midgut microorganisms play in bee health and immunity, food supplementation with prebiotics and probiotics may assist in the control of N. ceranae. The dietary fiber prebiotics acacia gum, inulin, and fructooligosaccharides, as well as the commercial probiotics Vetafarm Probotic, Protexin Concentrate single-strain (Enterococcus faecium), and Protexin Concentrate multi-strain (Lactobacillus acidophilus, L. plantarum, L. rhamnosus, L. delbrueckii, Bifidobacterium bifidum, Streptococcus salivarius, and E. faecium) were tested for their effect on N. ceranae spore loads and honey bee survivorship. Bees kept in cages were inoculated with N. ceranae spores and single-dose treatments were administered in sugar syrup. Acacia gum caused the greatest reduction in N. ceranae spore numbers (67%) but also significantly increased bee mortality (62.2%). However, Protexin Concentrate single-strain gave similarly reduced spore numbers (59%) without affecting the mortality. In a second experiment, multiple doses of the probiotics revealed significantly reduced spore numbers with 2.50 mg/mL Vetafarm Probotic, and 0.25, 1.25, and 2.50 mg/mL Protexin Concentrate single-strain. Mortality was also significantly reduced with 1.25 mg/mL Protexin Concentrate single-strain. N. ceranae-inoculated bees fed 3.75 mg/mL Vetafarm Probotic had higher survival than N. ceranae-inoculated bees, which was similar to that of non-inoculated bees, while N. ceranae-inoculated bees fed 2.50 mg/mL Protexin Concentrate single-strain, had significantly higher survival than both N. ceranae-inoculated and non-inoculated bees. Protexin Concentrate single-strain is promising as it can reduce N. ceranae proliferation and increase bee survivorship of infected bees, even compared to healthy, non-infected bees.
Collapse
|
Journal Article |
4 |
42 |
12
|
Sinpoo C, Paxton RJ, Disayathanoowat T, Krongdang S, Chantawannakul P. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response. JOURNAL OF INSECT PHYSIOLOGY 2018; 105:1-8. [PMID: 29289505 DOI: 10.1016/j.jinsphys.2017.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Nosema apis and Nosema ceranae are obligate intracellular microsporidian parasites infecting midgut epithelial cells of host adult honey bees, originally Apis mellifera and Apis cerana respectively. Each microsporidia cross-infects the other host and both microsporidia nowadays have a worldwide distribution. In this study, cross-infection experiments using both N. apis and N. ceranae in both A. mellifera and A. cerana were carried out to compare pathogen proliferation and impact on hosts, including host immune response. Infection by N. ceranae led to higher spore loads than by N. apis in both host species, and there was greater proliferation of microsporidia in A. mellifera compared to A. cerana. Both N. apis and N. ceranae were pathogenic in both host Apis species. N. ceranae induced subtly, though not significantly, higher mortality than N. apis in both host species, yet survival of A. cerana was no different to that of A. mellifera in response to N. apis or N. ceranae. Infections of both host species with N. apis and N. ceranae caused significant up-regulation of AMP genes and cellular mediated immune genes but did not greatly alter apoptosis-related gene expression. In this study, A. cerana enlisted a higher immune response and displayed lower loads of N. apis and N. ceranae spores than A. mellifera, suggesting it may be better able to defend itself against microsporidia infection. We caution against over-interpretation of our results, though, because differences between host and parasite species in survival were insignificant and because size differences between microsporidia species and between host Apis species may alternatively explain the differential proliferation of N. ceranae in A. mellifera.
Collapse
|
Comparative Study |
7 |
39 |
13
|
Huang SK, Ye KT, Huang WF, Ying BH, Su X, Lin LH, Li JH, Chen YP, Li JL, Bao XL, Hu JZ. Influence of Feeding Type and Nosema ceranae Infection on the Gut Microbiota of Apis cerana Workers. mSystems 2018; 3:e00177-18. [PMID: 30417114 PMCID: PMC6222045 DOI: 10.1128/msystems.00177-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022] Open
Abstract
The gut microbiota plays an essential role in the health of bees. To elucidate the effect of feed and Nosema ceranae infection on the gut microbiota of honey bee (Apis cerana), we used 16S rRNA sequencing to survey the gut microbiota of honey bee workers fed with sugar water or beebread and inoculated with or without N. ceranae. The gut microbiota of A. cerana is dominated by Serratia, Snodgrassella, and Lactobacillus genera. The overall gut microbiota diversity was show to be significantly differential by feeding type. N. ceranae infection significantly affects the gut microbiota only in bees fed with sugar water. Higher abundances of Lactobacillus, Gluconacetobacter, and Snodgrassella and lower abundances of Serratia were found in bees fed with beebread than in those fed with sugar water. N. ceranae infection led to a higher abundance of Snodgrassella and a lower abundance of Serratia in sugar-fed bees. Imputed bacterial Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed the significant metagenomics functional differences by feeding and N. ceranae infections. Furthermore, A. cerana workers fed with sugar water showed lower N. ceranae spore loads but higher mortality than those fed with beebread. The cumulative mortality was strongly positive correlated (rho = 0.61) with the changes of overall microbiota dissimilarities by N. ceranae infection. Both feeding types and N. ceranae infection significantly affect the gut microbiota in A. cerana workers. Beebread not only provides better nutrition but also helps establish a more stable gut microbiota and therefore protects bees in response to N. ceranae infection. IMPORTANCE The gut microbiota plays an essential role in the health of bees. Scientific evidence suggests that diet and infection can affect the gut microbiota and modulate the health of the gut; however, the interplay between those two factors and the bee gut microbiota is not well known. In this study, we used a high-throughput sequencing method to monitor the changes of gut microbiota associated with both feeding types and Nosema ceranae infection. Our results showed that the gut microbiota composition and diversity of Asian honey bee were significantly associated with both feeding types and the N. ceranae infection. More interestingly, bees fed with beebread showed higher microbiota stability and lower mortality rates than those fed with sugar water when infected by N. ceranae. Those data suggest that beebread has the potential not only to provide better nutrition but also help to establish a more stable gut microbiota to protect bees against N. ceranae infection.
Collapse
|
research-article |
7 |
36 |
14
|
Bravo J, Carbonell V, Sepúlveda B, Delporte C, Valdovinos CE, Martín-Hernández R, Higes M. Antifungal activity of the essential oil obtained from Cryptocarya alba against infection in honey bees by Nosema ceranae. J Invertebr Pathol 2017; 149:141-147. [PMID: 28818498 DOI: 10.1016/j.jip.2017.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/14/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
The honeybee disease nosemosis type C is a serious problem since its causative agent, microsporidium Nosema ceranae, is widespread among adult honey bees. Some of the feasible alternative treatments that are used to control this disease are plant extracts. The aim of the present work was to evaluate the effects of essential oils of Chilean plant species, such as Cryptocarya alba, which is used against N. ceranae, and to identify and quantify the majority active compounds in the EO as well as their potential use for the control of nosemosis. Essential oils were obtained using the stripping steam technique with Clevenger equipment and were subsequently analyzed by Gas chromatography-mass spectrometry. Mortality was recorded daily over at least 8days as worker honeybees were exposed to a range of doses of EO dispersed in a sucrose solution. C. alba oil appears to be nontoxic to A. mellifera adults at the tested concentration (the same concentration inhibits the growth of N. ceranae), showing that this oil can be used for the treatment of nosemosis. EO effectiveness was demonstrated against N. ceranae by calculating the percentage of decrease in infected bees from untreated infected groups vs infected groups treated with EO or the reference drug fumagillin. It was determined that a dose of 4µg EO/bee was most effective in controlling N. ceranae development. We determined innocuous doses of C. alba essential oil for honeybees. We demonstrated the antifungal activity of C. alba EO at 4μg/bee against N. ceranae and compared it to its major monoterpenes, such as β-phellandrene (20μg/bee), eucalyptol (20μg/bee) and α-terpineol (20μg/bee). The major compounds of C. alba EO, α-terpineol, eucalyptol and β-phellandrene, had significant effects against Apis mellifera infection by N. ceranae, but the antifungal effect of the complete essential oil on N. ceranae was larger than the effect of α-terpineol, eucalyptol or β- phellandrene separately, showing that C. alba oil may be a candidate for the treatment or prevention of nosemosis.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
34 |
15
|
Gómez-Moracho T, Bartolomé C, Bello X, Martín-Hernández R, Higes M, Maside X. Recent worldwide expansion of Nosema ceranae (Microsporidia) in Apis mellifera populations inferred from multilocus patterns of genetic variation. INFECTION GENETICS AND EVOLUTION 2015; 31:87-94. [PMID: 25583446 DOI: 10.1016/j.meegid.2015.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/26/2014] [Accepted: 01/03/2015] [Indexed: 01/22/2023]
Abstract
Nosema ceranae has been found infecting Apismellifera colonies with increasing frequency and it now represents a major threat to the health and long-term survival of these honeybees worldwide. However, so far little is known about the population genetics of this parasite. Here, we describe the patterns of genetic variation at three genomic loci in a collection of isolates from all over the world. Our main findings are: (i) the levels of genetic polymorphism (πS≈1%) do not vary significantly across its distribution range, (ii) there is substantial evidence for recombination among haplotypes, (iii) the best part of the observed genetic variance corresponds to differences within bee colonies (up to 88% of the total variance), (iv) parasites collected from Asian honeybees (Apis cerana and Apis florea) display significant differentiation from those obtained from Apismellifera (8-16% of the total variance, p<0.01) and (v) there is a significant excess of low frequency variants over neutral expectations among samples obtained from A. mellifera, but not from Asian honeybees. Overall these results are consistent with a recent colonization and rapid expansion of N. ceranae throughout A. mellifera colonies.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
33 |
16
|
Cilia G, Garrido C, Bonetto M, Tesoriero D, Nanetti A. Effect of Api-Bioxal ® and ApiHerb ® Treatments against Nosema ceranae Infection in Apis mellifera Investigated by Two qPCR Methods. Vet Sci 2020; 7:vetsci7030125. [PMID: 32899611 PMCID: PMC7558000 DOI: 10.3390/vetsci7030125] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Nosema ceranae is a worldwide distributed midgut parasite of western honey bees, leading to dwindling colonies and their collapse. As a treatment, only fumagillin is available, causing issues like resistance and hampered bee physiology. This study aimed to evaluate ApiHerb® and Api-Bioxal® as treatments against N. ceranae. The efficacy was tested using two qPCR methods based on the 16S rRNA and Hsp70 genes. In addition, these methods were compared for their aptitude for the quantification of the infection. For this, 19 colonies were selected based on the presence of N. ceranae infections. The colonies were divided into three groups: treated with ApiHerb, Api-Bioxal with previous queen caging and an untreated control. All colonies were sampled pre- and post-treatment. The bees were analyzed individually and in duplicate with both qPCR methods. All bees in the pre-treatment tested positive for N. ceranae. Both treatments reduced the abundance of N. ceranae, but ApiHerb also decreased the prevalence of infected bees. Analysis with the 16S rRNA method resulted in several orders of magnitude more copies than analysis with the Hsp70 method. We conclude that both products are suitable candidates for N. ceranae treatment. From our analysis, the qPCR method based on the Hsp70 gene results as more apt for the exact quantification of N. ceranae as is needed for the development of veterinary medicinal products.
Collapse
|
Journal Article |
5 |
32 |
17
|
Purkiss T, Lach L. Pathogen spillover from Apis mellifera to a stingless bee. Proc Biol Sci 2019; 286:20191071. [PMID: 31387511 PMCID: PMC6710595 DOI: 10.1098/rspb.2019.1071] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/12/2019] [Indexed: 01/13/2023] Open
Abstract
Pathogen spillover from managed bees is increasingly considered as a possible cause of pollinator decline. Though spillover has been frequently documented, evidence of the pathogen's virulence in the new host or mechanism of transmission is rare. Stingless bees (Apocrita: Meliponini) are crucial pollinators pan-tropically and overlap with managed honeybees (Apis mellifera) in much of their range. Nosema ceranae is the most prevalent disease of adult A. mellifera. We used laboratory experiments and field surveys to investigate the susceptibility of stingless bees (Tetragonula hockingsi) to N. ceranae, infection prevalence and transmissibility via flowers. We found that 67% of T. hockingsi fed sucrose with N. ceranae had detectable spores in their ventriculus, and they died at 2.96 times the rate of sucrose-only fed bees. Five of six field hives harboured bees with N. ceranae present at least once during our five-month survey, with prevalence up to 20%. In our floral transmission experiment, 67% of inflorescences exposed to infected A. mellifera yielded N. ceranae spores, and all resulted in T. hockingsi with N. ceranae spores in their guts. We conclude that N. ceranae is virulent in T. hockingsi under laboratory conditions, is common in the local T. hockingsi population and is transmissible via flowers.
Collapse
|
research-article |
6 |
31 |
18
|
Zheng HQ, Lin ZG, Huang SK, Sohr A, Wu L, Chen YP. Spore Loads May Not be Used Alone as a Direct Indicator of the Severity of Nosema ceranae Infection in Honey Bees Apis mellifera (Hymenoptera:Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2014; 107:2037-2044. [PMID: 26470067 DOI: 10.1603/ec13520] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nosema ceranae Fries et al., 1996, a microsporidian parasite recently transferred from Asian honey bees Apis cerana F., 1793, to European honey bees Apis mellifera L., 1758, has been suspected as one of the major culprits of the worldwide honey bee colony losses. Spore load is a commonly used criterion to describe the intensity of Nosema infection. In this study, by providing Nosema-infected bees with sterilized pollen, we confirmed that pollen feeding increased the spore loads of honey bees by several times either in the presence or absence of a queen. By changing the amount of pollen consumed by bees in cages, we showed that spore loads increased with an increase in pollen consumption. Nosema infections decrease honey bee longevity and transcription of vitellogenin, either with or without pollen feeding. However, the reduction of pollen consumption had a greater impact on honey bee longevity and vitellogenin level than the increase of spore counts caused by pollen feeding. These results indicate that spore loads may not be used alone as a direct indicator of the severity of N. ceranae infection in honey bees.
Collapse
|
|
11 |
31 |
19
|
Seasonality of Nosema ceranae Infections and Their Relationship with Honey Bee Populations, Food Stores, and Survivorship in a North American Region. Vet Sci 2020; 7:vetsci7030131. [PMID: 32911814 PMCID: PMC7558054 DOI: 10.3390/vetsci7030131] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 01/26/2023] Open
Abstract
Nosema ceranae is an emerging pathogen of the western honey bee (Apis mellifera L.), and thus its seasonality and impact on bee colonies is not sufficiently documented for North America. This study was conducted to determine the infection intensity, prevalence, and viability of N. ceranae in >200 honey bee colonies during spring, summer, and fall, in a North American region. We also determined the relationship of N. ceranae infections with colony populations, food stores, bee survivorship, and overwinter colony mortality. The highest rates of N. ceranae infection, prevalence, and spore viability were found in the spring and summer, while the lowest were recorded in the fall. N. ceranae spore viability was significantly correlated with its prevalence and infection intensity in bees. Threshold to high levels of N. ceranae infections (>1,000,000 spores/bee) were significantly associated with reduced bee populations and food stores in colonies. Furthermore, worker bee survivorship was significantly reduced by N. ceranae infections, although no association between N. ceranae and winter colony mortality was found. It is concluded that N. ceranae infections are highest in spring and summer and may be detrimental to honey bee populations and colony productivity. Our results support the notion that treatment is justified when infections of N. ceranae exceed 1,000,000 spores/bee.
Collapse
|
Journal Article |
5 |
30 |
20
|
Seed Meals from Brassica nigra and Eruca sativa Control Artificial Nosema ceranae Infections in Apis mellifera. Microorganisms 2021; 9:microorganisms9050949. [PMID: 33924845 PMCID: PMC8146933 DOI: 10.3390/microorganisms9050949] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/29/2022] Open
Abstract
Nosema ceranae is a widespread parasite responsible for nosemosis Type C in Apis mellifera honey bees, reducing colony survival. The antibiotic fumagillin is the only commercial treatment available, but concerns are emerging about its persistence, safety, and pathogen resistance. The use of natural substances from Brassicaceae defatted seed meals (DSMs) with known antimicrobial and antioxidant properties was explored. Artificially infected bees were fed for 8 days with candies enriched with two concentrations, 2% and 4%, of two DSMs from Brassica nigra and Eruca sativa, containing a known amount of different glucosinolates (GSLs). The food palatability, GSL intake, bee survival, and treatment effects on N. ceranae spore counts were evaluated. Food consumption was higher for the two 2% DSM patties, for both B. nigra and E. sativa, but the GSL intake did not increase by increasing DSM to 4%, due to the resulting lower palatability. The 2% B. nigra patty decreased the bee mortality, while the higher concentration had a toxic effect. The N. ceranae control was significant for all formulates with respect to the untreated control (312,192.6 +/- 14,443.4 s.e.), and was higher for 4% B. nigra (120,366.3 +/- 13,307.1 s.e.). GSL hydrolysis products, the isothiocyanates, were detected and quantified in bee gut tissues. Brassicaceae DSMs showed promising results for their nutraceutical and protective effects on bees artificially infected with N. ceranae spores at the laboratory level. Trials in the field should confirm these results.
Collapse
|
Journal Article |
4 |
29 |
21
|
Castelli L, Balbuena S, Branchiccela B, Zunino P, Liberti J, Engel P, Antúnez K. Impact of Chronic Exposure to Sublethal Doses of Glyphosate on Honey Bee Immunity, Gut Microbiota and Infection by Pathogens. Microorganisms 2021; 9:microorganisms9040845. [PMID: 33920750 PMCID: PMC8071123 DOI: 10.3390/microorganisms9040845] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
Glyphosate is the most used pesticide around the world. Although different studies have evidenced its negative effect on honey bees, including detrimental impacts on behavior, cognitive, sensory and developmental abilities, its use continues to grow. Recent studies have shown that it also alters the composition of the honey bee gut microbiota. In this study we explored the impact of chronic exposure to sublethal doses of glyphosate on the honey bee gut microbiota and its effects on the immune response, infection by Nosema ceranae and Deformed wing virus (DWV) and honey bee survival. Glyphosate combined with N. ceranae infection altered the structure and composition of the honey bee gut microbiota, for example by decreasing the relative abundance of the core members Snodgrassella alvi and Lactobacillus apis. Glyphosate increased the expression of some immune genes, possibly representing a physiological response to mitigate its negative effects. However, this response was not sufficient to maintain honey bee health, as glyphosate promoted the replication of DWV and decreased the expression of vitellogenin, which were accompanied by a reduced life span. Infection by N. ceranae also alters honey bee immunity although no synergistic effect with glyphosate was observed. These results corroborate previous findings suggesting deleterious effects of widespread use of glyphosate on honey bee health, and they contribute to elucidate the physiological mechanisms underlying a global decline of pollination services.
Collapse
|
Journal Article |
4 |
29 |
22
|
Botías C, Martín-Hernández R, Meana A, Higes M. Screening alternative therapies to control Nosemosis type C in honey bee (Apis mellifera iberiensis) colonies. Res Vet Sci 2013; 95:1041-5. [PMID: 24148868 DOI: 10.1016/j.rvsc.2013.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/09/2013] [Accepted: 09/20/2013] [Indexed: 11/17/2022]
Abstract
Nosemosis type C caused by the microsporidium Nosema ceranae is one of the most widespread of the adult honey bee diseases, and due to its detrimental effects on both strength and productivity of honey bee colonies, an appropriate control of this disease is advisable. Fumagillin is the only veterinary medicament recommended by the World Organization for Animal Health (OIE) to suppress infections by Nosema, but the use of this antibiotic is prohibited in the European Union and few alternatives are available at present to control the disease. In the present study three therapeutic agents (Nosestat®, Phenyl salicylate and Vitafeed Gold®) have been tested to control N. ceranae infection in honey bee colonies, and have been compared to the use of fumagillin. None of the products tested was effective against Nosema under our experimental conditions. Low consumption of the different doses of treatments may have had a strong influence on the results obtained, highlighting the importance of this issue and emphasizing that this should be evaluated in studies to test therapeutic treatments of honey bee colonies.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
27 |
23
|
Nosema ceranae infection in honeybee samples from Tuscanian Archipelago (Central Italy) investigated by two qPCR methods. Saudi J Biol Sci 2018; 26:1553-1556. [PMID: 31762625 PMCID: PMC6864192 DOI: 10.1016/j.sjbs.2018.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 01/25/2023] Open
Abstract
Nosema apis and Nosema ceranae are microsporidian parasite worldwide spread causing an emerging infectious disease of European honeybee Apis mellifera. The Nosema presence was deeply investigated in several countries but low information are presents about islands. In this investigation was evaluated the presence N. ceranae and N. apis in apiaries located in Tuscanian Archipelago islands (Central Italy). For N. ceranae detection, two different Real-Time PCR (qPCR) methods, the 16S rRNA and Hsp70 gene amplification qPCR, were performed on honey bee samples; while, for N. apis only the 16S rRNA qPCR amplification was performed. On all islands, only N. ceranae was present, while N. apis was not found in the samples. The two qPCR showed significant difference (p < 0.040) in N. ceranae spores quantification. The single-copy Hsp70 gene method qPCR assay systematically detected a lower amount of N. ceranae copies compared to the multi-copy 16S rRNA gene method.
Collapse
|
Journal Article |
7 |
26 |
24
|
Kurze C, Dosselli R, Grassl J, Le Conte Y, Kryger P, Baer B, Moritz RFA. Differential proteomics reveals novel insights into Nosema-honey bee interactions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:42-49. [PMID: 27784614 DOI: 10.1016/j.ibmb.2016.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Host manipulation is a common strategy by parasites to reduce host defense responses, enhance development, host exploitation, reproduction and, ultimately, transmission success. As these parasitic modifications can reduce host fitness, increased selection pressure may result in reciprocal adaptations of the host. Whereas the majority of studies on host manipulation have explored resistance against parasites (i.e. ability to prevent or limit an infection), data describing tolerance mechanisms (i.e. ability to limit harm of an infection) are scarce. By comparing differential protein abundance, we provide evidence of host-parasite interactions in the midgut proteomes of N. ceranae-infected and uninfected honey bees from both Nosema-tolerant and Nosema-sensitive lineages. We identified 16 proteins out of 661 protein spots that were differentially abundant between experimental groups. In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate for studying the molecular interplay between N. ceranae and its honey bee host in more detail.
Collapse
|
|
9 |
26 |
25
|
Higes M, García-Palencia P, Urbieta A, Nanetti A, Martín-Hernández R. Nosema apis and Nosema ceranae Tissue Tropism in Worker Honey Bees ( Apis mellifera). Vet Pathol 2019; 57:132-138. [PMID: 31342871 DOI: 10.1177/0300985819864302] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The microsporidia Nosema apis and Nosema ceranae are major honey bee pathogens that possess different characteristics in terms of the signs they produce, as well as disease development and transmission. Although the ventricular epithelium is generally considered the target tissue, indirect observations led to speculation that N. ceranae may also target other structures, possibly explaining at least some of the differences between these 2 species. To investigate the tropism of Nosema for honey bee tissues, we performed controlled laboratory infections by orally administering doses of 50 000 or 100 000 fresh mature spores of either species. The fat body was isolated from the infected bees, as well as organs from the digestive (esophagus, ventriculus, ileum, rectum), excretory (Malpighian tubules), circulatory (aorta, heart), respiratory (thoracic tracheas), exocrine (hypopharyngeal, mandibular and labial, cephalic, thoracic salivary glands), and sensory/nervous (brain, eyes and associated nerve structures, thoracic nerve ganglia) systems. Tissues were examined by light and electron microscopy at 7, 10, and 15 days postinfection. Both Nosema species were found to infect epithelial cells and clusters of regenerative cells in the ventriculus, and while the ileum and rectum contained spores of the microsporidia in the lumen, these structures did not show overt lesions. No stages of the parasites or cellular lesions were detected in the other organs tested, confirming the high tropism of both species for the ventricular epithelium cells. Thus, these direct histopathological observations indicate that neither of these 2 Nosema species exhibit tropism for honey bee organs other than the ventriculus.
Collapse
|
Journal Article |
6 |
26 |